Mathematics > Group Theory
[Submitted on 13 May 2004 (v1), last revised 16 Sep 2005 (this version, v2)]
Title:Quasi-actions on trees II: Finite depth Bass-Serre trees
View PDFAbstract: This paper addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth graph of groups is one whose vertex and edge groups are coarse Poincare duality groups. The main theorem says that, under certain hypotheses, if G is a finite graph of coarse Poincare duality groups then any finitely generated group quasi-isometric to the fundamental group of G is also the fundamental group of a finite graph of coarse Poincare duality groups, and any quasi-isometry between two such groups must coarsely preserves the vertex and edge spaces of their Bass-Serre trees of spaces. Besides some simple normalization hypotheses, the main hypothesis is the ``crossing graph condition'', which is imposed on each vertex group G_v which is an n-dimensional coarse Poincare duality group for which every incident edge group has positive codimension: the crossing graph of G_v is a graph e_v that describes the pattern in which the codimension~1 edge groups incident to G_v are crossed by other edge groups incident to G_v, and the crossing graph condition requires that e_v be connected or empty.
Submission history
From: Lee Mosher [view email][v1] Thu, 13 May 2004 03:58:19 UTC (125 KB)
[v2] Fri, 16 Sep 2005 14:38:56 UTC (124 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.