Mathematics > Algebraic Geometry
[Submitted on 20 Jan 2004 (v1), last revised 1 Apr 2004 (this version, v3)]
Title:Stable Configurations of Linear Subspaces and Quotient Coherent Sheaves
View PDFAbstract: In this paper we provide some stability criteria for systems of linear subspaces of $V \otimes W$ and for systems of quotient coherent sheaves, using, respectively, the Hilbert-Mumford numerical criterion and moment map. Along the way, we generalize the Gelfand-MacPherson correspondence [11] from point sets to sets of linear subspaces (of various dimensions). And, as an application, we provide some examples of $G$-ample cones without any top chambers. The results of this paper are based upon and/or generalize some earlier works of Klyachko [18], Totaro [28], Gelfand-MacPherson [11], Kapranov [17], Foth-Lozano [8], Simpson [24], Wang [30], Phong-Sturm [22], Zhang [32] and Luo [20], among others.
Submission history
From: Yi Hu [view email][v1] Tue, 20 Jan 2004 18:23:45 UTC (27 KB)
[v2] Tue, 27 Jan 2004 18:44:58 UTC (27 KB)
[v3] Thu, 1 Apr 2004 23:03:47 UTC (27 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.