Mathematics > Operator Algebras
[Submitted on 13 May 2004]
Title:Quantum double construction in the C*-algebra setting of certain Heisenberg-type quantum groups
View PDFAbstract: In this paper, we carry out the ``quantum double construction'' of the specific quantum groups we constructed earlier, namely, the ``quantum Heisenberg group algebra'' (A,\Delta) and its dual, the ``quantum Heisenberg group'' (\hat{A},\hat{\Delta}). Our approach will be by constructing a suitable multiplicative unitary operator. In this way, we are able to retain the C*-algebra framework, and thus able to carry out our construction within the category of locally compact quantum groups. This construction is a kind of a generalized crossed product. To establish that the quantum double we obtain is indeed a locally compact quantum group, we will also discuss the dual of the quantum double and the Haar weights on both of these double objects. Towards the end, we also include a construction of a (quasitriangular) ``quantum universal R-matrix''.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.