Quantum Physics
[Submitted on 17 Apr 2006 (v1), last revised 9 Aug 2006 (this version, v2)]
Title:Lorentz-covariant deformed algebra with minimal length and application to the 1+1-dimensional Dirac oscillator
View PDFAbstract: The $D$-dimensional $(\beta, \beta')$-two-parameter deformed algebra introduced by Kempf is generalized to a Lorentz-covariant algebra describing a ($D+1$)-dimensional quantized space-time. In the D=3 and $\beta=0$ case, the latter reproduces Snyder algebra. The deformed Poincaré transformations leaving the algebra invariant are identified. It is shown that there exists a nonzero minimal uncertainty in position (minimal length). The Dirac oscillator in a 1+1-dimensional space-time described by such an algebra is studied in the case where $\beta'=0$. Extending supersymmetric quantum mechanical and shape-invariance methods to energy-dependent Hamiltonians provides exact bound-state energies and wavefunctions. Physically acceptable states exist for $\beta < 1/(m^2 c^2)$. A new interesting outcome is that, in contrast with the conventional Dirac oscillator, the energy spectrum is bounded.
Submission history
From: Quesne Christiane [view email][v1] Mon, 17 Apr 2006 12:47:13 UTC (15 KB)
[v2] Wed, 9 Aug 2006 11:59:39 UTC (44 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.