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We reduce the question whether a given quantum mixed state is separable or entangled to the
problem of existence of a certain full family of commuting normal matrices whose matrix elements
are partially determined by components of the pure states constituting a decomposition of the
considered mixture. The method reproduces many known entanglement and/or separability criteria,
and provides yet another geometrical characterization of mixed separable states.
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I. INTRODUCTION

Entanglement and separability problem. Entanglement is the most important quantum phenomenon, respon-
sible for genuine, distinct and unique properties of the quantum world, and possibilities this world offers for future
technological applications, such as quantum engineering, and quantum information [1]. Despite enormous efforts,
many fundamental questions concerning entanglement remain open (for an excellent recent review see [2], and [3]
for some general geometric settings of the problem). In the seminal paper in 1989 Werner [4] gave the definition of
separable (i.e. non-entangled) states: a state of a bi-partite system is separable iff it is a mixture of pure product
states. A simple question: given a state, is it separable or not, is known as the separability problem. Only in very rare
instances we know operational sufficient and necessary criteria (SNC) that allow to solve this problem:

• for 2×2 (two qubit) and 2×3 (qubit–qutrit) systems the SNC are given by the positive definiteness of the partial
transform [5]; this is the famous PPT criterion, introduced by Peres as necessary for separability in Ref. [6].

• for 3 qubit symmetric (”bosonic”) states PPT criterion is also SNC [7].

• for continuous variables 1× 1 (one mode per party) Gaussian states, PPT criterion (formulated at the level of
correlation matrices) is a SNC [8, 9].

• for continuous variables m×n (all bipartite) Gaussian states there exist an operational SNC based on recursion
for correlations matrices [10].

• for continuous variables tripartite 1× 1× 1 Gaussian states there exist an operational SNC based on ”iteration”
of PPT condition for correlations matrices [11].

In general we have to rely either on only necessary criteria, or only sufficient ones, or on numerical approaches.
Although there exist very efficient numerical procedures that employ optimization methods of semi-definite program-
ming [12], the complexity of the problem grows with the dimensionality of the underlying Hilbert spaces: in fact it
has been proven that the problem belongs to the complexity NP-class [13].
Reformulations of the separability problem. The market for only necessary, or only sufficient criteria is

growing constantly, and it is impossible to review it in a non-review style article (for this reason we recommend
the readers the review [2]). There are also many attempts to reformulate the problem of separability in different
mathematical terms. A paradigm example for such an approach is the formulation of the separability problem in
terms of positive maps due to Horodeccy [5]. A state is entangled iff there exist a positive map acting on, say,
Alice, such that when applied to the state in question, it produces a non-positive definite operator. Similar approach
deals with entanglement witnesses, i.e. observables that have positive averages on all separable states, but a negative
average on some entangled state: A state is entangled iff there exist a witness operator that detects it, i.e. has a
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negative average. Obviously both these approaches are not operational, but nevertheless they are extremely useful,
since they allow to generate many necessary separability (sufficient entanglement) criteria via explicit construction of
positive maps [14], witnesses [15], and methods of their (local) measurements (cf. [16], respectively).
We have recently presented another example of the reformulation of the separability problem employing harmonic

analysis on compact groups [17]. In this approach quantum mechanical states are replaced by non-commutative
characteristic functions defined on the considered group, and separability problem reduces to the question whether
a characteristic function defined on a product group of two groups can be represented as a mixture of products of
characteristic functions on each of the individual groups. The present paper is in a sense similar to the Ref. [17]:
we present yet another reformulation of the separability problem and reduce it to an apparently unrelated question
of existence of a full (in a sense specified below) family of commuting normal matrices, whose matrix elements are
partially determined by components of the pure states that constitute a decomposition of the considered mixed state.
Decompositions of mixed states. A given genuine (not pure) mixed state ρ has infinite number of decomposi-

tions in terms of projectors onto pure states. This fact has been already recognized by Schrödinger in 1935 [18], and
elaborated thoroughly from the more modern view by Hughston et al. [19]. Any decomposition of a density matrix of
rank r into K projectors can be described in terms of a rectangular K × r matrix, whose r columns are orthonormal.
Such objects are known in geometry to form a so called VK,r = U(K)/U(K − r) Stiefel manifold [20]. Separability
problem might be also formulated as a problem of statistical mechanics of a fictitious systems on the Stiefel manifold,
characterized by a positive definite Hamiltonian (cost-function) that vanishes for separable states [21]. Here, we follow
another avenue: we consider all decomposition of ρ into K terms for sufficiently large K: such decompositions are
related via unitary transformations U(K). The matrix elements of the density matrix, on the other hand, form a
Gram matrix of scalar products of certain vectors from this K dimensional space. The first chapter of the paper is
thus devoted to the study of such Gram decompositions. It provides complementary results to the Ref. [19].
Plan of the paper. As stated above, Section II is devoted to the Gram decompositions, and its main result is

the Theorem 1, that describes how the two different Gram decomposition are connected. We present a reformulation
of the separability problem in Section III, in the Theorem 2. Here, an example of so called Werner matrices [4] is
elaborated in detail. The section IV contains the main result of this paper: a novel (but unfortunately not immediately
operational) SNC for separability in terms of existence of what we call a full family of commuting normal matrices
(FFCNM) (Theorem 3). We specify this result to the particularly simple case of 2×N systems, where the separability
SNC requires existence of a single normal matrix, whose matrix elements are partially known. Here we use the general
properties of the density matrices in 2 × N systems (as presented in Appendix) and formulate elegant theorems on
the existence of normal extensions of partially known matrices based on earlier and some new results for 2 × 2, and
2× 3. We discuss also application of our criteriou to PPT entangled states of rank 5 in 2× 4 systems. We relate these
results to the theory of generalized concurrence [22].

II. GRAM DECOMPOSITIONS OF DENSITY MATRICES

Decompositions of density matrices. Physical states of composite quantum systems are represented by density
matrices, i.e. Hermitian, positive definite linear operators of trace one, acting in the Hilbert space H = HA⊗HB⊗ . . .,
which is a tensor product of Hilbert spaces corresponding to subsystems A,B, . . . of the considered system. In the
following we shall be concerned with states of bipartite systems in a finite-dimensional Hilbert space i.e. described by
positive definite Hermitian density matrices ρ = ρ† ≥ 0 with Trρ = 1, acting on the Hilbert space of the composite
system H = HA ⊗HB . Without loosing generality we will assume that dim HA = M ≥ 2 and dim HB = N ≥ M ,
i.e. H = CM ⊗ CN = CM×N . In the following we shall use the notation r(ρ) for the rank of the matrix ρ (which for
a Hermitian matrix equals the number of its nonvanishing eigenvalues).
Performing the spectral decomposition of ρ,

ρ =
r∑

l=1

λ l|ψl〉〈ψl|, (1)

where λ l are (positive) eigenvalues of ρ, |ψl〉 - its eigenvectors and r = r(ρ) - its rank. Defining |Ψl〉 =
√
λ l|ψl〉 we

thus decompose the nonnegative-definite Hermitian matrix ρ as a sum of rank-one operators,

ρ =

r∑

l=1

|Ψl〉〈Ψl|. (2)
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The decomposition of (2) into the sum a of rank-one operators is non-unique. Indeed the vectors

|Φn〉 =
r∑

l=1

Wnl|Ψl〉, n = 1, . . . ,K ≥ r, (3)

lead to another one,

ρ =

K∑

n=1

|Φn〉〈Φn|, (4)

involving K ≥ r components, provided that the rectangular K × r matrix W fulfills W †W = I, where I is the r × r
identity matrix, i.e. W belongs to the VK,r manifold. In fact all possible decompositions (4) of ρ into the sum of
rank-one operators can be obtained from the spectral decomposition of ρ (2) in such a way [18, 19].
Gram decompositions. Let {|Eν〉}ν=1,...,M×N be a basis in CM×N . Starting form the spectral decomposition

(2) we obtain for the matrix elements of ρ:

ρµν = 〈Eµ|ρ|Eν〉 =
r∑

l=1

〈Eµ|Ψl〉〈Ψl|Eν〉 =
r∑

l=1

w l
µw

l
ν = 〈wµ, wν〉, (5)

wν :=




w1
ν

w2
ν
...
wr

ν


 ∈ C

r, wl
ν := 〈Ψl|Eν〉, (6)

where 〈·, ·〉 is the standard Hermitian scalar product in CK . It means that a Hermitian positive definite matrix is the
Gram matrix (i.e. the matrix of scalar products) of the vectors wν defined above. A set of vectors {wν} fulfilling (5)
we will call a Gram system for ρ, and we will say that it provides a Gram decomposition of ρ. If we do not insist
that the vectors wν are elements of Cr we can construct other Gram decompositions of ρ, so in this sense the Gram
decomposition is non-unique. Indeed, defining

w′
ν = V wν , (7)

where w′
µ ∈ CK , with K ≥ r and V ∈ MK×r - a rectangular matrix fulfilling V †V = I, we have ρµν = 〈w′

µ, w
′
ν〉. It is

easy to prove that all Gram decompositions of the matrix ρ are obtained by the transformation (7) from the spectral
one (2) and (6). In particular two Gram systems calculated from two decompositions (2) and (4) are connected by
the relation (7) with V =W (cf. (3)). In the following we will also use the fact that if two sets of vectors w ′

ν and w ′′
ν ,

ν = 1, . . . , r, w ′
ν ∈ CK , w ′′

ν ∈ CK are Gram systems for the same positive-definite matrix ρ, i.e.
〈
w ′

µ, w
′
ν

〉
=

〈
w ′′

µ , w
′′
ν

〉
,

then there exists a unitary U acting in CK such that w ′′
ν = Uw ′

ν for ν = 1, . . . , r.
Gram decomposition in bipartite systems. Let us now take advantage of the fact that ρ acts on a tensor

product space, i.e. we chose the basis {|Eν〉}ν=1,...,M×N in the form of product states |Eν〉 = | em〉⊗| fn〉 =: | em⊗fn〉,
m = 1, . . . ,M , n = 1, . . . , N and repeat the calculation of (5),

ρij,mn = 〈ei ⊗ fj|ρ| em ⊗ fn〉 =
r∑

l=1

〈ei ⊗ fj |Ψl〉〈Ψl|em ⊗ fn〉 =
r∑

l=1

w l
ijw

l
mn = 〈wij , wmn〉, (8)

where now wmn, m = 1, . . . ,M , n = 1, . . . , N are vectors in Cr, with components

wl
mn = 〈Ψl|em ⊗ fn〉. (9)

If we assume that ρ is of maximal rank r =MN (which for M ≥ 3 we take for granted in the following), then wmn

are linearly independent. In particular, for any fixed m̃ ∈ {1, . . . ,M} (ñ ∈ {1, . . . , N}) the vectors wemn, n = 1, . . . , N
(wmen, m = 1, . . . ,M) form a set of N (M) linearly independent vectors in CK , respectively. In the special case
M = 2, the first of the latter statements can be also assumed to hold, provided ρ is (non-trivially) supported in the
2×N space. If this statement was not true, the density matrix ρ would have a product vector in its kernel. In such
situation either ρ is entangled and not PPT, or if it is PPT, than it can be represented as a mixture of a separable
part and a density matrix supported in 2× (N − 1) dimensional space (for proofs and details see Ref. [24]).
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Relations between various Gram decompositions. Let {vn}n=1,...,N form an arbitrary set of linearly inde-
pendent vectors in CK (in particular, in the light of the above remark, we can choose vn = w1n). We can always find
a family of linear maps Fm : CK → CK , m = 1, . . . ,M , such that

wmn = Fmvn, (10)

Note that such Fm’s are uniquely defined only on the N -dimensional subspace of CK spanned by {vn}n=1,...N . If we
apply the same procedure to the decomposition (4) we will arrive at

w′
mn = F ′

mv
′
n, (11)

with v′n, n = 1, . . . , N some linearly independent vectors in CK and appropriate F ′
m.

The vectors wmn and w′
mn are connected by (7), i.e.

F ′
mv

′
n = w′

mn = V wmn = V Fmvn. (12)

Since both sets {vn} and {v′n}, n = 1, . . . , N are linearly independent in, respectively, Cr and CK , there exists a K×r
matrix Ṽ of maximal rank, such that v′n = Ṽ vn for n = 1, . . . , N . Consequently

V †F ′
mṼ vn = V †V Fmvn = Fmvn, (13)

where we used V †V = I. We have thus shown the following

Theorem 1 For the two decompositions of the Gram vectors of the form (10) and (11) stemming from two decompo-

sitions of ρ into rank-one operators of the form (2) and (4) there exist two K × r matrices Ṽ nad V , the former of
rank r and the latter fulfilling V †V = I, such that on the space spanned by (arbitrary chosen) N linearly independent
vectors vn ∈ Cr the equality

V †F ′
mṼ = Fm (14)

holds. ✷

Obviously Ṽ depends on the choice of {vn}.

III. SEPARABILITY PROBLEM

Gram decompositions for separable states. Our goal is to characterize Gram decompositions for density
matrices of bipartite separable quantum systems. Recall that separable defined on HA⊗HB systems are characterized
by the following

Definition 1 A state ρ is separable if and only if

ρ =

k∑

i=1

piρ
A
i ⊗ ρBi . (15)

where
∑

i pi = 1, pi ≥ 0, whereas ρAi and ρBi are states on HA and HB, respectively.

The above expression means that ρ can be written as a convex combination of product states.
To achieve the goal observe that performing a decomposition of the type (2) for all matrices ρAi and ρBi in (15)

and taking into account positivity of the coefficients pi we obtain that a state ρ is separable if and only if it can be
decomposed in the form of K rank-one operators proportional to projections on simple tensors.

ρ =

K∑

k=1

|ϕk〉〈ϕk| ⊗ |ψk〉〈ψk| =
K∑

k=1

|ϕk ⊗ ψk〉〈ϕk ⊗ ψk|, (16)

where |ϕk〉 ∈ HA, |ψk〉 ∈ HB .
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Calculating matrix elements of ρ in local bases {| ei〉}i=1,...,M and {| fi〉}i=1,...,N in HA = CM and HB = CN ,
respectively, we obtain

ρij,mn = 〈ei ⊗ fj|ρ| em ⊗ fn〉

=

K∑

l=1

〈ei|ϕl〉〈fj |ψl〉〈ϕl|em〉〈ψl|fn〉

=

K∑

l=1

w ′ l
ijw

′ l
mn = 〈w ′

ij , w
′
mn〉, (17)

where now

w ′
mn =




w ′ 1
mn

w ′ 2
mn
...

w ′K
mn


 =




ϕm
1 ψ

n
1

ϕm
2 ψ

n
2

...
ϕm
Kψ

n
K


 =




ϕm
1

ϕm
2

. . .

ϕm
K







ψn
1

ψn
2
...
ψn
K


 = Dmv

′
n, (18)

φml := 〈ϕl|em〉, ψn
l := 〈ψl|fn〉. (19)

Reformulation of the separability problem. From (18) is is thus clear that for a separable state ρ on CM⊗CN

which can be decomposed into the sum ofK rank-one product operators (16), there existDm ∈ MK×K , m = 1, . . . ,M ,
Dm - diagonal, and v ′

n ∈ CK , n = 1, . . . , N , such that

ρij,mn = 〈Div
′
j , Dmv

′
n〉. (20)

Eq.(20) is also a sufficient condition for separability, ie. if there exist v ′
n ∈ CK , n = 1, . . . , N and diagonal Dm ∈

MK×K , m = 1, . . . ,M such that (20) is fulfilled, then ρ can be decomposed into rank-one separable states (16) with

|ϕl〉 =

M∑

m=1

(Dm)ll| em〉, (21)

|ψl〉 =

N∑

n=1

(vn)l| fn〉. (22)

i.e. ρ is separable.
Indeed, define

ρ̃ =

K∑

l=1

|ϕl ⊗ ψl〉〈ϕl ⊗ ψl|, (23)

with ϕl and ψl defined by (21) and (22). Then ρ̃ is separable and an elementary calculation shows that ρ̃ij,mn = ρij,mn,
and thus ρ = ρ̃.
Summarizing we can formulate thus the following theorem

Theorem 2 A state ρ is separable if and only if there exists a Gram decomposition of ρ,

ρij,mn = 〈wij , wmn〉,

wij ∈ CK for some K, such that

wij = Divj ,

with N vectors {v1, . . . vN} ∈ CK and M diagonal matrices D1, . . . DM acting as operators on CK . ✷

Observe that we can assume that all diagonal matrices Di are nonsingular. Indeed from (18) their diagonal elements
are equal to the projections of the vectors |φ l〉, which constitute (a part of) the decomposition, onto the basis vectors
| em〉. If any number of them vanish we can always adjust slightly the basis to make them taking non-zero values.
Invoking now Theorem 1 we obtain a
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Corrolary 1 A state ρ of the full rank r = MN is separable if and only if for some K ≥ MN , there exist K × r
matrices Ṽ and V of which Ṽ is of maximal rank and V †V = I, and diagonal K ×K matrices D1, . . .DM , such that

V †DmṼ = Fm

holds on the space spanned by vn, n = 1, . . . ,M , where wmn = Fmvn is a Gram system (9) for ρ calculated from its
spectral decomposition (2). ✷

Before proceeding let us make a remark. Observe namely that in terms of the Gram decomposition (20) of a
separable ρ the operation of partial transposition in HB

ρ =

k∑

i=1

piρ
A
i ⊗ ρBi 7→ ρTB =

k∑

i=1

piρ
A
i ⊗ (ρBi )

T , (24)

ie. ρij,mn 7→ ρin,mj , corresponds to the complex conjugation of the frame {v1, . . . , vN}, ie.
{v1, . . . , vN} → {v1, . . . , vN}, (25)

whereas a similar operation performed in HA

ρ =

k∑

i=1

piρ
A
i ⊗ ρBi 7→ ρTA =

k∑

i=1

pi(ρ
A
i )

T ⊗ ρBi , (26)

ie. ρij,mn 7→ ρmj,in, consists in

{D1, . . . , DM} → {D1, . . . , DM}. (27)

Indeed:

ρTB

ij,mn = ρin,mj = 〈Divn, Dmvj〉 = 〈vn, DiDmvj〉 = 〈DiDmvj , vn〉 = 〈DiDmvj , vn〉
= 〈DmDivj , vn〉 = 〈Divj , Dmvn〉,

ρTA

ij,mn = ρmj,in = 〈Dmvj , Divn〉 = 〈vj , DmDivn〉 = 〈vj , DiDmvn〉 = 〈Divj , Dmvn〉,
where we used the fact that diagonal matrices commute and their Hermitian conjugation reduces to the complex one.
In Appendix A we discuss in detail the results of this section applied to an example of two qubit states, the so

called Werner states.

IV. SEPARABILITY AND FULL FAMILIES OF COMMUTING NORMAL MATRICES

K-separability and FFCNM. In forthcoming publications we will present applications of Corollary 1 to char-
acterization of the bipartite entanglement for arbitrary systems. In the present paper we would like to concentrate on
the separability of systems with M = 2, but before that we would like to use our results from the previous sections to
formulate a novel SNC for separability. Let us assume that the investigated state ρ is K-separable, i.e. there exists a
decomposition into exactly K rank-one product operators (16) and ρ can be cast in the from (20). Since we assumed
that ρ is of maximal rank r = NM we have necessarily K ≥MN . From the previous consideration we now that the
Gram vectors calculated with the help of this decomposition have the form w ′

mn = Dmv
′
n.

For an arbitrary decomposition of ρ into exactly K states given by (4) (where |Φl〉 need not to be product states),
we obtain another Gram system w ′′ l

mn = 〈Φl|em ⊗ fn〉 ∈ C
K .

The vectors w ′
mn and w ′′

mn as forming two Gram systems for the same matrix ρ are connected via a unitary
transformation

w ′′
mn = Uw ′

mn = UDmv
′
n. (28)

Taking the above equality for two pairs of indices (m,n) and (k, n) we obtain:

Mmkw
′′
kn = w ′′

mn, (29)

where

Mmk = UDm(Dk)
−1U †. (30)

Remember that without loosing generality we can assume nonsingularity of all matrices Dn. Consequently Mkm are
also nonsingular.
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SNC for separability and FFCNM. The matrices Mnm are normal,
[
Mkm,M

†
km

]
= 0, and mutually com-

muting, [Mkm,Mlm′ ] = 0. Both observations can be easily proved using the facts that all matrices Dm are diagonal
and U is unitary. The above reasoning is summarized in the form of the following

Theorem 3 A necessary and sufficient condition for K-separability of ρ is the existence, for an arbitrary decompo-
sition (4), of a full family of M(M − 1)/2 normal, commuting K ×K matrices Mkm fulfilling (29) where w′

mn are
appropriate Gram vectors for the decomposition (29).

Necessity of the condition follows from the above remarks, and to prove the sufficiency let us assume that (29) is
fulfilled for some family of normal, commuting matrices Mkm. It is a standard fact from the linear algebra [23] that
all matrices in such a family can be simultaneously diagonalized by a single unitary transformation,

U †MkmU = Dkm. (31)

According to the previous remarks we assume that Mkm and, consequently, Dkm are nonsingular. Now from (29) and
(31)

DkmU
†w ′′

mn = U †MkmUU
†w ′′

mn = U †Mkmw
′′
mn = U †w ′′

kn, (32)

and defining vn := U †w ′′
1n, wkn := U †w ′′

kn, we obtain

wkn = (D1k)
−1vn. (33)

The vectors wkn are Gram vectors for ρ as they are obtained by a single unitary transformation form the vectors
w ′′

kn constituting some Gram decomposition of ρ. Equation (32) reveals their structure in the form sufficient for the
separability of ρ according to Theorem 2.

V. SEPARABILITY IN 2×N SYSTEMS AND NORMAL EXTENSIONS

The Theorem 3 simplifies significantly for 2 × N systems, because FFCNM consists of a single matrix, which has
to fulfill

M̂w ′′
0n = w ′′

1n. (34)

In the following we will use 0, 1 instead of 1, 2 for numbering the components on the qubit side, which is more in accord
with the custom to denote the basis states by | 0〉 and | 1〉. From here we do not need to assume the nonsingularity
of ρ - see the remarks preceding the formula (10).
In this section we study the consequences of (34). On one hand we use the present formulation to obtain particularly

simple proofs of known separability criteria. On the other hand, we use known separability criteria to obtain non-
trivial statements concerning existence of normal extensions of matrices, whose matrix elements are only partially
known.
Canonical forms and PPT condition. Let us consider ρ in the canonical form [24] (see also Appendix B)

ρ =

[
A B
B† I

]
. (35)

where the positivity of ρ implies A = BB† + ΛΛ†, where Λ is some N × p matrix, with p ≥ r(ΛΛ†). Obviously,
p = 1 necessarily, when r(ΛΛ†) = 1; also one can always take the minimal p = r(ΛΛ†) = 1. We represent ΛΛ† =∑p

n=1 |Λn〉〈Λn|.
Similar considerations concern the partially transposed matrix, which reads

ρTA =

[
A B†

B I

]
. (36)

We consider here only the nontrivial case of states with the positive partial transpose (PPT states) - states which are

not PPT are not separable. The positivity of ρTA requires now that A = B†B+Λ̃†Λ̃, where Λ̃ is now a p̃×N matrix,
with p̃ ≥ r(Λ̃†Λ̃), and having analogous properties as p introduced above. We represent Λ̃†Λ̃ =

∑
n=1 p̃| Λ̃n〉〈Λ̃n|. The

PPT condition can be thus stated as A−B†B ≥ 0. More precisely, it must hold

A = BB† + ΛΛ† = B†B + Λ̃†Λ̃, (37)

which implies that given Λ, Λ̃ are not independent, and related by the above constraint.
Let us now discuss several examples to show how the novel entanglement SNC works.
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Rank N matrices. The results of Ref. [24] indicate that rank N PPT states are N -separable. The matrix M̂ = B
then, and [B,B†] = 0.
The case ρ = ρTA . From Ref. [24] we gather also that when ρ = ρTA , then ρ is 2N -separable. In this case

B = B†, Λ = Λ̃† and the matrix M can be written as

M̂ =

[
B Λ
Λ† s

]
. (38)

with N ×N matrix S to be determined. Obviously, taking s Hermitian provides the desired normal extension of M̂ .
The case of 2 × 2 and 2 × 3 systems. In the two qubit, or qubit-qutrit case, every separable matrix is K-

separable, where K = max(r(ρ), r(ρTA )). In particular for the full rank r(ρ) = 4 (r(ρ) = 6), K = 4 [26] or K = 6 (as
shown in Appendix B), respectively. We have then

Corrolary 2 For N = 2, 3, an arbitrary N ×N matrix B, and an arbitrary p×N matrix Λ constrained by (37), the
matrix

M̂ =

[
B Λ

Λ̃ s

]
. (39)

a has a normal extension, i.e. there exist a p× p matrix s, and a N × p matrix Λ̃ constrained by (37)such that M̂ is
normal. This holds in particular for minimal p = min 0, r(ρ)−N .

Edge PPT entangled states for N = 4. Perhaps the most interesting are applications for PPT entangled
states, and in particular for the so called edge states [24], i.e. PPT states that cannot be represented as a mixture of
a PPT state and a separable states (no separable part can be subtracted). Such states are extreme examples of states
to which the range criterion of P. Horodecki [27] applies. For N = 4 such states may have rank 5, or 6 (and similarly
their partial transpose). From the analysis of the Appendix B we infer that if ρ is a separable state of rank 5 such
that its partial transpose has rank 5 (6), then it is 5-separable (6-separable). In the case r(ρ) = r(ρTA ) = 5, both Λ

and Λ̃ have rank 1; we denote Λ by |Λ〉, and Λ̃† by | Λ̃〉. We get then

Corrolary 3 A PPT state ρ such that it and its partial transpose have rank 5 is separable, iff there exist a complex
number s such that the matrix

M̂ =

[
B |Λ〉
〈Λ̃| s

]
. (40)

is normal, which assuming that (37) holds, requires that

(B − s)| Λ̃〉 = (B† − s∗)|Λ〉.

This condition is equivalent to the range criterion. For the particular example ρ97 of the 2× 4 state analyzed in the
seminal 1997 paper [27], it is very easy to analyse, as we show in Appendix C.
This analysis may be extended to the rank 5 states, with the partial transpose of rank 6, for which Eq. (37) becomes

BB† + |Λ〉〈Λ†| = B†B + | Λ̃†
1〉〈Λ̃1|+ | Λ̃†

2〉〈Λ̃2|. (41)

We have in this case

Corrolary 4 A PPT state ρ of rank 5, such that its partial transpose has rank 6, is separable, iff there exist complex
numbers α, β, such that |α|2 + |β|2 = 1, and a 2× 2 matrix s such that the matrix

M̂ =




B α|Λ〉 β|Λ〉
〈Λ̃1| s11 s12
〈Λ̃2| s21 s22


 . (42)

is normal, which assuming that (41) holds, requires that

(B − s11)| Λ̃1〉 − s21| Λ̃2〉 = (αB† − αs∗11 − βs∗12)| Λ̃〉,

(B − s22)| Λ̃2〉 − s12| Λ̃1〉 = (βB† − αs∗21 − βs∗22)| Λ̃〉.
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Before we end this section, we would like to stress that obviously the above discussion of normal extension of M̂
applies also to M ×N systems, if we focus on a single relation of the type (29), such as say

M̂10w
′′
0n = w ′′

1n. (43)

The analysis pertains then to the study of separability on a particular 2 × N subspace of the full Hilbert space. In
this sense it is somewhat similar to the theory of generalized concurrences of Ref. [22].

VI. SUMMARY

We have presented a new approach to the separability problem by reformulating it in terms of existence of separable
Gram decompositions of density matrices in auxiliary space. The existence of such Gram decompositions is equivalent
to the existence of a full family of commuting normal matrices that relate components of Gram vectors. We have
presented many examples and applications of this method mainly to the 2 ×N systems. Several known separability
criteria can be, on one hand, reproduced with this method in a particulary simple way, and on the other, can be used
to derive nontrivial statements about the existence of FFCNM.

Acknowledgments

We thank I. Cirac, F. Hulpke, Ph. Hyllus, J. Korbicz, B. Kraus, and A. Sanpera for helpful discussions. We
acknowledge support of ESF PESC “QUDEDIS”, EU IP “SCALA”, Spanish MEC (FIS2005-04627 and Consolider
Ingenio 2010 ”QOIT”), and Polish grant PBZ-Min-008/P03/03.

APPENDIX A: WERNER MATRICES FOR TWO QUBITS

As an example illustrating the results of Section III let us consider a one-parameter family of states for N =M = 2

ρ =
1

4




1 + p 0 0 2p

0 1− p 0 0

0 0 1− p 0

2p 0 0 1 + p



, (A1)

the so called Werner states [4]. The parameter p takes the values from the interval [0, 1]. One finds easily the spectral
decomposition ρ =

∑r
l=1 |Ψl〉〈Ψl| with

|Ψ1〉 =




0√
1−p
8

−
√

1−p
8

0



, |Ψ2〉 =




√
1−p
8

0
0

−
√

1−p
8



, |Ψ3〉 =




0√
1−p
8√

1−p
8

0



, |Ψ4〉 =




√
1+3 p

8

0
0√
1+3 p

8



, (A2)

and calculates the Gram vectors (9)

w11 =




0√
1−p
8

0√
1+3 p

8



, w12 =




√
1−p
8

0√
1−p
8

0



, w21 =




−
√

1−p
8

0√
1−p
8

0



, w22 =




0

−
√

1−p
8

0
√

1+3 p
8




. (A3)

We chose v1 = w11 and v2 = w22 which allows to take

F1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , F2 =




0 −1 0 0
−1 0 0 0

0 0 0
√

1−p
1+3 p

0 0
√

1+3 p
1−p 0



. (A4)
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Only when p ≤ 1/3 the state ρ is separable. For these values of p one finds an explicit Gram decomposition (20) of
ρ with

D1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

D2 =




(1−i)(
√
1−3p+

√
p+1)√

2(
√
1−p+

√
3p+1)

0 0 0

0 − (1+i)(
√
p+1−

√
1−3p)√

2(
√
1−p−

√
3p+1)

0 0

0 0 − (1−i)(
√
1−3p+

√
p+1)√

2(
√
1−p+

√
3p+1)

0

0 0 0
(1+i)(

√
p+1−

√
1−3p)√

2(
√
1−p−

√
3p+1)




,

and

v ′
1 =




(
√
1−p+

√
3p+1)

4
√
2

e
πi

2

(
√
1−p−

√
3p+1)

4
√
2

e
πi

2

(
√
1−p+

√
3p+1)

4
√
2

e−
πi

2

(
√
1−p−

√
3p+1)

4
√
2

e−
πi

2



, v ′

2 =




(
√
p+1−

√
1−3p)

4
√
2

e
3πi

4

(
√
1−3p+

√
p+1)

4
√
2

e−
3πi

4

(
√
p+1−

√
1−3p)

4
√
2

e
3πi

4

(
√
1−3p+

√
p+1)

4
√
2

e−
3πi

4



.

For the particular choice of F1, F2, v1, and v2 the matrices Ṽ and V (cf. Corollary 1) are given as

Ṽ = V =




−
√
1+p+i

√
1−3 p√

8
√
1−p

− i
2

√
1−3 p−i

√
1+p√

8
√
1−p

− i
2

−
√
1+p+i

√
1−3 p√

8
√
1−p

− i
2

−
√
1−3 p+i

√
1+p√

8
√
1−p

i
2

−
√
1+p+i

√
1−3 p√

8
√
1−p

i
2

√
1−3 p−i

√
1+p√

8
√
1−p

i
2

−
√
1+p+i

√
1−3 p√

8
√
1−p

i
2

−
√
1−3 p+i

√
1+p√

8
√
1−p

− i
2




, (A5)

for which one easily checks V †DmṼ = Fm on span(v1, v2).

APPENDIX B: A SHORT GUIDE TO 2×N SYSTEMS

From Theorem 3 it is clear that investigations of separability can be simplified if we know a priori the order
of separability K of the given state (i.e. we know that it is K-separable). We do not have any general tool for
determining exactly the order of separability for arbitrary separable states before finding their actual decomposition
into pure products (and even if we find one, to establish the order of separability we still have to prove that the found
decomposition involves the minimal number of components). Here we present some exact results concerning orders
of separability in the case of 2×N systems for low values of N .
Canonical forms. Let ρ be an arbitrary density matrix of a bipartite 2×N system

ρ =

[
A B
B† C

]
, (B1)

where A,B and C are N × N matrices, A and C are hermitian due to hermiticity of ρ. Positive definiteness of ρ
implies A ≥ 0, C ≥ 0, and A − BC−1B† ≥ 0. The matrix C is nonsingular since ρ, by assumption, is of maximal
rank. By an invertible transformation

ρ 7→
(
I ⊗ C−1/2

)
ρ
(
I ⊗ C−1/2

)
(B2)
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we bring ρ to the canonical form [24]

ρ =

[
A B
B† I

]
. (B3)

For simplicity of notation we kept the same symbols A and B to denote the appropriate blocks of ρ despite the fact
that the original blocks defined in (B1) are altered by the transformation (B2). Such a transformation changes, in
principle, the trace of ρ, but since the normalization of the trace does not influence separability properties we will
wave this point aside. The positivity conditions of ρ reduce now to

A = BB† + ΛΛ†, (B4)

where Λ is some p×N matrix.
A necessary criterion of separability is the non-negative definiteness of the partially transposed matrix, which for

the case of a 2×N system (2N) is defined as

ρTA =

[
A B†

B I

]
. (B5)

From now on we will assume thus that both ρ and ρTA are positive-definite (otherwise ρ is not separable). Positive
definiteness of the partial transpose of (B3) demands

A = B†B + Λ̃†Λ̃, (B6)

for some Λ̃.
Decompositions of ρ. For our purposes it important to consider particular decompositions of ρ for K = N + p,

and construct the ”known” part of the matrix M̂ that fulfills Eq. (29). From the canonical form and Eq. (B4), with

Λ = (|Λ1〉, . . . , |Λp〉), it is easy to see that ρ =
∑N+p

k=1 |Φk〉〈Φk|, with

|Φk〉 = | 0〉 ⊗ | k〉+ | 1〉 ⊗B| k〉, (B7)

for k = 1, . . . , N , and

|Φk〉 = | 1〉 ⊗ |Λk−N 〉, (B8)

for k = N + 1, . . . , N + p. From this particular form we read the components of the vectors w ′′
0n, w

′′
1n:

(w ′′
0n)

k = δkn, (B9)

for k = 1, . . . , N , and zero otherwise. Similarly

(w ′′
1n)

k = Bnk, (B10)

for k = 1, . . . , N , and

(w ′′
1n)

k = 〈n|Λk−N 〉, (B11)

for k = N + 1, . . . , N + p. Obviously, for the particularly simple form of w ′′
0n, Eq. (29), determines only the first N

columns of the matrix M̂T , which are

M̂T =

[
BT ?
Λ† ?

]
, (B12)

where the other entries are at this moment not known. Transposing and using the PPT constraint (37), we indeed
obtain that

M̂ =

[
B Λ

Λ̃ S

]
, (B13)

where for given B and Λ, the matrix Λ̃ is constrained only by the condition (37), and S is completely arbitrary. This

form of M̂ is intensively used by us in the section on separability in 2×N systems.
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Edge states. For the purpose of this paper we remind the reader the basic concept associated with the edge
states. First, we remind [24, 25, 28] that if | e, f〉 (or any vector, in fact) is in the range of ρ, then we can write

ρ = ρ′ + λ|e, f〉〈e, f |,

where ρ′ ≥ 0 provided λ ≤ 1/〈e, f |ρ−1|e, f〉. When the equality holds, the rank of ρ′ is smaller that the rank of ρ by
1.
From this observation follows

Corrolary 5 A PPT state ρ is an edge state if there exist no product vector | e, f〉 in its range, such that | e∗, f〉 is
in the range of ρTA .

Subtracting projectors on product vectors as in Refs. [24, 28] allows to determine the minimal number of projectors
on product states necessary to decompose a separable state. We remind the reader:
The case 2 × 2. In this case K = max(r(ρ), r(ρTA )). This result stems from [26]. In the following we shall use

notation (p, q) for the case of r(ρ) = p, r(ρTA ) = q. Let us consider the case of full ranks (4,4). First we show that
we can find the product vector for which λ = 1/〈e, f |ρ−1|e, f〉 = 1/〈e∗, f |(ρTA)−1|e∗, f〉, so that subtracting projector

on this vector reduces ranks to (3,3). To this aim we suppose ρ =
∑K

k=1 |ek, fk〉〈ek, fk| is separable, and that for all
| e, f〉, it holds 〈e, f |ρ−1|e, f〉 < 〈e∗, f |(ρTA)−1|e∗, f〉. Inserting into this inequality | ek, fk〉 and summing over k, we
get a contradiction Tr(I) = 4 < 4 = Tr(I). In the same manner we prove that the opposite inequality can not be
fulfilled by all product vectors. Thus either all product vectors fulfill the equality, or there are at least two product
vectors for which the inequality takes opposite signs. But then from the Darboux property and the fact the the set of
all product states is connected, we gather that there exist a product vector for which the equality holds. In the next
step we reduce one rank to 2; this, however implies that so does the other rank, since from general theory of Ref. [24]
it follows that rank N PPT matrix in 2×N systems is N -separable.
The case 2× 3. This problem was partially addressed in the thesis of G. Vidal [29]. The proof here is new. We

start with the full ranks and using the same argument as above we reduce the ranks to (5,5). The argument may be

then repeated but with a certain care. Now we suppose that ρ =
∑K

k=1 |ek, fk〉〈ek, fk| is separable, and that for all
| e, f〉 in its range, and such that | e∗, f〉 is in the range of ρTA , it holds 〈e, f |ρ−1|e, f〉 < 〈e∗, f |(ρTA)−1|e∗, f〉. Again,
inserting into this inequality | ek, fk〉 and summing over k, we get a contradiction Tr(IR(ρ)) = 5 < 5 = Tr(IR(ρTA )),

where IR(ρ) denotes identity on the range. We may again evoke the Darboux property, but to this aim we need to
prove that the set of product vectors on question os connected. Let Ψ be a vector from the kernel of ρ and Φ from
the kernel of ρTA . The product vectors we look for have to fulfill 〈Ψ|e, f〉 = 0, 〈Φ|e, f〉 = 0. These equations can be
regarded as two linear equations for a three-component vector | f〉, parametrized by the vector | e〉 = | 0〉+α| 1〉, which
we have parametrized by complex number α in some basis. Obviosly, | f〉 is a unique function of α and by scanning α
over the complex plane we can reach any of these vectors in a continuous way. Darboux theorem says then that there
exist a product vector for which equality holds 〈e, f |ρ−1|e, f〉 = 〈e∗, f |(ρTA)−1|e∗, f〉, and we can reduce the ranks to
(4,4). The next step is as above: reduction of one of the ranks to 3, implies the same reduction for the other. The
reason for that is that all rank 3 states in 2× 3 systems are 3-separable.
The case 2×4. It is also possible to determine what is the minimal number of terms in the separable decomposition

for the states of low ranks. In this paper we consider two cases: (5,5) and (5,6). In the (5,5) case there are three
vectors |Ψi〉 in the kernel of ρ, and another three vectors |Φi〉 in the kernel of ρTA . We look for | ek, fk〉 such that
〈Ψi|e, f〉 = 0, 〈Φi|e∗, f〉 = 0 for all i = 1, 2, 3. These can be regarded as six linear equations for a four-component
vector | f〉. They have solutions provided three 4 × 4 determinants (constructed from the first three and one of the
last three equations) vanish. These determinant constitute three polynomials of 3rd order in α and first order in
α∗. Eliminating α∗ from them we obtain that two polynomials of 6th order in α must vanish. Subtracting them
with appropriate coefficients, we conclude that a polynomial of 5th order in α must vanish, i.e. there are at most five
product vectors having the desired properties. This implies that if ρ is separable, then it is 5-separable.
Similar analysis can be done for the case of the state ρ with the ranks (5,6). We end up then with one polynomial

of 6th order in α, i.e. we have at most six solutions, ergo if ρ is separable, then it is 6-separable. Note, that the states
with ranks (5,6) are either separable, or entangled edge states, or mixtures of ranks (5,5) edge state with a single
projector on a product vector from the range of ρ.
Unfortunately, only upper bounds on the number of product states in an decomposition of separable states are

known for ρ’s of higher ranks. In particular, Caratheodory theorem (for proof see [27]) gives a general bound equal to
the square of the dimension of the Hilbert space, i.e. in the present case (2 × 4)2 = 64, implying the every separable
state is 64-separable.
For the states with ranks (5,7) it can be shown that there exists in the range of ρ a product vector (| 0〉+α| 1〉)| f〉,

such that (| 0〉 + α∗| 1〉)| f〉 is in the range of ρTA . It is easy to see that the condition that these product vectors
are orthogonal to the corresponding kernels of ρ and ρTA , leads to 4 linear equations for 4 components of | f〉. The
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solutions of such equations exits if the determinant of the corresponding matrix vanishes. This matrix has three rows
linear in α and one row linear in α∗, so that the determinant equations has the form

W3(α) + α∗V3(α) = 0, (B14)

where W3(.) and V3(.) are polynomials of third order. Let us replace α → rs, α∗ → r/s with r > 0 and s complex,
and treat Eq. (B14) as an equation for s(r) (i.e. treating s as parametrically dependent on r),

sW3(rs) + rV3(rs) = 0.

We will show that this equation has at least one root α = rs with |s| = 1, i.e. with α∗ = r/s. To this aim we consider
the asymptotic behavior at r → ∞. It is easy to show that the above equation has three roots si = O(1/r) → 0,
i = 1, 2, 3 and one root s4 = O(r) → ∞. Analogously, for r → 0 it is easy to show that the equation has three roots
s̃i = O(1/r) → ∞, i = 1, 2, 3 and one root s̃4 = O(r) → 0. All that implies that when we continuously change r from
0 to ∞, one the the three ”large” roots must become ”small”. From continuity (i.e. again from the Darboux property)
we get that for some r = r0, the |s(r0)| = 1. Unfortunately, we cannot say much more about the total number of such
roots. Solving Eq. (B14) with respect to α∗, complex conjugating the result, and stacking it back into Eq. (B14), we
obtain an equation for α∗ of 10th order, which indicates that there are not more of than ten roots of Eq. (B14).

APPENDIX C: HORODECKIS 2× 4 EDGE STATE

In this Appendix we show how our method work for the famous state ρ97 introduced by P. Horodecki in the seminal
paper [27]. In our notation this state has

B =




0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 0


 . (C1)

and

|Λ〉 =




√
(1− b)/2b

0
0√

(1 + b)/2b


 , | Λ̃〉 =




√
(1 + b)/2b

0
0√

(1− b)/2b


 . (C2)

This state has rank 5 (as its partial transpose) and is an example of an edge state [24]. As pointed in Ref. [27] there

exist a unitary matrix K, such that K2 = I, KBK = B†, and K|Λ〉 = | Λ̃〉. The condition of existence of the normal

extension from Section VI reads then (B − s)| Λ̃〉 = K(B − s∗)| Λ̃〉, i.e.



−s
√
(1 + b)/2b
0√

(1 − b)/2b

−s
√
(1− b)/2b


 =




−s∗
√
(1− b)/2b√

(1− b)/2b
0

−s∗
√
(1 + b)/2b


 , (C3)

which has only the two solutions s = 0, b = 1, and the limiting case b = 0, with an arbitrary real s = s∗. These are
exactly the two instances in which the Horodecki state is separable.
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