Mathematics > Differential Geometry
[Submitted on 30 Apr 2004 (v1), last revised 6 May 2004 (this version, v2)]
Title:Toric Hypersymplectic Quotients
View PDFAbstract: We study the hypersymplectic spaces obtained as quotients of flat hypersymplectic space R^{4d} by the action of a compact Abelian group. These 4n-dimensional quotients carry a multi-Hamilitonian action of an n-torus. The image of the hypersymplectic moment map for this torus action may be described by a configuration of solid cones in R^{3n}. We give precise conditions for smoothness and non-degeneracy of such quotients and show how some properties of the quotient geometry and topology are constrained by the combinatorics of the cone configurations. Examples are studied, including non-trivial structures on R^{4n} and metrics on complements of hypersurfaces in compact manifolds.
Submission history
From: Andrew Swann [view email][v1] Fri, 30 Apr 2004 08:52:44 UTC (46 KB)
[v2] Thu, 6 May 2004 11:47:48 UTC (46 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.