High Energy Physics - Theory
[Submitted on 28 Nov 1995 (v1), last revised 20 Mar 1996 (this version, v2)]
Title:Discrete gauge theories
View PDFAbstract: In these lecture notes, we present a self-contained discussion of planar gauge theories broken down to some finite residual gauge group H via the Higgs mechanism. The main focus is on the discrete H gauge theory describing the long distance physics of such a model. The spectrum features global H charges, magnetic vortices and dyonic combinations. Due to the Aharonov-Bohm effect, these particles exhibit topological interactions. Among other things, we review the Hopf algebra related to this discrete H gauge theory, which provides an unified description of the spin, braid and fusion properties of the particles in this model. Exotic phenomena such as flux metamorphosis, Alice fluxes, Cheshire charge, (non)abelian braid statistics, the generalized spin-statistics connection and nonabelian Aharonov-Bohm scattering are explained and illustrated by representative examples.
Preface: Broken symmetry revisited,
1 Basics: 1.1 Introduction, 1.2 Braid groups, 1.3 Z_N gauge theory, 1.3.1 Coulomb screening, 1.3.2 Survival of the Aharonov-Bohm effect, 1.3.3 Braid and fusion properties of the spectrum, 1.4 Nonabelian discrete gauge theories, 1.4.1 Classification of stable magnetic vortices, 1.4.2 Flux metamorphosis, 1.4.3 Including matter,
2 Algebraic structure: 2.1 Quantum double, 2.2 Truncated braid groups, 2.3 Fusion, spin, braid statistics and all that...,
3 \bar{D}_2 gauge theory: 3.1 Alice in physics, 3.2 Scattering doublet charges off Alice fluxes, 3.3 Nonabelian braid statistics, 3.A Aharonov-Bohm scattering, 3.B B(3,4) and P(3,4),
Concluding remarks and outlook
Submission history
From: Mark DE WILD Propitius [view email][v1] Tue, 28 Nov 1995 18:38:42 UTC (1 KB) (withdrawn)
[v2] Wed, 20 Mar 1996 17:34:19 UTC (90 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.