Mathematics > Probability
[Submitted on 5 May 2004]
Title:Identification of periodic and cyclic fractional stable motions
View PDFAbstract: Self-similar stable mixed moving average processes can be related to nonsingular flows through their minimal representations. Self-similar stable mixed moving averages related to dissipative flows have been studied, as well as processes associated with identity flows which are the simplest type of conservative flows. The focus here is on self-similar stable mixed moving averages related to periodic and cyclic flows. Periodic flows are conservative flows such that each point in the space comes back to its initial position in finite time, either positive or null. The flow is cyclic if the return time is positive.
Self-similar mixed moving averages are called periodic, respectively cyclic, fractional stable motions if their minimal representations are generated by periodic, respectively cyclic, flows. These processes, however, are often defined by a nonminimal representation. We provide a way to detect whether they are periodic or cyclic even if their representation is nonminimal. By using these identification results, we obtain a more refined decomposition of self-similar mixed moving averages.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.