Mathematics > Probability
[Submitted on 4 Feb 2004 (v1), last revised 24 Sep 2004 (this version, v2)]
Title:Gaussian scaling for the critical spread-out contact process above the upper critical dimension
View PDFAbstract: We consider the critical spread-out contact process in $\Zd$ with $d\geq 1$, whose infection range is denoted by $L\geq1$. The two-point function $\tau_t(x)$ is the probability that $x\in\Zd$ is infected at time $t$ by the infected individual located at the origin $o\in\Zd$ at time 0. We prove Gaussian behavior for the two-point function with $L\geq L_0$ for some finite $L_0=L_0(d)$ for $d>4$. When $d\leq 4$, we also perform a local mean-field limit to obtain Gaussian behaviour for $\tau_{tT}$ with $t>0$ fixed and $T\to \infty$ when the infection range depends on $T$ such that $L_T=LT^b$ for any $b>(4-d)/2d$.
The proof is based on the lace expansion and an adaptation of the inductive approach applied to the discretized contact process. We prove the existence of several critical exponents and show that they take on mean-field values. The results in this paper provide crucial ingredients to prove convergence of the finite-dimensional distributions for the contact process towards the canonical measure of super-Brownian motion, which we defer to a sequel of this paper.
Submission history
From: Remco Hofstad van der [view email][v1] Wed, 4 Feb 2004 07:59:58 UTC (87 KB)
[v2] Fri, 24 Sep 2004 10:59:35 UTC (92 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.