High Energy Physics - Theory
[Submitted on 31 Mar 2004 (v1), last revised 2 Nov 2004 (this version, v2)]
Title:A Conformally Invariant Holographic Two-Point Function on the Berger Sphere
View PDFAbstract: We apply our previous work on Green's functions for the four-dimensional quaternionic Taub-NUT manifold to obtain a scalar two-point function on the homogeneously squashed three-sphere (otherwise known as the Berger sphere), which lies at its conformal infinity. Using basic notions from conformal geometry and the theory of boundary value problems, in particular the Dirichlet-to-Robin operator, we establish that our two-point correlation function is conformally invariant and corresponds to a boundary operator of conformal dimension one. It is plausible that the methods we use could have more general applications in an AdS/CFT context.
Submission history
From: Konstantinos Zoubos [view email][v1] Wed, 31 Mar 2004 20:41:24 UTC (64 KB)
[v2] Tue, 2 Nov 2004 02:54:42 UTC (64 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.