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1 Introdution

The method of types plays very important and entral role in the lassial infor-

mation theory. With it the entral theorems an be easily and fast proved. This

work try to generalise the main ideas of the method of types, and prove one of

the entral theorems - Reahing the Holevo apaity - in quantum environment.

The main problem is: Suppose that we want to send information with quan-

tum's. This problem is relevant, beause 1) quantum omputers would prefer

this way of ommuniation 2) The miniaturisation in the Information Tehnolo-

gies an lead to these type of problem. The problem an be formalised as follows:

We ode our lassial message to quantum sequenes states from (ω1, ω2, . . . , ωl).
We suppose that there is a unique non-reversible quantum transformation E(·)
- quantum hannel - whih ats on every of these quantum's. The question is

how many bits of information an be transmitted by one quantum. A theorem

stated by Gordon and Levitin, proved by Holevo [4℄, gives an upper bound to

the amount of information that an be ommuniated. If the sender odes his

information to quantum states with density matrix ρi with a priori probabilities

pl then the ommuniated information annot be bigger than

S(

l
∑

i=1

piρi)−
l
∑

i=1

piS(ρi) (1)

where S(·) is the von Neumann entropy. If the outome of the hannel is ρl =
E(ωl) this gives an upper bound. So the problem is to show, that this bound

an be reahed.

At the end, our result is stronger than the work of Holevo [5℄ or Shumaher

and Westmoreland [3℄, beause we will show that the deoding an be done

by von Neumann measurement, not only with POVM (We doesn't use �Pretty

Good Measurement� as in [2℄ or [5℄). Moreover, we show two use of the von

Neumann measurement.

The �rst use is that the proedure an be generalised to �nite ompound

hannel, that means, we an reate an optimal oding sheme to work not only
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with one quantum hannel, but with �nite many. De�nition and apaity is in

setion 4

The other use is that we an translate deoding of lassial information to

deoding of lassial quantum information, and with the von Neumann mea-

surement the time of the measuring proedure an be extremely shorten, whih

means that lassial information an be deoded by a quantum apparatus in

linear! time (This is a strong result, the best odes whih reah the Shannon's

bound needs nlog2(n)
time to deode).

This work base notation is borrowed from the work of Shumaher and West-

moreland [3℄, but the base ideas of the proofs, omes from the lassial theory

e.g. [6℄.

2 Notations and basi lemmas

Let E( · ) be a given quantum hannel. Assume that ω1, ω2, . . . , ωl = ωl
1 are

input density matries, with same dimension d and P = (p1, p2, . . . , pn) is a

probability distribution suh that they maximise the Holevo quantity

χ(E , P, ωl
1) = S(E(ω))−

l
∑

i=1

piS(E(ωi)) , (2)

where ω =
∑l

i=1 piωi. Denote the possible outputs of the quantum hannel by

ρi = E(ωi), ρ = E(ω), these are represented by d× d density matries.

Fix n, the length of the (quantum) odewords. We generate randomly M =
2nR piee odewords of length n with probability distribution P . We denote

these randomly generated sequene by αi, 1 ≤ i ≤ M . If a statement is true

all of the index 1 ≤ i ≤ M , then we will say that it is true for α. The j-th
symbol of α will be denoted by α(j).

For all sequene we an de�ne a quantum sequene as follows:

ρα = ρα(1) ⊗ ρα(2) ⊗ · · · ⊗ ρα(n) (3)

We will denote by S(ρ|α) the quantity∑l
j=1 pjS(ρj), beause nS(ρ|α) is the

expeted value of the Neumann entropy of the quantum sequene if we know

whih randomly generated sequene (α) was sent (so we know whih basis to

use), while S(ρ) is the von Neumann entropy of the sequene if we do not know

whih message was sent. So for �xed P and ω the Holevo apaity beomes

χ = S(ρ)− S(ρ|α) (4)

Whih resembles the Shannon apaity

C = H(Y )−H(Y |X) (5)

where Y is the output random variable and X is an input random random

variable of the hannel.
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For a �xed ε > 0, a sequene α is alled ε-typial with respet to P if

2−n(H(P )+ε) ≤ Pn(α) ≤ 2−n(H(P )−ε), (6)

where H(P ) is the Shannon entropy of P . We know from the law of large

numbers that, if n is large enough then the probability

Prob (α is typial) ≥ 1− ε (7)

(beause α was generated by distribution P ), see [6℄.

Let the spetral deomposition of E(ρα) =
∑dn

k=1 λα,k|sα,k〉〈sα,k|. Beause

ρα is a tensor produt, the eigenvetors are tensor produts of eigenvetors of the

ρα(1), ρα(2), . . . , etc.. So a measurement in the eigenbasis an be represented by

a sequene, from numbers {1, 2, . . . , d} where the i-th term gives that what we

would measure if we measure ρα(i) in its eigenbasis. Denote this orrespondene

by s : {1, 2, . . . dn} → {1, 2, . . . d}n, note that λk = λs(k)1λs(k)2 · · ·λs(k)n . An

eigenvetor |sα,k〉 is δ-typial if the above de�ned distribution (λs(k)1λs(k)2 · · · )
is onditionally typial to the sequene α (see [6℄)

− n(S(ρ|α) + δ) ≤ logλα,k ≤ −n(S(ρ|α)− δ) (8)

Note that all exponent and logarithm are base of 2 aross of this artile. The

above de�nition means that if we de�ne the typial projetion as

Piα =
∑

k:sα,kis typial

|sα,k〉〈sα,k| (9)

, then

dim(Πα) ≤ 2nS(ρ|α)+δ
(10)

while

1 =

dn

∑

k=1

λα,k ≥
∑

k:sα,kis typial

λα,k ≥
∑

k:sα,k is typial

2−n(S(ρ|α)+δ)
(11)

2n(S(ρ|α)+δ) ≥
∑

k:sα,kis typial

1 = dim(Πα) (12)

The pair (α, k) is δ typial if

− n
(

H(P ) + S(ρ|α) + δ
)

≤ logPn(α)λα,k ≤ −n
(

H(P ) + S(ρ|α)− δ
)

. (13)

Let the distribution of (α, s(k)) be denoted by

Pα,s(k) = Πn
i=1P (α(i))λα(i),s(k)i , (14)

it an be seen that this is a probability of independent, identially distributed

random variables. The (Shannon) entropy of this distribution is

H(P ) +
l
∑

i=1

piS(ρi). (15)
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So for these pair of random variables, the law of large numbers also true, so then

by summing the probability of all typial pair we also get a greater number than

1− ε if n is large enough. Suppose that the indexing of the eigenvalues is suh

that the typial eigenvalues are the �rst d(α) indies. Then

∑

α

pα

d(α)
∑

i=1

λα,i ≥ 1− 2ε (16)

beause from the sum we only left the atypial α (whih probability is smaller

that ε) and atypial α, k pairs (whih probability is also smaller that ε) From this

we know, that for ρ̃ =
∑

α pα
∑d(α)

i=1 λα,i|sα,i〉〈sα,i| it is true that Tr ρ̃ ≥ 1− 2ε.
De�ne ρ̃α as

ρ̃α = ΠαραΠα (17)

Remark 1 ρ̃ ≤ ρ⊗n
and ρ̃α ≤ ρα, and E(ρ̃α) = ρ̃

Lemma 1 For every n ∈ N

E[ρα] = ρ⊗n
(18)

Proof:Total indution on n For n = 1 the equivalene is true by the de�nition

of ρ. Suppose that for n = k−1 the statement is true, then For n = k let denote

α′
an arbitrary k− 1 length sequene then for every α k length sequene an be

written as α = (α′, i), 1 ≤ i ≤ l. Then

E[ρα] =
∑

α

pk(α)ρα =
∑

α′

l
∑

i=1

pk−1(α′)p(i)ρα′ ⊗ ρi = (19)

=
∑

α′

pk−1(α′)
l
∑

i=1

piρα′ ⊗ ρi =
∑

α′

pk−1(α′)ρα′ ⊗ ρ (20)

but we know that for n = k − 1 the statement is true, so

E[ρα] = ρ⊗k−1 ⊗ ρ = ρ⊗k
(21)

So the statement is true for all n ∈ N. �

If we have a projetion, like Πα then we an de�ne a subspae whih this

projetion projets to πα = Im(Πα). And vie versa, if we de�ne a subspae πα,

then we an de�ne an orthogonal projetion whih projet to this subspae Πα.

This will be done throughout the paper by denoting with the same letter, indies

the lowerase denotes the subspae the upperase denotes the projetions.

Consider the lattie of the projetions. For 2 projetion P1 and P2 denote

P1 ∨ P2 the projetion whih is the result of the ∨ operation in the net of

projetions (this means that P1 ∨ P2 is the projetion whih projet to the

subspae spanned by the range of P1 and P2). Similarly meaning has P1 ∧ P2

(P1 ∧P2 s the projetion whih projets to the subspae whih is the setion of

the range of P1 and P2).
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Lemma 2 For every density matries ρ, σ and for every ε > 0 there exist a

projetion Π, with properties

Tr(Πρ⊗nΠ) ≥1− ε (22)

‖Πρ⊗nΠ‖ ≤2−n(S(ρ)−ε)
(23)

Tr(Πσ⊗nΠ) ≤2−n(D(ρ|σ)−ε)
(24)

if n > N(ρ, σ, ε), where D(ρ|σ) denotes the quantum relative entropy of ρ, σ.

for proof see the appendix.

Remark 2 Note that, Π does not depend on αi the randomly hosen sequene,

but Π̃i− does (aross the artile if an amount depend on the randomly generated

sequene, then it will denoted by an αi in the index or in the argument). This

means that E(Πραi
Π) = Πρ⊗nΠ while E(ραi

) = ρ⊗n
, but E(Π̃i−ραi

Π̃i−) 6=
Π̃i−ρ⊗nΠ̃i−.

3 Reahing the Holevo bound with von Neumann

measurement

3.1 Coding/Deoding

First we generate M = 2nR random odewords with distribution P . These

odewords are denoted by α1, α2, . . . , αM and both the sender, and reeiver are

familiar with them. From these we generate quantum odewords.

A quantum odeword is a tensor produt density de�ned in the following

way: If αi(j) = k, this is the jth symbol of the ith odeword, then the jth
density of the ith tensor produt is ωk. The oding is as usual, we hoose

uniformly from the message set M whose size is M � suppose this hosen mes-

sage is i �, and we send (or generate) the above de�ned quantum odeword for

this message ωαi(1), ωαi(2), . . . , ωαi(n). The quantum sequenes go through the

hannel, the reeiver gets the quantum sequene ραi(1), ραi(2), . . . , ραi(n) where

ραi(1) = E(ωαi(1)).

Now we de�ne a deoding algorithm whih is nothing else than a POVM

(von Neumann measurement). If the typial subspaes of ραi
were orthogonal

to eah other, then - there would be no problem - we ould make our POVM

from Παi
(where Παi

de�ned in (9)). However, this is not the ase in general,

and we have to orthogonalize them. We do this by a method, very similar to

the Gram-Shmidt orthogonalisation method. In the �rst typial subspae let

π̃1 = span{|s̃α1,k〉 : |s̃α1,k〉 = Π|sα1,k〉, |sα1,k〉 ∈ πα1} (25)

where span{} means the subspae spanned by the the vetors in the urly

braket.
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And for the i-th typial projetions let

π̃i = span







|s̃α1,k〉 : |s̃α1,k〉 = Π|sαi,k〉 −
i−1
∑

j=1

Π̃jΠ|sαi,k〉, |sαi,k〉 ∈ παi







(26)

(for de�ning subspaes to projetions, and vie versa see Setion 2)

At the end of the proedure for all s, t Π̃s is orthogonal to Π̃t s 6= t. We

prove this, by total indution on s, t. Suppose that s < t. We see that for

s = 1, t = 2 this is true beause

Π̃1|s̃α2〉 = Π̃1Π|sα2〉 − Π̃1Π̃1Π|sα2〉 = Π̃1Π|sα2〉 − Π̃1Π|sα2〉 = 0 (27)

so π̃2 ∈ Ker(Π̃1). Suppose that, for all pairs s′, t′, where s′ < s, t′ < t the
statement is true. then

Π̃s|s̃αt
〉 = Π̃sΠ|sαt

〉 − Π̃s

t−1
∑

t′=1

Π̃t′Π|sα2〉 = Π̃sΠ|sαt
〉 − Π̃sΠ|sαt

〉 = 0 (28)

beause Π̃sΠ̃t′ = 0 for t′ 6= s by the indution assumption. Moreover the Π̃i and

Π are ommutable operators (beause every vetor whih spans the subspae of

Π̃i projets onto is a member of π).
Our POVM (or our Von-Neumann measure) states from Π̃i, plus we an

make it omplete adding an element of the POVM (labelled "error") on the

remaining orthogonal subspae, if neessary, all these projetion as Π̃M+1. For

index i, we an de�ne the typial subspae of lesser indies as

Π̃i− =

i−1
∑

j=1

Π̃j

3.2 The error probability of Deoding

Now we show that the error probability is going to 0 if n the blok length goes

to in�nity.

Theorem 1 With these sheme, if R < χ(ρ) then for any γ we an give a

number N suh that if the length of the quantum odeword n is longer than this

number n > N then average error probability is smaller than γ, provided that

the bloklength n is greater than n0(R, γ)

To simplify the proof we use the following lemma.

Lemma 3 The length of the projetion of |sαi,j〉 to Π̃i (element of our mea-

suring POVM) an be underestimated - by two omponent where one is the

projetion to Π, and the other is orthogonal to the typial subspae of the lesser

indies (Π̃i−) - as follows

Tr(Π̃iραi
Π̃i) ≥

(

Tr(Πρ̃αi
Π)− Tr(Π̃i−Πρ̃αi

ΠΠ̃i−1)
)2

(29)

(For de�nition of ρ̃αi
see (17))
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Proof:

Tr(Π̃iραi
Π̃i) = Tr(Π̃iραi

) = Tr(Π̃i

d
∑

j=1

λαi,j|sαi,j〉〈sαi,j|) = (30)

Now we deompose the projetion Π̃i depend on j as follows

Π̃i = a2j |s̃αi,j〉〈s̃αi,j|+ Π̂i (31)

where aj > 1 is the reiproal of the length of |s̃αi,j〉 = Π|sαi,k〉−
∑i−1

j=1 Π̃jΠ|sαi,k〉
(length of |s̃αi,j〉 is smaller than 1 beause it is an orthogonal omponent of a

unit length vetor |sαi,j〉). So we ontinue the �rst row by

=
d
∑

j=1

λj Tr(a
2
j |s̃αi,j〉〈s̃αi,j ||sαi,j〉〈sαi,j |+ Π̂i|sαi,j〉〈sαi,j |) = (32)

d
∑

j=1

λj Tr(a
2
j |s̃αi,j〉〈s̃αi,j ||sαi,j〉〈sαi,j |) +

d
∑

j=1

λj Tr(〈sαi,j |Π̂i|sαi,j〉) ≥ (33)

≥
d(αi)
∑

j=1

λj Tr(|s̃αi,j〉〈s̃αi,j ||sαi,j〉〈sαi,j |) = (34)

=

d(αi)
∑

j=1

λj Tr((Π|sαi,j〉 − Π̃i−Π|sα,j〉)(〈sαi,j |Π− 〈sαi,j |ΠΠ̃i−)|sαi,j〉〈sαi,j |) =

(35)

=

d(αi)
∑

j=1

λj (〈sαi,j |(Π|sαi,j〉 −Πi−Π|sα,j〉))2 (36)

Where (34) omes from the fat, that aj > 1 so a2j > 1. From the Jensen's

inequality

≥





d(αi)
∑

j=1

λj〈sαi,j|(Π|sαi,j〉 − Π̃i−Π|sα,j〉)





2

= (37)

=





d(αi)
∑

j=1

λj〈sαi,j|Π|sαi,j〉 −
d(αi)
∑

j=1

λj〈sαi,j|Π̃i−Π|sαi,j〉





2

= (38)

=





d(αi)
∑

j=1

λj Tr(Π|sαi,j〉〈sαi,j | −
d(αi)
∑

j=1

λj Tr(Π̃i−Π|sαi,j〉〈sαi,j |)





2

= (39)

=
(

Tr(Πρ̃αi
)− Tr(Π̃i−Πρ̃αi

)
)2

≥
(

Tr(Πρ̃αi
Π)− Tr(Π̃i−Πρ̃αi

ΠΠ̃i−)
)2

(40)
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Now see the proof:

Proof of Theorem 1: Let ε is suh small that R+ ε < χ(ρ), and 8ε ≤ γ and

let n suh large that all the Lemmas and de�nitions from Setion 2 with ε are

true.

Pe = E[1− 1

M

M
∑

i=1

Tr(Π̃iραi
Π̃i)] ≤ (41)

≤ 1

M

M
∑

i=1

E[1− Tr(Π̃iραi
Π̃i)] ≤ (42)

≤ 1

M

M
∑

i=1

E[1− Tr(Π̃iρα1Π̃i)] (43)

We use the Lemma

Pe ≤
1

M

M
∑

i=1

1− E[Tr(Πρ̃αi
Π− Π̃i−Πρ̃αi

ΠΠ̃i−)]
2

(44)

We use the Jensen's inequality

Pe ≤
1

M

M
∑

i=1

1− [ETr(Πρ̃αi
Π− Π̃i−Πρ̃αi

ΠΠ̃i−)]
2 = (45)

=
1

M

M
∑

i=1

1− [Tr(ΠE(ρ̃αi
)Π− Π̃i−ΠE(ρ̃αi

)PiΠ̃i−)]
2 = (46)

1

M

M
∑

i=1

1− [Tr(Πρ̃Π)− E(Tr(Π̃i−Πρ̃αi
ΠΠ̃i−))]

2
(47)

From (16), and remark 1, we know that Tr(ρ̃) ≥ 1 − 2ε and ρ ≥ ρ̃ so, for

∆ = ρ− ρ̃, Tr(∆) ≤ 2ε. With this

Tr(Πρ̃Π) = Tr(ΠρΠ) − Tr(Π(ρ − ρ̃)Π) ≥ 1− ε− Tr(∆) (48)

So the error probability

Pe ≤
1

M

M
∑

i=1

1− [1− 3ε− E(Tr(Π̃i−Πρ̃αi
ΠΠ̃i−))]

2 ≤ (49)

≤ 1

M

M
∑

i=1

1− [1− 3ε− E(Tr(Π̃i−Πρ̃αi
ΠΠ̃i−))]

2
(50)
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Now we analyse the last term

E(Tr(Π̃i−Πρ̃αi
ΠΠ̃i−)) = E(Tr(Π̃i−Πρ̃αi

Π)) = E(Tr(

dim(Π̃i−)
∑

j=1

|bj〉〈bj |Πρ̃αi
Π)) =

(51)

E(

dim(Π̃i−)
∑

i=1

〈bj |Πρ̃αi
Π|bj〉)

(52)

Now we have to evaluate dim(Π̃i−). Beause of (10)

dim(Π̃i−) ≤
M
∑

j=2

dim(Παj
) ≤ M2nS(ρ|α) = 2n(R+S(ρ|α))

(53)

E(Tr(Π̃i−Πρ̃αi
ΠΠ̃i−)) ≤ 2n(R+S(ρ|α))max

j
E(〈bj |Πρ̃αi

Π|bj〉) = (54)

2n(R+S(ρ|α)) max
j

〈bj |Πρ̃Π|bj〉 ≤ 2n(R+S(ρ|α))max
j

〈bj |ΠρΠ|bj〉 (55)

Beause bj's are unit vetors, from (23) we know that maxj〈bj |ΠρΠ|bj〉 ≤
2−n(S(ρ)−ε)

, so

E(Tr(Π̃i−Πρ̃αi
ΠΠ̃i−)) ≤ 2n(R+S(ρ|α))2−n(S(ρ)−ε) ≤ 2−n(S(ρ)−S(ρ|α)−R−ε)

(56)

Now we an see that S(ρ)− S(ρ|α) = χ(ρ), and we assumed that R+ ε < χ(ρ),
so the exponent is negative. If n is large enough then the whole expression is

less than ε.

E(Tr(Π̃i−Πρ̃αi
ΠΠ̃i−)) ≤ ε (57)

So the error probability is smaller than

Pe ≤ 1− [1− 4ε]2 = 8ε− 16ε2 ≤ 8ε (58)

�

4 I. Use:

Coding for �nite ompound hannel

First we give a de�nition of the ompound hannel. Suppose there is a given set

of hannels S. We want a prede�ned oding sheme to ode our message with the

following disturbing e�et: suppose there is an enemy who hose one hannel

from the set after we generated our quantum odeword. Now our quantum
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odeword are send through the hosen hannel (so all the quantum has the

same e�et but we annot say whih).

This is a more realisti model than a simple quantum hannel, we know what

e�ets an destroy our quantum odewords,but we annot know at the present

moment, whih e�et is ative. This ompound hannel is a �nite ompound

hannel, if the set S is �nite. De�ne:

χ(S, P, ωl
1) ⊜min

E∈S
χ(E , P, ωl

1) (59)

χ(S) ⊜max
P,ωl

1

χ(S, P, ωl
1) (60)

Theorem 2 The lassial apaity C of the �nite ompound hannel is χ(S),
This means, if R < χ(S) then for any γ there exist a number N(γ,R, |S|) that
if the length of the quantum odeword n is larger than that number n > N(γ)
then the error probability is smaller than γ.

Proof:First we an assume that |S| > 2, beause for |S| = 1, the proof is

the same as theorem 1. The inequality C ≤ χ(S) is simple. Beause in [4℄

was shown, that a quantum system an arry χ(E , P, ωl
1) bit information if the

sender ode his message to quantum states E(ωi) with a priori probabilities P .
If the sender has no knowledge, whih hannel is being used, then the sender

an only odes his message to states ωi with a priori distribution P . Then if his

enemy hose the worst hannel for these shema, the arried information annot

be larger than

max
P,ωl

1

min
E∈S

χ(E , P, ωl
1) = χ(S).

To prove that C ≥ χ(S) we show a oding sheme whih rate an reah the

apaity.

4.1 Coding for �nite ompound hannel

Let |S| = a, S = E1, E2, . . . , Ea �xed. Let P , and ω1, ω2, . . . , ωl be the probability

distribution and quantum's that reah the maximum in (60). The sender odes

his message to randomly generated odeword as in setion 3. The odeword goes

into the quantum hannel Eo o ∈ {1, 2, . . . , a} whih was hosen by our enemy.

Denote ω =
∑l

j=1 plωl the input mixed state, and denote ρk = E⊗n
k (ω⊗n), 1 ≤

k ≤ a the possible mixed output of the hannel. Similarly denote ρkαi
= Ek(ραi

)
the possible output of the i-th quantum odeword. To simplify our proof we

an assume that, the order of the set of quantum hannels is suh that, the �rst

ā ρk, k ∈ {1, 2, . . . , ā} is di�erent.

4.2 Deoding for �nite ompound hannel

Deoding is done by two steps: In �rst step we an detet whih mixed state

we have. In the seond step we detet the message.

10



See the �rst step. Let denote ā the number of the di�erent output mixed

states. To distinguish the output mixed states we will use our Lemma 2. Let ε

be suh small that ε < mini6=j1≤i,j≤ā
D(ρi‖ρj)

2 , ε ≤ γ
8a and R+ ε < χ(S). Then

for an n large enough for every i, j : i 6= j1 ≤ i, j ≤ ā Lemma 2 is true, with

ρ = ρl, σ = ρk and get Πi,j
(if n is greater than max(N(ρl, ρk, ε))). Now we

make a typial projetion for all i as follows:

Πi =
∧

1≤j≤ā

Πi,j
(61)

See, that

Tr(Πi(ρi)⊗nΠi) =1− Tr((Πi)c(ρi)
⊗n(Πi)c) ≥ (62)

≥1−
∑

j 6=i,1≤j≤ā

Tr((Πi,j)c(ρi)
⊗n(Πi,j)c) ≥ 1− aε (63)

‖Πi(ρi)⊗nΠi‖ ≤2−n(S(ρi)−ε)
(64)

Tr(Πi(ρj)⊗nΠi) ≤2−n(D(ρi‖ρj)−ε)
(65)

for all 1 ≤ i, j ≤ a.

We detet the mixed state as follows: First we give a sequene of measures.

Our �rst POVM measure states from Π1, (Π1)c if we measure Π1
we know,

that our mixed state was ρ1 so we stop, if we measured (Π1)c then we measure

again. Seond POVM measure states from Π2, (Π2)c, et. With this we an

di�erentiate the possible ā type of our mixed state.

We suppose that our enemy hosen the hannel Eo whih generate the k-th
mixed state (this means El(ω) = Eo(ω)), if k 6= 1 then the �rst measure is good,

if we measure the seond projetion. This probability is

Tr((Π1)cρkαi
(Π1)c) (66)

and our quantum states will be

(Π1)cρkαi
(Π1)c

Tr((Π1)cρkαi
(Π1)c)

(67)

Next if k 6= 2 then the next measure is good if we measure the seond projetion

this probability is

Tr((Π2)c
(Π1)cρkαi

(Π1)c

Tr((Π1)cρkαi
(Π1)c)

(Π2)c) (68)

and our state beomes

(Π2)c
(Π1)cρk

αi
(Π1)c

Tr((Π1)cρk
αi

(Π1)c)
(Π2)c

Tr((Π2)c
(Π1)cρk

αi
(Π1)c

Tr((Π1)cρk
αi

(Π1)c)
(Π2)c)

=
(Π2)c(Π1)cρkαi

(Π1)c(Π2)c

Tr(Π2)c(Π1)cρkαi
(Π1)c(Π2)c)

(69)

11



And the probability, that we don't made error through the �rst, and the seond

step is

Tr

(

(Π2)c(Π1)cρkαi
(Π1)c(Π2)c

Tr((Π1)cρkαi
(Π1)c)

)

Tr((Π1)cρkαi
(Π1)c) = (70)

Tr((Π2)c(Π1)cρkαi
(Π1)c(Π2)c) (71)

From this we an see that, if Eo(ω) = Ek(ω) then the probability that we detet

our mixed state orretly is:

E[Tr(Πk(Πk−1)c . . . (Π2)c(Π1)cρkαi
(Π1)c(Π2)c . . . (Πk−1)cΠk)] (72)

Let δ = aε. From Lemma 1, and from the de�nition of Πk
we know

E[Tr(Πkρkαi
Πk)] = Tr(ΠkρkΠk) ≥ 1− δ (73)

Moreover

1− δ ≤ Tr(ΠkρkΠk) ≤ Tr(Πk(Π1)cρk(Π1)cΠk) + Tr(ΠkΠ1ρkΠ1Πk) ≤ (74)

≤ Tr(Πk(Π1)cρk(Π1)cΠk) + Tr(Π1ρkΠ1) (75)

≤ Tr(Πk(Π1)cρk(Π1)cΠk) + 2−nD(ρ1‖ρk)−ε = (76)

= Tr(Πk(Π2)c(Π1)cρk(Π1)c(Π2)cΠk)+

+ Tr(ΠkΠ2(Π1)cρk(Π1)cΠ2Πk) + 2−nS(ρ1|ρk)−ε ≤ (77)

≤ Tr(Πk(Π2)c(Π1)cρk(Π1)c(Π2)cΠk) + Tr(Π2ρkΠ2) + 2−nD(ρ1‖ρk)−ε ≤
(78)

≤ Tr(Πk(Π2)c(Π1)cρk(Π1)c(Π2)cΠk) + 2−nD(ρ2‖ρk)−ε + 2−nD(ρ1‖ρk)−ε ≤
(79)

≤ · · · ≤ Tr(Πk(Πk−1)c . . . (Π2)c(Π1)cρkαi
(Π1)c(Π2)c . . . (Πk−1)cΠk)+

+

k−1
∑

l=1

2−nD(ρl‖ρk)−ε
(80)

This means that

1− δ −
k−1
∑

l=1

2−nD(ρl‖ρk)−ε
(81)

≤ E[Tr(Πk(Πk−1)c . . . (Π2)c(Π1)cρkαi
(Π1)c(Π2)c . . . (Πk−1)cΠk)] (82)

See, that

1− δ − ā min
1≤l<k

2−nD(ρl‖ρk)−ε ≤ 1− δ −
k−1
∑

l=1

2−nD(ρl‖ρk)−ε
(83)
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Beause ε <
S(ρi|ρj)

2 this means that if n is enough large then

ā min
l∈{1,2,...,k}

2−nS(ρl|ρk)−ε ≤ δ (84)

whih means that the expetation value of the probability of the good detetion

is greater than 1− 2δ. This mean the the error (that we detet a wrong mixed

state, or all the measure never deide for the �rst projetion) is smaller than

2δ. See that this bound is valid for all possible 1 ≤ k ≤ ā. Denote by P k
the

following operator Πk(Πk−1)c . . . (Π2)c(Π1)c, with this notation at the end of

the proedure, our quantum odeword ραi
will be in the form

Pkρo
αi

Pk∗

Tr(Pkρo
αi

Pk∗)

Let see the seond step, now we detet the message. Suppose that we

deteted that our mixed state is ρk whih mixed state an be generated by

Ek1 , Ek2 , . . . , Ekl 1 ≤ kj ≤ a, l ≤ a and we know that our enemy hosen Eo
so

some kj = o. Prepare all Π
kj
αi as in Setion 3. Now de�ne

π̌i = span{
⋃

l:El(ω)=Eo(ω)

πl
i} (85)

where πl
i is the typial subspae (9) of ρlαi

= El(ωαi
) And de�ne the typial

projetions for the message as in (25), (26)

π̂i = span







P k|s〉 −
i−1
∑

j=1

Π̂jP
k|s〉, |s〉 ∈ π̌i







(86)

We made our POVM as in Setion 3, from these orthogonal projetion, with a

possible omplement with an error labelled subspae. Similarly to Setion 3, we

de�ne Π̂i− =
∑i−1

j=1 Π̂j

For these measurement a similar statement is true as in Lemma 3

Tr(Π̂iP
kρoαi

P k∗Π̂i) ≥
(

Tr(P kρ̃oαi
P k∗)− Tr(Π̂i−P

k ρ̃oαi
P k∗Π̂i−)

)2

(87)

The proof is exatly the same as Lemma 3. So we an alulate the error

probability of the message detetion (with the good �mixed� state detetion):

Pe = E[Tr(P kρoαi
P k∗)

1

M

M
∑

i=1

1− Tr(Π̂i

P kρoαi
P k∗

Tr(P kρoαi
P k∗)

Π̂i)] ≤ (88)

≤
M
∑

i=1

E[1− Tr(Π̂iP
kρoαi

P k∗Π̂i)]

M

with the previous statement, and with the Jensen's inequality

Pe ≤
1

M

M
∑

i=1

E[1 −
(

Tr(P kρ̃oαi
P k∗)− Tr(Π̂i−P

kρ̃oαi
P k∗Π̂i−)

)2

] ≤ (89)

≤ 1

M

M
∑

i=1

[

1−
(

Tr(P kρ̃oP k∗)− E[Tr(Π̂i−P
kρ̃oαi

P k∗Π̂i−)]
)2
]

(90)
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Beause P kρoP k∗ ≥ 1−2δ and Tr(ρo− ρ̃o) ≥ 1−δ the �rst term is greater than

1− 3δ as in proof of Theorem 1. The seond term is

E(Tr(Π̂i−P
kρ̃oαi

P k∗Π̂i−)) = E(Tr(Π̂i−P
kρ̃oαi

P k∗)) =

(91)

E(Tr(

dim(Π̂i−)
∑

j=1

|bj〉〈bj |P kρ̃oαi
P k∗)) ≤ E(

dim(Π̂i−)
∑

j=1

〈bj |Πkρ̃oαi
Πk|bj〉) ≤ dim(Π̂i−)‖Πkρ̃kΠk‖

(92)

beause P kρ̃oαi
P k∗ ≤ Πkρ̃oαi

Πk
, and we assumed that Eo(ω) = Ek(ω). Now we

have to evaluate dim(Π̂i−)

dim(Π̂i−) ≤
l
∑

j=1

M
∑

s=i+1

dim(Πkj
αs
) ≤ aM2nS(ρ|α) = a2n(R+S(ρ|α))

(93)

We use (23) and get

E(Tr(Π̂i−Π
kρ̃oαi

ΠkΠ̂i−)) ≤ a2−n[S(ρo)−S(ρo|x)−R−ε]
(94)

whih is smaller than δ if n is large enough, so

Pe ≤
1

M

M
∑

i=1

[1− (1− 3δ − δ)2 < 8δ ≤ 8aε (95)

Beause ε < γ
8a with this the theorem is proved. �

5 II. Use: Pratial onsiderations

One ould think that, after the artiles of Shumaher or Holevo [3℄, [4℄ that we

an ommuniate lassial data through a quantum hannel optimally. However

this is true only in theory, beause to measure a POVM with many output

(the needed output of the POVM grows exponentially in n the length of the

odeword) is very di�ult in pratie. But as we will see, this is not the ase in

the von Neumann measurement, we will give a detetion algorithm - a sequene

of measure - where the number of outomes of the measures are always 2.

We introdue the following notation for 1 ≤ i < j ≤ M + 1

D{i,j} = Π̃i + Π̃i+1 + · · ·+ Π̃j (96)

For simpliity, suppose that M + 1 = 2k. Then the detetion algorithm an

be the following: First we measure a von Neumann measurement states from

D{1,(M+1)/2}, D{(M+1)/2+1,M+1}. In every measurement, if the result is the �rst

operator, we give 0, if the seond we give 1.
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Now we measure again. Of ourse on a quantum state that is modi�ed

by the previous measurement. In eah next step we half the interval of the

previous measurement. If our measurement gave the {i, j} our measurement

will states from D{i,i+(j−1)/2},D{i+(j−1)/2+1,j}. For example the seond step

looks like follows: If we measured 0 then our measurement will states from

D{0,...,(M+1)/4}, D{(M+1)/4+1,...,(M+1)/2}, if the previous measurement had gave

the result 1 then our measurement will states from :

D{(M+1)/2+1,...,3(M+1)/4}, D{3(M+1)/4+1,...,(M+1)}. At the end the 0-s and 1-s

give the number of the message in binary form. If we get only 1-s then we

delare error.

See that the probability of the good detetion not hanges. Suppose that

we send the �rst message, then the �rst measure will give the good result with

probability

Tr(D{{1,(M+1)/2}ρα1D{1,(M+1)/2}) (97)

and will the state will hange to

D{1,(M+1)/2}ρα1D{1,(M+1)/2}
Tr(D{1,(M+1)/2}ρα1D{1,(M+1)/2})

(98)

The seond measurement will be good with probability

Tr

(

D{1,(M+1)/4}
D{1,(M+1)/2}ρα1D{1,(M+1)/2}

Tr(D{1,(M+1)/2}ρα1D{1,(M+1)/2})
D{1,(M+1)/4}

)

(99)

But D{1,(M+1)/4} < D{1,(M+1)/2} so this simplify to

Tr

(

D{1,(M+1)/4}ρα1D{1,(M+1)/4}
Tr(D{1,(M+1)/2}ρα1D{1,(M+1)/2})

)

(100)

And the state hange to

D{1,(M+1)/4}ρα1D{1,(M+1)/4}
Tr(D{1,(M+1)/4}ρα1D{1,(M+1)/4})

(101)

So the probability that the �rst two measurement was true is

Tr(D{{1,(M+1)/2}ρα1D{1,(M+1)/2})Tr

(

D{1,(M+1)/4}ρα1D{1,(M+1)/4}
Tr(D{1,(M+1)/2}ρα1D{1,(M+1)/2})

)

=

(102)

Tr(D{1,(M+1)/4}ρα1D{1,(M+1)/4})
(103)

with keep going this train of thought we an see, that at the end that the

probability that all of the measurement was good is not else, than

Tr(Di,iραi
Di,i) = Tr(Π̃iραi

Π̃i) (104)

whih the same as the error probability in Setion 3. Of ourse this proedure

an be generalised to ase when we have �nite possible outomes.
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This means that it is possible to lassially ode/deode lassial informa-

tion with quantum apparatus in an optimal way in linear time. This is a quite

surprising result, beause in lassial information theory to reah the Shannon

limit in polynomial time is an unresolved problem (the best result needs nlog(n)

time). Usually the lassial information theory is onsidered as a part of quan-

tum information theory, whih would mean that optimal deoding of lassial

hannel in linear time is possible. This means that if a quantum mahine an

perform arbitrarily von Neumann measurement with only two possible outome,

then this mahine an solve non-polynomial lassial problems in linear time.

Now we will show how an be a lassial message through a quantum ap-

paratus deoded. Suppose that there is a lassial setup with a disrete mem-

oryless hannel. There is a given state transition matrix W (y|x) (with input

output alphabet 1, 2, . . . , l 1, 2, . . . , d ) and a given optimal input distribution

P . Now model the lassial system with a quantum one. Let de�ne for eah x
ρx = diag(W (·|x)) (where diag(W (·|x)) denotes a diagonal matrix we get from

the output distribution provided by x in another form

∑

a∈{1,...,d}W (a|x)Ea,a

). In these ase all the lassial and all the quantum information quantities

are equivalent (χ(E) = C(W ), H(·) = S(·)). Then we know from Setion 3

that there exist 2Rn
piee of sequene that with ραi

quantum odewords we an

optimally ommuniate. Compute the optimal von Neumann measurement as

in Setion 3. Now we use the αi sequene as an input odeword for our lassial

hannel, and deode the lassial hannel as follows: We get the lassial signal,

we oded into quantum sequenes, we perform the measurement, after that we

get the number of the message was sent, so we deoded the message (in linear

time as in the beginning of these setion).

Denote the output signal of αj by y(j). Denote the i-th omponent of y(j)
by yi(j) We get the signal y(j) and ode every symbol of it, into a quantum in

the following way:

yi(j) → Eyi(j),yi(j) (105)

whih means if we get the �rst symbol of my output alphabet we ode into a

quantum represented by E1,1, where Ei,j denotes the matrix with 1 in the i-th
row j-th olumn and 0 elsewhere. Denote these quantum sequene by µy(j) Now

see that the error probability of the event that the i-th message was wrongly

deoded:

E[1 − Tr(µy(j))] (106)

We have to take the expetation value beause the output sequene y(j) an

varied. It an be easily proved that E[µy(j)] = ραj
. So the average error

probability is same as in Setion 3. Whih means that lassial messages an

be deoded by quantum apparatus in linear (nR) time.

Proof:of E[µy(j)] = ραj
proof with total indution on n for n = 1 the
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statement is true by the de�nition. Suppose it is true for n− 1 the for n

E[µy(j)] =
∑

y∈{1,...,d}n

n
∏

i=1

W (yi|αj(i))µy (107)

=
∑

y∈{1,...,d}n−1

n−1
∏

i=1

W (yi|αj(i))µyn−1
1

⊗
∑

a∈{1,...,d}
W (a|αj(n))Ea,a (108)

where yn−1
1

denote the �rst n − 1 symbol of y. But by the de�nition the last

quantity

∑

a∈{1,...,d}W (a|αj(n))Ea,a is not else than ραj(n) so

E[µy(j)] =
∑

y∈{1,...,d}n−1

n−1
∏

i=1

W (yi|αj(i))µyn−1
1

⊗ ραj(n) (109)

but for n− 1 the statement is true, so

E[µy(j)] = ραj
(110)

�

A proof of Lemma 2

The proof based on typial sequenes. These de�nition is a simpli�ed/modi�ed

version of [6℄.

De�nition 1 (Typial sequene) For a given probability distribution P on

{1, 2, . . . , d} an x ∈ {1, 2, . . . , d}n sequene is alled P-typial with onstant δ, if

∣

∣

∣

∣

1

n
N(a|x)− P (a)

∣

∣

∣

∣

≤ δ
4
√
n

for every a ∈ {1, 2, . . . , d} (111)

where N(a|x) means the number ourrenes of a in sequene x and, in addition

no a ∈ {1, 2, . . . , d} with P (a) = 0 ours. The set of suh sequenes will be

denoted by T n
[P ]δ

or simply T[P ].

Remark 3 If a sequene x is P-typial as above, then

| −
d
∑

a=1

N(a|x)
n

log(P (a)) +

d
∑

a=1

P (a) log(P (a))| ≤ Kdδ
4
√
n

(112)

if δ is small enough, beause if P (b) is 0 then N(b|x) = 0 so

N(b|x)
n − P (b) = 0

so the b-th element of the sum will be 0. If P (a) > 0 then log(P (a)) is �nite, so
maxa:P (a)>0[−log(P (a))] = K is �nite, so the above sum is smaller than

Kdδ
4
√
n
.

17



Lemma 4 For every distribution P on {1, 2, . . . , d}, and for every β > 0

Pn(T n
[P ]δ

) ≥ 1− β (113)

if n is large enough.

Proof:If X = X1, X2, . . . , Xn is an i.i.d. random sequene with distribution P
then the random variable N(a|X) has the expetation value nP (a) and variane

nP (a)(1− P (a)) ≤ n
4 . Thus by the Chebishev's inequality

Pr{
∣

∣

∣

∣

N(a|X)− n(Pa)| > n
δ
4
√
n

∣

∣

∣

∣

≤ 1

4
√
nδ2

} (114)

for every a ∈ {1, 2, . . . , d}. From this the assertion follow. �

of Lemma 2: with these typial sequenes we an make typial subspae as

follows:

Let

∑d
i=1 λi|ui〉〈ui| = ρ be a spetral deomposition of ρ. Now de�ne P as

P (a) = λaa ∈ {1, 2, . . . , d} (In this ase H(P ) = S(ρ), and let n be large enough

to verify 113 with β = ε/2. Now we de�ne Π the typial projetion of ρ⊗n
by

as follows

Π =
∑

x∈Tn
[P ]δ

|ux1〉〈ux1 | ⊗ |ux2〉〈ux2 | ⊗ · · · ⊗ |uxn
〉〈uxn

| (115)

See that if a sequene x1 di�ers from x2 then the minimal projetion generated

by x1 is orthogonal to the minimal projetion generated by x2.

For this projetion Π̂ the assertions (22) and (23) of Lemma 2 are valid. See

the �rst assertion

Tr(Π̂ρ⊗nΠ̂) =Tr(Π̂ρ⊗n) = (116)

=Tr(
∑

x∈Tn
[P ]δ

|ux1〉〈ux1 |ρ⊗ |ux2〉〈ux2 |ρ⊗ · · · ⊗ |uxn
〉〈uxn

|ρ) =

(117)

=
∑

x∈Tn
[P ]δ

n
∏

i=1

〈uxi
|ρ|uxi

〉 =
∑

x∈Tn
[P ]δ

n
∏

i=1

λxi
= (118)

=
∑

x∈Tn
[P ]δ

n
∏

i=1

P (xi) = Pn(T n
[P ]δ

) ≥ 1− β (119)

if n is large enough n > N1, and the last row omes from the de�nition of P
and the previous Lemma.

Observe that (23) is true, beause of Remark 3. See that spetrum of Π̂ρΠ̂
is equal with

spect(Π̂ρΠ̂) = {
d
∏

a=1

λN(a|x)
a , x ∈ T n

[P ]δ
} (120)
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where

d
∏

a=1

λN(a|x)
a = 2−n

Pd
a=1 −N(a|x)

n
log(λa)

(121)

and from Remark 3 we know that for all x ∈ T n
[P ]δ

d
∏

a=1

λN(a|x)
a ≤ 2

−n(S(ρ)−Kdδ
4√n

)
(122)

where

Kdδ
4
√
n

is smaller than β if n large enough.

We know from [1℄ that, if n is large enough, there is an another projetion

Π̃ whih satisfy (22), (24). Now the projetion whih satisfy all the assertion of

the Lemma is given by Π = Π̂ ∧ Π̃, beause

Tr(ΠcρΠc) ≤Tr(Π̂cρΠ̂c) + Tr(Π̃cρΠ̃c) = 2β (123)

‖ΠρΠ‖ ≤‖Π̂ρΠ̂‖ ≤ 2−n(S(ρ)−β)
(124)

Tr(Πσ⊗nΠ) ≤Tr(Π̃σ⊗nΠ̃) ≤ 2−n(D(ρ‖σ)−β)
(125)

�
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