High Energy Physics - Phenomenology
[Submitted on 13 Nov 2003 (v1), last revised 20 Feb 2004 (this version, v2)]
Title:Topped MAC with extra dimensions?
View PDFAbstract: We perform the most attractive channel (MAC) analysis in the top mode standard model with TeV-scale extra dimensions, where the standard model gauge bosons and the third generation of quarks and leptons are put in D(=6,8,10,...) dimensions. In such a model, bulk gauge couplings rapidly grow in the ultraviolet region. In order to make the scenario viable, only the attractive force of the top condensate should exceed the critical coupling, while other channels such as the bottom and tau condensates should not. We then find that the top condensate can be the MAC for D=8, whereas the tau condensation is favored for D=6. The analysis for D=10 strongly depends on the regularization scheme. We predict masses of the top (m_t) and the Higgs (m_H), m_t=172-175 GeV and m_H=176-188 GeV for D=8, based on the renormalization group for the top Yukawa and Higgs quartic couplings with the compositeness conditions at the scale where the bulk top condenses. The Higgs boson in such a characteristic mass range will be immediately discovered in H -> WW^(*)/ZZ^(*) once the LHC starts.
Submission history
From: Michio Hashimoto [view email][v1] Thu, 13 Nov 2003 04:55:38 UTC (95 KB)
[v2] Fri, 20 Feb 2004 09:19:17 UTC (95 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.