High Energy Physics - Theory
[Submitted on 6 Oct 1997 (v1), last revised 25 Feb 2001 (this version, v2)]
Title:Clifford geometric parameterization of inequivalent vacua
View PDFAbstract: We propose a geometric method to parameterize inequivalent vacua by dynamical data. Introducing quantum Clifford algebras with arbitrary bilinear forms we distinguish isomorphic algebras --as Clifford algebras-- by different filtrations resp. induced gradings. The idea of a vacuum is introduced as the unique algebraic projection on the base field embedded in the Clifford algebra, which is however equivalent to the term vacuum in axiomatic quantum field theory and the GNS construction in C^*-algebras. This approach is shown to be equivalent to the usual picture which fixes one product but employs a variety of GNS states. The most striking novelty of the geometric approach is the fact that dynamical data fix uniquely the vacuum and that positivity is not required. The usual concept of a statistical quantum state can be generalized to geometric meaningful but non-statistical, non-definite, situations. Furthermore, an algebraization of states takes place. An application to physics is provided by an U(2)-symmetry producing a gap-equation which governs a phase transition. The parameterization of all vacua is explicitly calculated from propagator matrix elements. A discussion of the relation to BCS theory and Bogoliubov-Valatin transformations is given.
Submission history
From: Bertfried Fauser [view email][v1] Mon, 6 Oct 1997 09:06:15 UTC (19 KB)
[v2] Sun, 25 Feb 2001 19:58:09 UTC (32 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.