Physics > Chemical Physics
[Submitted on 21 Feb 2005]
Title:Simulation of geometric and electronic degrees of freedom using a kink-based path integral formulation: application to molecular systems
View PDFAbstract: A kink-based path integral method, previously applied to atomic systems, is modified and used to study molecular systems. The method allows the simultaneous evolution of atomic and electronic degrees of freedom. Results for CH$_4 $, NH$_3 $, and H$_2 $O demonstrate this method to be accurate for both geometries and energies. Comparison with DFT and MP2 level calculations show the path integral approach to produce energies in close agreement with MP2 energies and geometries in close agreement with both DFT and MP2 results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.