Mathematics > Differential Geometry
[Submitted on 3 Feb 2004]
Title:Instantons and branes in manifolds with vector cross product
View PDFAbstract: In this paper we study the geometry of manifolds with vector cross product and its complexification. First we develop the theory of instantons and branes and study their deformations. For example they are (i) holomorphic curves and Lagrangian submanifolds in symplectic manifolds and (ii) associative submanifolds and coassociative submanifolds in G_2-manifolds.
Second we classify Kahler manifolds with the complex analog of vector cross product, namely they are Calabi-Yau manifolds and hyperkahler manifolds. Furthermore we study instantons, Neumann branes and Dirichlet branes on these manifolds. For example they are special Lagrangian submanifolds with phase angle zero, complex hypersurfaces and special Lagrangian submanifolds with phase angle pi/2 in Calabi-Yau manifolds.
Third we prove that, given any Calabi-Yau manifold, its isotropic knot space admits a natural holomorphic symplectic structure. We also relate the Calabi-Yau geometry of the manifold to the holomorphic symplectic geometry of its isotropic knot space.
Submission history
From: Naichung Conan Leung [view email][v1] Tue, 3 Feb 2004 21:14:48 UTC (37 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.