Mathematics > Functional Analysis
[Submitted on 14 Jul 2004]
Title:Saturating Constructions for Normed Spaces II
View PDFAbstract: We prove several results of the following type: given finite dimensional normed space V possessing certain geometric property there exists another space X having the same property and such that (1) log (dim X) = O(log (dim V)) and (2) every subspace of X, whose dimension is not "too small," contains a further well-complemented subspace nearly isometric to V. This sheds new light on the structure of large subspaces or quotients of normed spaces (resp., large sections or linear images of convex bodies) and provides definitive solutions to several problems stated in the 1980s by V. Milman. The proofs are probabilistic and depend on careful analysis of images of convex sets under Gaussian linear maps.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.