Condensed Matter
[Submitted on 26 Jun 1996]
Title:Theory of continuum percolation I. General formalism
View PDFAbstract: The theoretical basis of continuum percolation has changed greatly since its beginning as little more than an analogy with lattice systems. Nevertheless, there is yet no comprehensive theory of this field. A basis for such a theory is provided here with the introduction of the Potts fluid, a system of interacting $s$-state spins which are free to move in the continuum. In the $s \to 1$ limit, the Potts magnetization, susceptibility and correlation functions are directly related to the percolation probability, the mean cluster size and the pair-connectedness, respectively. Through the Hamiltonian formulation of the Potts fluid, the standard methods of statistical mechanics can therefore be used in the continuum percolation problem.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.