Mathematics > Functional Analysis
[Submitted on 14 Jul 2004]
Title:On convexified packing and entropy duality
View PDFAbstract: A 1972 duality conjecture due to Pietsch asserts that the entropy numbers of a compact operator acting between two Banach spaces and those of its adjoint are (in an appropriate sense) equivalent. This is equivalent to a dimension free inequality relating covering (or packing) numbers for convex bodies to those of their polars. The duality conjecture has been recently proved (see math.FA/0407236) in the central case when one of the Banach spaces is Hilbertian, which - in the geometric setting - corresponds to a duality result for symmetric convex bodies in Euclidean spaces. In the present paper we define a new notion of "convexified packing," show a duality theorem for that notion, and use it to prove the duality conjecture under much milder conditions on the spaces involved (namely, that one of them is K-convex).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.