Mathematics > Complex Variables
[Submitted on 26 Jan 2004]
Title:Valence of complex-valued planar harmonic functions
View PDFAbstract: The valence of a function $f$ at a point $w$ is the number of distinct, finite solutions to $f(z) = w$. Let $f$ be a complex-valued harmonic function in an open set $R \subseteq \mathbb{C}$. Let $S$ denote the critical set of $f$ and $C(f)$ the global cluster set of $f$. We show that $f(S) \cup C(f)$ partitions the complex plane into regions of constant valence. We give some conditions such that $f(S) \cup C(f)$ has empty interior. We also show that a component $R_0 \subseteq R \backslash f^{-1}(f(S) \cup C(f))$ is a $n_0$-fold covering of some component $\Omega_0 \subseteq \mathbb{C} \backslash (f(S) \cup C(f))$. If $\Omega_0$ is simply connected, then $f$ is univalent on $R_0$. We explore conditions for combining adjacent components to form a larger region of univalence. Those results which hold for $C^1$ functions on open sets in $\mathbb{R}^2$ are first stated in that form and then applied to the case of planar harmonic functions. If $f$ is a light, harmonic function in the complex plane, we apply a structure theorem of Lyzzaik to gain information about the difference in valence between components of $\mathbb{C} \backslash (f(S) \cup C(f))$ sharing a common boundary arc in $f(S) \backslash C(f)$.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.