General Relativity and Quantum Cosmology
[Submitted on 20 Sep 2003]
Title:Palatini approach to Born-Infeld-Einstein theory and a geometric description of electrodynamics
View PDFAbstract: The field equations associated with the Born-Infeld-Einstein action are derived using the Palatini variational technique. In this approach the metric and connection are varied independently and the Ricci tensor is generally not symmetric. For sufficiently small curvatures the resulting field equations can be divided into two sets. One set, involving the antisymmetric part of the Ricci tensor $R_{\stackrel{\mu\nu}{\vee}}$, consists of the field equation for a massive vector field. The other set consists of the Einstein field equations with an energy momentum tensor for the vector field plus additional corrections. In a vacuum with $R_{\stackrel{\mu\nu}{\vee}}=0$ the field equations are shown to be the usual Einstein vacuum equations. This extends the universality of the vacuum Einstein equations, discussed by Ferraris et al. \cite{Fe1,Fe2}, to the Born-Infeld-Einstein action. In the simplest version of the theory there is a single coupling constant and by requiring that the Einstein field equations hold to a good approximation in neutron stars it is shown that mass of the vector field exceeds the lower bound on the mass of the photon. Thus, in this case the vector field cannot represent the electromagnetic field and would describe a new geometrical field. In a more general version in which the symmetric and antisymmetric parts of the Ricci tensor have different coupling constants it is possible to satisfy all of the observational constraints if the antisymmetric coupling is much larger than the symmetric coupling. In this case the antisymmetric part of the Ricci tensor can describe the electromagnetic field, although gauge invariance will be broken.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.