High Energy Physics - Phenomenology
[Submitted on 20 Sep 2004 (v1), last revised 23 Sep 2004 (this version, v2)]
Title:Recoil and Power Corrections in High-x_T Direct-Photon Production
View PDFAbstract: We study a class of nonperturbative corrections to single-inclusive photon cross sections at measured transverse momentum p_T, in the large-x_T limit. We develop an extension of the joint (threshold and transverse momentum) resummation formalism, appropriate for large x_T, in which there are no kinematic singularities associated with recoil, and for which matching to fixed order and to threshold resummation at next-to-leading logarithm (NLL) is straightforward. Beyond NLL, we find contributions that can be attributed to recoil from initial state radiation. Associated power corrections occur as inverse powers of p_T^2 and are identified from the infrared structure of integrals over the running coupling. They have significant energy dependence and decrease from typical fixed-target to collider energies. Energy conservation, which is incorporated into joint resummation, moderates the effects of perturbative recoil and power corrections for large x_T.
Submission history
From: Werner Vogelsang [view email][v1] Mon, 20 Sep 2004 18:54:49 UTC (81 KB)
[v2] Thu, 23 Sep 2004 15:08:56 UTC (81 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.