Nuclear Experiment
[Submitted on 20 Dec 2005]
Title:Pygmy dipole strength close to particle-separation energies - the case of the Mo isotopes
View PDFAbstract: The distribution of electromagnetic dipole strength in 92, 98, 100 Mo has been investigated by photon scattering using bremsstrahlung from the new ELBE facility. The experimental data for well separated nuclear resonances indicate a transition from a regular to a chaotic behaviour above 4 MeV of excitation energy. As the strength distributions follow a Porter-Thomas distribution much of the dipole strength is found in weak and in unresolved resonances appearing as fluctuating cross section. An analysis of this quasi-continuum - here applied to nuclear resonance fluorescence in a novel way - delivers dipole strength functions, which are combining smoothly to those obtained from (g,n)-data. Enhancements at 6.5 MeV and at ~9 MeV are linked to the pygmy dipole resonances postulated to occur in heavy nuclei.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.