Mathematics > Dynamical Systems
[Submitted on 21 May 2004]
Title:Degenerate elliptic resonances
View PDFAbstract: Quasi-periodic motions on invariant tori of an integrable system of dimension smaller than half the phase space dimension may continue to exists after small perturbations. The parametric equations of the invariant tori can often be computed as formal power series in the perturbation parameter and can be given a meaning via resummations. Here we prove that, for a class of elliptic tori, a resummation algorithm can be devised and proved to be convergent, thus extending to such lower-dimensional invariant tori the methods employed to prove convergence of the Lindstedt series either for the maximal (i.e. KAM) tori or for the hyperbolic lower-dimensional invariant tori.
Submission history
From: Giovanni Gallavotti [view email][v1] Fri, 21 May 2004 17:12:43 UTC (56 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.