Mathematics > Dynamical Systems
[Submitted on 26 Apr 2004]
Title:Asymptotic and Lyapunov stability of Poisson equilibria
View PDFAbstract: This paper includes results centered around three topics, all of them related with the nonlinear stability of equilibria in Poisson dynamical systems. Firstly, we prove an energy-Casimir type sufficient condition for stability that uses functions that are not necessarily conserved by the flow and that takes into account certain asymptotically stable behavior that may occur in the Poisson category. This method is adapted to Poisson systems obtained via a reduction procedure and we show in examples that the kind of stability that we propose is appropriate when dealing with the stability of the equilibria of some constrained systems. Finally, we discuss two situations in which the use of continuous Casimir functions in stability studies is equivalent to the topological stability methods introduced by Patrick {\it et al.}
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.