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We propose a practical scheme for one-way quantum computing based on efficient generation of
2D cluster state in thermal cavities. We achieve a controlled-phase gate that is neither sensitive to
cavity decay nor to thermal field by adding a strong classical field to the two-level atoms. We show
that a 2D cluster state can be generated directly by making every two atoms collide in an array
of cavities, with numerically calculated parameters and appropriate operation sequence that can be
easily achieved in practical Cavity QED experiments. Based on a generated cluster state in Box(4)

configuration, we then implement Grover’s search algorithm for four database elements in a very
simple way as an example of one-way quantum computing.

PACS numbers: 03.67.Lx, 03.65.Ud, 42.50.Vk

Over the past few years, the construction of a practical quantum computer has become a challenging goal for
experimentalists. It is well known that the building blocks of a general quantum computer are single-qubit rotations
and two-qubit quantum gates [1]. Recently, Briegel and Raussendorf [2, 3] proposed a new idea for constructing
quantum computer, known as one-way quantum computing, which shows that preparation of a particular entangled
state, called cluster state, accompanied with local single qubit measurements, is sufficient for simulating any arbitrary
quantum logic operations. Cluster state as a universal resource for general quantum computing has drawn extensive
research interests [4]-[8]. Moreover, one way quantum computing by optical elements based on four-qubit cluster
states was recently demonstrated experimentally [9]. It is hoped that experimental difficulties in performing complex
quantum gates may be overcome by one-way quantum computing based on the generation of cluster state.
A cluster state |ψ〉c can be visualized as a collection of qubits positioned at certain sites of a 2D lattice structure

with lines connecting them, which can be specified by the following set of eigenvalue equations:

K(a)|ψ〉c = (−1)κa |ψ〉c (1)

with the correlation operators

K(a) = σ(a)
x ⊗

b∈nghb(a)
σ(b)
z (2)

where nghb(a) is set of all the neighbors of any site a of the lattice, and κa ∈ {0, 1}. To generate an arbitrary cluster

state, one can first initialize each qubit in state |+〉 = (|0〉 + |1〉)/
√
2, where |0〉 and |1〉 are the computational basis,

and then perform controlled-phase operations between all neighboring qubits connected by the lines of the lattice.
Cavity QED system is known to be a qualified candidate for quantum information processing [10]. However, up to

now, one-way quantum computing based on Cavity QED techniques has neither been proposed theoretically nor been
carried out experimentally. The main difficulty lies in generating an arbitrary 2D cluster state. Proposed schemes
of generating cluster states using Cavity QED methods [11]-[14] are difficult for practical and scalable experiments
either due to the decoherence of the cavity field mode or due to the sensitivity of thermal field. Besides, most of
the schemes are mainly focused on linear cluster state prepared in one dimension, which are not suitable for use as
substrate for quantum computation since one-way quantum computing based on 1D cluster state can be efficiently
simulated by classical computer, [15, 16] and most proposals for generating 2D cluster state are inefficient, as they
first need to generate several 1D cluster states and then collide them into a 2D configuration.
In the present work, we propose a practical scheme for one-way quantum computing based on efficient generation

of 2D cluster state in thermal cavities. Compared to Ref.[11]-[14], our scheme is neither sensitive to cavity decay nor
to thermal field, since the evolution of the atomic states is independent of the cavity field mode, which is achieved by
adding a strong classical field to our system. In addition, our implementation of controlled-phase gate does not need
any auxiliary state, i.e. two-level atoms are used instead of three-level atoms, which further reduces experimental
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difficulties. On the other hand, the 2D cluster state is generated in a direct and efficient manner in our scheme by
appropriately choosing the initial velocity of each atoms as well as the time delay between atom preparations and
placing an array of cavities at certain locations in the path atoms passing through, so that every two atoms can collide
in a certain cavity and be subjected to entanglement generation as in Ref.[17]. We give the generation of arbitrary
4-qubit cluster state as an example with reasonable parameters and concrete operation sequence, and show that our
scheme can perform one-way quantum computing process such as Grover’s search algorithm for four database elements
in a simple and convenient way that is within the current experimental techniques.
Our generation of entanglement in cluster state is based on the interaction between two identical two-level atoms

and a single-mode cavity field driven by a classical field. In the rotating wave approximation, the Hamiltonian for
such a system is given by (assuming ~ = 1) [18]

H =
2
∑

j=1

ω0σz,j + ωaa
†a+ 1

2

2
∑

j=1

[g(a†σ−
j + aσ+

j )

+Ω(σ+
j e

−iωt + σ−
j e

iωt)]

(3)

where a and a† are the annihilation and creating operators for cavity mode, σz,j = |e〉jj〈e| − |g〉jj〈g|, σ+
j = |e〉jj〈g|,

σ−
j = |g〉jj〈e|, with |e〉j(|g〉j) being the excited (ground) state of the jth atom. ω0, ωa and ω are the frequencies for

atomic transition, cavity mode, and classical field respectively. g is the atom-cavity coupling strength and Ω is the
Rabi frequency of the classical field. Assume that ω0 = ω. Then we can obtain the following interaction Hamiltonian
in the interaction picture:

Hi =
2

∑

j=1

[
Ω

2
(σ+

j + σ−
j ) +

g

2
(e−iδta†σ−

j + eiδtaσ+
j )], (4)

with δ = ω0 − ωa. For the new atomic basis |±〉j = (|g〉j ± |e〉j)/
√
2, then we make a further transformation with

rotation with respect to the terms regarding Ω in Eq.(4), and obtain

HI = g
4

2
∑

j=1

(|+〉jj〈+| − |−〉jj〈−|+ |+〉jj〈−|eiΩt

−|−〉jj〈+|e−iΩt)e−iδta† +H.c.

(5)

Free Hamiltonian H0 = Ω
2

2
∑

j=1

(|+〉jj〈+| − |−〉jj〈−|) has been used here for the transformation. Assuming that

Ω ≫ δ, g, we can neglect the fast oscillating terms. Then obtain the effective interaction Hamiltonian,

He =
g

2
(e−iδta† + eiδta)σx (6)

where σx = 1
2

2
∑

j=1

(σ+
j + σ−

j ). The evolution operator for Hamiltonian (6), which was first proposed for trapped-ion

system [19], can be written as

Ue(t) = e−iA(t)σ2

xe−iB(t)σxae−iC(t)σxa
†

(7)

By solving the Schrödinger equation idUe(t)/dt = HiUe(t), we can obtain B(t) = g(eiδt−1)/2iδ, C(t) = −g(e−iδt−
1)/2iδ, A(t) = g2[t + (e−iδt − 1)/iδ]/4δ. Choosing δt = 2π, we have B(t) = C(t) = 0. Thus we get the evolution
operator of the system,

U(t) = e−iH0tUe(t) = e−iΩtσx−iλtσ2

x (8)

where λ = g2/4δ. If we first apply single-qubit Hadamard gate on both atoms, and then set the interacting time t
and Rabi frequency Ω appropriately so that λt = π/2 and Ωt = (2k + 1

2 )π (k is integer), followed by implementing
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again the Hadamard gate on both atoms, then we obtain a controlled quantum phase gate with computational basis
|0〉, |1〉 represented by |e〉, |g〉:



































H⊗2U(t)H⊗2|g〉1|g〉2 = −|g〉1|g〉2

H⊗2U(t)H⊗2|g〉1|e〉2 = |g〉1|e〉2

H⊗2U(t)H⊗2|e〉1|g〉2 = |e〉1|g〉2

H⊗2U(t)H⊗2|e〉1|e〉2 = |e〉1|e〉2

(9)

In order to generate an arbitrary two-dimensional cluster state using the controlled quantum phase gate given in
Eq.(9), we first assume that the horizontal velocity vi and time ti of the i

th atom emitting from the single-atom source
has been pre-selected according to our need, and the vertical position of each atom are slightly different. After the
atoms initially in ground state move out horizontally from the source, a π/2 classical resonant pulse R is added to

each atom so that they are prepared in the state (|0〉 + |1〉)/
√
2. Our next aim is to let every two atoms collide in

a certain cavity and so that they may undergo the evolution in Eq.(8), and an arbitrary 2D cluster state can thus
be formed. For N atoms forming a N-qubit cluster state, calculations show that this requires us to place (2N − 3)
cavities in a array as depicted in Figure 1(a). Suppose the kth cavity center is at a distance Lk from the single-atom
source, the following equations should be satisfied in order to achieve collisions between every two atoms.

Li+j−2(
1

vj
− 1

vi
) = ti − tj (10)

where i = 1, 2, ..., N − 1; j = i+1, i+2, ..., N and we set t1 = 0 for simplicity. Eq.(10) contains N(N − 1)/2 nonlinear
equations and 4(N − 1) variables. Calculations show that it has a group of solutions for N ≤ 6 and may not give
any solution for N ≥ 7. For pedagogical reasons, we are aimed at the relatively simple but important case of N = 4,
where one can get many reasonable solutions that satisfy Eq.(10). Figure 1(b) shows a possible case qualitatively. The
analytical solution we obtained is rather complicated, but our numerical calculation gives many quantitative solutions
that are appropriate in practical experiments. Table I shows one example.

TABLE I: One numerical solution for Eq.(10) in the case of N = 4. Part of the quantities are set as constants and others are
variables being solved.

v1 v2 v3 v4

100m/s 122m/s 146m/s 250m/s

t1 t2 t3 t4

0ms 0.359ms 0.471ms 0.500ms

L1 L2 L3 L4 L5

1.00cm 3.35cm 8.33cm 15.00cm 20.00cm

Since we only want the atom pairs representing neighboring qubits in the cluster state to undergo the controlled-
phase operation in Eq.(8), in all the other case, the cavity is set far off resonance by a large electric field applied across
the cavity mirrors. This field stark-shifts the atomic levels far off resonance, so that the atom-cavity interaction is
then negligible [20]. The interaction time in Eq.(8) is also controlled strictly in the same way together with control
of the length of the strong classical pulse added. In fact, small difference of the interaction time between two atoms
will not cause measurable errors. [18, 21]
Now we’d like to show how to implement one-way computing based on the generation of cluster state in our scheme.

Here we use the Grover’s search algorithm for four unsorted database elements as an example, the circuit model [22]
and one-way computing model [9] of which have been shown in Figure 2. The cluster state we need to generate is in
Box(4) configuration (|ψ〉c = |0〉1|+〉2|0〉3|+〉4 + |0〉1|−〉2|1〉3|−〉4 + |1〉1|−〉2|0〉3|+〉4 + |1〉1|+〉2|1〉3|−〉4), which entails
us to tune the cavity field to near resonance when atom pairs (4,3), (4,1), (3,2), (2,1) collide in Cavity 1, 3 and 5 at
time t43, t41, t32, t21 as in Figure 1(b), while {v1, v2, v3, v4}, {t1, t2, t3, t4} and {L1, L2, L3, L4, L5} are pre-set to values
satisfying Eq.(10), such as in Table I.
After t21, the cluster state has been generated and we are then to perform single-qubit measurements in the order

of atom 4-3-2-1. Atom 4 and atom 3 should be measured in the basis (|0〉 ± eiα|1〉)/
√
2 and (|0〉 ± eiβ |1〉)/

√
2, which

can be achieved simply by adding π/2 Ramsey pulse with frequency ωr satisfying (ωr − ω0)T = α(β) respectively,
(ω0 is the atomic transition frequency and T is the coherent interaction time between the pulse and atom) and then
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FIG. 1: (a) Proposed experimental set-up for one-way quantum computing in an array of thermal cavities. R represents for
Ramsey zone with π/2 resonant pulse added at the time of atom collisions. R∗ denotes for Ramsey zone with detuned π/2
pulse.(b) Space-time diagram for the sequence of events. Every two atoms are made to cross the center of certain cavity
simultaneously before finally reaching the detector.
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FIG. 2: (a) Circuit model of Grover’s search algorithm for four database elements. The two encoded qubits pass through a
series of unitary quantum logic gates before being measured in computational basis as output of the search algorithm. α, β are
determined by the ”Oracle”, and setting αβ to ππ,π0,0π,00 corresponds to the marked element encoded as 00,01,10,11. (b)
Cluster state quantum computing model for the same algorithm. The physical qubits carried by Atom 4,3 are measured in any
order, changing the states of Atom 2, 1 to states of the encoded qubits in the circuit model at the same stage.

measuring the atom in basis {|0〉, |1〉} through Field Ionization Detector. Atom 2 and Atom 1 carry the read-out
qubits in the cluster state model and should go through a σz and a Hadamard gate, which can be realized by adding
the same π/2 Ramsey pulse with frequency ωr satisfying (ωr − ω0)T = π, before final measurements by the Detector
in computational basis. If the measurement results of the four flying atom at time sequence t′4, t

′
4, t

′
2, t

′
1 are denoted

by r4, r3, r2, r1, then the one-way quantum computing process succeeds in giving us the search result encoded as
{r1 ⊕ r3, r2 ⊕ r4} if r3 and r4 are not both zero [9].
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FIG. 3: Coherent evolution of two atoms in a thermal cavity according to Eq.(8), with the parameters δ = g, Ω = 5δ and
nth = 1. The two atoms are assumed to be initially in the ground states |g〉1|g〉2. The red, blue, green and purple curvers
represent for ρgg,gg, ρee,ee, Re(ρgg,ee) and Im(ρee,ee) respectively. The small deviation from ideal situation on the curves are
small oscillations with a high frequency.

We now discuss further the experimental feasibility of our one-way quantum computing scheme. From Eq.(8), we
note that the photon-number-dependent parts in the evolution operator are canceled with the strong resonant classical
field added, thus our scheme can be done in thermal cavities and is also insensitive to cavity decay, greatly reducing
experimental difficulties. The robustness of our scheme to thermal field is illustrated in Figure 3, where we simulate
the time evolution curves of the two atoms in the cavity by solving an appropriate master equation and allowing for
heating in form of quantum jumps described by jump operators

√
Γntha and

√

Γ(nth + 1)a† (Γ and nth are the typical
heating rate and the mean excitation of the photon). The Figure clearly shows that we have a coherent evolution of
the atomic state which is not entangled with the cavity. Besides, in obtaining Eq.(8), there is no requirement that
the atom-cavity detuning should be much larger than the atom-cavity coupling strength. Operation time can be thus
shortened, which is also important in view of decoherence.
Moreover, the velocities of the atoms can be selected by Doppler-selective optical pumping techniques, with a

precision of ±2m/s, and the timing of each atom preparation can be controlled to a precision of 2µs [10]. Besides,
the Cavity QED experimental apparatus are typically 20cm in length [10]. These validates our choice of vi, ti and
Li. It is also worth mentioning that since the waist of the cavity field is at most a few mm, which is much smaller
than the distance between the cavities, it is unlikely that our space-time arrangement of atoms will cause more than
two atoms simultaneously crossing the center of the cavity field.
The radiative time for Rydberg atoms with principal quantum numbers around 50 is Tr = 3 × 10−2s, and the

coupling constant is g = 2π× 25kHz [10]. The corresponding photon storage time in a cavity can reach Tc = 1ms [10].
In the present scheme, the virtually excited cavities have only a small probability, about 1%, of being excited during
the passage of the atom pairs through them. Thus the efficient decay time of the cavity Tceff ∼ 0.1s. Choosing δ = g,
direct calculation shows that the interaction time is on the order of 10−5s, which is much shorter than the cavity
decay time Tceff . The time needed for the whole one-way quantum computing process can be controlled within a few
ms according to the choice of ti, apparently smaller than the the radiative time of the Rydberg atoms Tr, rendering
our scheme insensitive to the decoherence of atoms.
Errors in our scheme will mainly come from the process of entanglement generation in cavities and the single-qubit

measurement process after generating the cluster state. In the former case, the errors can be induced by Start shift on
the states |+〉j and |−〉j as we’ve discarded the fast-oscillating terms in obtaining Eq.(6), and by pulse imperfections
and initial cavity Fock state. Ref.[23] shows that these errors will only have slight influence on the fidelity of the
entangled state obtained. In the latter case, we note that the measurement efficiency of ionization detectors can be
more than 80% with current techniques [24]. However, we’re still expecting higher measurement efficiency in Cavity
QED experiments.
For one-way computing of quantum algorithms that need no more than 6 physical qubits, our scheme does not need

much change. However, for a large number of qubits, Eq.(10) cannot be satisfied by simply setting {vi}, {ti}, {Li}
before the computing process. One of the possible ways to solve this problem is to change the velocity of the atoms
in the midway. Although Rydberg atoms are neutral and usually not easy to accelearte/deccelerate, we note that
recent progress on Cavity QED experiment with optically transported atoms can manipulate the motion of atoms by
resorting the optical dipole force [25, 26]. Such technique can provide a moderate acceleration for optically trapped
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atoms and deliver them deterministically, which might make our scheme still possible to work for relatively large scale
of one-way quantum computing process.
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