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Abstract

We describe an algorithm that computes the ground state energy and correlation functions
for 2-local Hamiltonians in which interactions between qubits are weak compared to single-qubit
terms. The running time of the algorithm is polynomial in n and δ−1, where n is the number
of qubits, and δ is the required precision. Specifically, we consider Hamiltonians of the form
H = H0 + ǫ V , where H0 describes non-interacting qubits, V is a perturbation that involves
arbitrary two-qubit interactions on a graph of bounded degree, and ǫ is a small parameter.
The algorithm works if |ǫ| is below a certain threshold value ǫ0 that depends only upon the
spectral gap of H0, the maximal degree of the graph, and the maximal norm of the two-qubit
interactions. The main technical ingredient of the algorithm is a generalized Kirkwood-Thomas
ansatz for the ground state. The parameters of the ansatz are computed using perturbative
expansions in powers of ǫ. Our algorithm is closely related to the coupled cluster method used
in quantum chemistry.
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1 Introduction and summary of results

Perturbation theory provides a systematic way of getting approximations to eigenvalues and eigen-
vectors for a variety of quantum spin models. Arguably, a significant part of analytical and numerical
results of condensed matter physics has been obtained using perturbative expansions in some small
parameter. Quite recently the methods of the perturbation theory have been successfully employed
in quantum complexity theory. In Ref. [1] Kempe, Kitaev, and Regev used perturbative reductions
to show that the problem of computing the ground state energy of a Hamiltonian with two-qubit
interactions is QMA-complete. After that Terhal and Oliveira [2] generalized this result to local
Hamiltonians on a 2D lattice.

Our main goal is to examine whether the methods of the perturbation theory provide an efficient
computational algorithm for the simulation of quantum spin systems. In this paper we focus on
the simulation of low-temperature properties, namely computing the ground state energy and spin-
spin correlation functions for the ground state. An efficient algorithm must have a running time
T = O(nα δ−β), where n is the number of spins, δ is a precision up to which we need to compute the
ground state energy or a correlation function, and α, β > 0 are some constants.

Before stating the results, let us describe the spin models that we shall consider. Let G = (L, E)
be a graph with a set of vertices L, |L| = n, and set of edges E . Suppose n spins-1/2 (qubits) are
located at vertices u ∈ L and spin-spin interactions are located on edges (u, v) ∈ E . The Hamiltonian
is

H(ǫ) = H0 + ǫ V, H0 =
∑

u∈L

∆u |1〉〈1|u, V =
∑

(u,v)∈E

Vu,v. (1)

Here Vu,v is an arbitrary operator acting on a pair of qubits u, v, and ǫ is a real number. The operators
H0 and V are called the unperturbed Hamiltonian and the perturbation. We shall always assume that
∆u > 0 for all u ∈ L. Accordingly, the unperturbed Hamiltonian H0 has a non-degenerate ground
state

|Ω〉 = |0, 0, . . . , 0〉, H0 |Ω〉 = 0.

Most of the time, all we will need to know about H0 and V are the following parameters

∆ = min
u∈L

∆u, J = max
(u,v)∈E

‖Vu,v‖. (2)

The parameter ∆ is the gap between the smallest and the second smallest eigenvalue of H0, while the
parameter J characterizes a strength of the perturbation V . Let d be the maximum vertex degree
of the graph G,

d = max
u∈L

|{v : (u, v) ∈ E}| . (3)

The quantity we are interested in is the smallest eigenvalue of H(ǫ), which we shall denote by E(ǫ).
Clearly, E(ǫ) is a continuous concave function of ǫ and E(0) = 0. Besides, since we assume that
∆ > 0, the standard perturbation theory arguments [3] show that E(ǫ) is analytic at ǫ = 0 and the
Taylor series

E(ǫ) =

∞
∑

p=1

Ep ǫ
p (4)

converges absolutely for ‖ǫV ‖ < ∆/2. The following theorem proved by Yarotsky [4] asserts that
E(ǫ) is non-degenerate for sufficiently small ǫ and sets a lower bound on the spectral gap.
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Theorem 1. Suppose |ǫ| ≤ 2ǫ0, where

ǫ0 =
2−18∆

dJ
. (5)

Then the smallest eigenvalue E(ǫ) has multiplicity 1 and the gap between E(ǫ) and the second smallest
eigenvalue of H(ǫ) is at least ∆/2.

(The explicit value of ǫ0 has not been stated in Ref. [4].) We shall provide an alternative proof of
Theorem 1 in Sections 2,3.

As was shown by Osborne in Ref. [5], Theorem 1 implies that expectation values of local observ-
ables on the ground state of H(ǫ) can be efficiently computed within any constant precision δ by
simulating quantum adiabatic evolution along the path connecting H(0) and H(ǫ). However, the
running time of such simulation scales exponentially as a function of δ−1. As was noted in Ref. [5],
it means that simulation of the adiabatic evolution does not yield a polynomial-time algorithm for
computing the ground state energy.

The perturbation theory provides an approximation to the ground state energy by truncating the
series Eq. (4) at sufficiently high order p. In order to understand whether this approach can be used
to construct an efficient computational algorithm, two separate issues have to be addressed:

Q1: What is the convergence radius of the perturbative series?

Q2: What is the computational cost of finding the coefficients in the perturbative series?

Note that the radius of convergence of the series Eq. (4) is a property of the Hamiltonian H(ǫ) only.
It does not depend upon what particular perturbative expansion has been used to find the coefficients
Ep. The following theorem allows one to answer the first question.

Theorem 2. The Taylor series E(ǫ) =
∑∞

p=1Ep ǫ
p converges absolutely for |ǫ| ≤ 2ǫ0. Furthermore,

∣

∣

∣

∣

∣

E(ǫ)−
p

∑

q=1

Eq ǫ
q

∣

∣

∣

∣

∣

≤ n∆2−16−p if |ǫ| ≤ ǫ0. (6)

Thus if one needs to compute E(ǫ) with a specified precision δ, it suffices to compute the coeffi-
cients E1, . . . , Ep, where p = log2 (nδ

−1)+O(1) (assuming that ∆ is a constant that does not depend
on n).

Answering the second question has nothing to do with the convergence radius of the series Eq. (4)
(as long as it is non-zero). One can compute the coefficients Ep by choosing ǫ so small that ‖ǫ V ‖ ≪ ∆.
In this regime the standard perturbation theory is applicable, for example, the self-energy opera-
tor formalism, see Refs. [1, 6], or the Rayleigh-Schrödinger expansion, see Ref. [7]. Clearly, the
computational cost of finding the coefficients Ep varies for different methods.

In the present paper we compute the coefficients Ep using the Kirkwood-Thomas ansatz for the
ground state. It was originally proposed in Ref. [8] for translation-invariant Ising-like Hamiltonians
with a transverse magnetic field. The translation-invariance constraint has been removed in the
later work by Datta and Kennedy [9]. We use the generalized Kirkwood-Thomas ansatz proposed
by Yarotsky [4] which is applicable to any spin Hamiltonian with sufficiently weak interactions. It
allows us to prove the following.
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Theorem 3. Suppose d is a fixed constant independent of n. Then there exists an algorithm with a
running time n exp (O(p)) that takes as input a triple (H0, V, p) and outputs E1, . . . , Ep.

An immediate consequence of Theorems 2,3 is

Corollary 1. Suppose ∆, J , d are fixed constants independent of n and |ǫ| ≤ ǫ0. Then there exists
an algorithm with a running time poly(n, δ) that computes E(ǫ) with an absolute error at most δ.

Besides, it follows from Theorems 2,3 that the energy density E(ǫ)/n can be computed with a
precision δ in a time n · poly(δ−1).

Note that while computing the coefficients E1, . . . , Ep we cannot afford the running time to grow
faster than exp (O(p)) (for fixed n) since we need p ∼ log (nδ−1) to achieve the desired accuracy. The
perturbative expansion based on the Kirkwood-Thomas ansatz has two special features that make
the scaling exp (O(p)) possible: (i) The parameters of the ansatz are complex amplitudes C(M)
assigned to subsets of vertices M ⊆ L. The recursive equations specifying the amplitudes C(M)
are described by a polynomial of a constant degree, see Section 3.1; (ii) The perturbative expansion
C(M) =

∑∞
p=1Cp(M) ǫp has a property known as the linked cluster theorem, namely, Cp(M) = 0

unless M can be covered by a connected subgraph of size O(p), see Section 4.1. The number of such
subgraphs grows only exponentially with p, see Section 4.2. It implies that the number of non-zero
coefficients Cp(M) grows as n exp (O(p)), see Section 5.1.

Naturally, one could run the algorithm from Theorem 3 to compute the truncated series for E(ǫ)
even if |ǫ| > ǫ0. The running time will be polynomial in n and δ−1 as long as |ǫ| is smaller than the
convergence radius R of the series Eq. (4). Although we believe that R must be close to ∆/(dJ)
(see a discussion at Section 6), its exact value cannot be easily found. In practical simulations, one
could evaluate R by computing sufficiently many coefficients Ep and using the fact that R−1 is the
largest accumulation point of a sequence |Ep|1/p, p = 1, . . . ,∞, see Ref. [10]. Note that in general
the singular point (points) of E(ǫ) with |ǫ| = R does not lie on the real axis and thus cannot be
identified with a quantum phase transition point of H(ǫ) (since we consider finite systems, the latter
is not even well defined).

Obviously, efficient computation of E(ǫ) is possible due to the presence of a small parameter ǫ in
the problem. However it should be emphasized that the condition |ǫ| ≤ ǫ0 does not imply that the
ground state |ψ〉 of H(ǫ) is close to the ground state |Ω〉 of the unperturbed Hamiltonian H0. In fact,
one should expect that |ψ〉 and |Ω〉 are almost orthogonal for large n1. To illustrate this statement,
consider as an example the perturbation V = −J∑

u∈LXu, where X is the Pauli σx operator, and
the unperturbed Hamiltonian H0 = ∆

∑

u∈L |1〉〈1|u. Clearly, the ground state of H(ǫ) is a product
of one-qubit states, |ψ〉 =

⊗

u∈L |ψu〉. A simple calculation shows that 〈0|ψu〉 = cos (θ/2), where
cos (θ) = (1+4ǫ2J2/∆2)−1/2. Thus for any fixed ǫ the overlap 〈Ω|ψ〉 = (cos (θ/2))n gets exponentially
small as n increases. However the reduced density matrices of the ground states |ψ〉 and |Ω〉 for any
subset of qubits of constant size are indeed close to each other for small ǫ. In other words, for small
ǫ the state |ψ〉 describes small density quantum fluctuations of the background state |Ω〉. One could
speculate that this statement remains true for arbitrary weak perturbations as well. The Kirkwood-
Thomas ansatz for the ground state of H(ǫ) used in the present paper provides a convenient way
to quantify the “density of quantum fluctuations” and prove that it is indeed small for |ǫ| ≤ ǫ0.
Unfortunately, our approach does not allow us to make any statements about the validity of the area

1This effect is analogous to the well-known “orthogonality catastrophe” observed by Anderson in Ref. [11] for
non-interacting fermions in a presence of a scattering potential.
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law or to decide whether the ground state can be well approximated using the PEPS ansatz, see
Ref. [12].

The Kirkwood-Thomas ansatz is not well suited for computing spin-spin correlation functions
because it provides an unnormalized ground state. We avoid this problem using the standard relation
between the correlation functions and the linear response of the ground state energy to a small
perturbation. It allows us to prove

Theorem 4. Let Ou,v be a Hermitian operator acting non-trivially only on qubits u, v ∈ L. Suppose
‖Ou,v‖ ≤ 1. The expectation value of Ou,v on the ground state of H(ǫ) can be computed with a
precision δ in a time T = poly(δ−1) as long as |ǫ| ≤ ǫ0/2(d+ 1).

Remark: After the present work has been completed, it was communicated to us by F. Verstraete [13]
that the simulation algorithm based on the Kirkwood-Thomas ansatz is closely related to the coupled
cluster method originally introduced by Coester [14]. The coupled cluster method is extensively used
for numerical simulations in quantum chemistry, see a review [15], as well as in condensed matter
physics, see a review [16] and the references therein. Accordingly, from the perspective of practical
simulations, the algorithm described in the present paper is certainly not a new one. However, we
believe that our results provide the first rigorous proof that the coupled cluster method yields a
polynomial-time simulation algorithm for spin Hamiltonians with weak interactions.

The rest of the paper is organized as follows. Section 2 provides the necessary background on
the generalized Kirkwood-Thomas ansatz. It mostly follows Ref. [4], although some of our proofs are
technically different (in particular, Lemma 4). Section 3 shows how to solve the Kirkwood-Thomas
equations using a power series and proves Theorem 2. In Section 4 we prove that our perturbative
expansion obeys the well-known linked cluster theorem and establish an upper bound on the number
of linked clusters on a graph. The algorithms for computing the ground state energy and spin-spin
correlation functions are explicitly described in Section 5 which provides a proof of Theorems 3,4.
Some open problems are discussed in Section 6. Appendix A contains a technical lemma proving
submultiplicativity of the norm of creation operators.

2 Kirkwood-Thomas ansatz for the ground state

2.1 Creation operators

Define one-qubit operator a† = |1〉〈0|. Let a†u be the operator a† on qubit u tensored with the identity
on all other qubits. For any non-empty subset of vertices M ⊆ L denote a†M =

∏

u∈M a†u. Note that

the operators a†M are nilpotent, (a†M)2 = 0, and that they pairwise commute: a†Ma
†
K = a†Ka

†
M . Also,

one can easily check that the operators {a†M}, ∅ 6= M ⊆ L are linearly independent. (All these
definitions and properties apply to a and aM operators as well).

Definition 1. A creation operator is an operator that can be written as

C =
∑

∅6=M⊆L

C(M) a†M

for some complex numbers C(M).
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For any given creation operator C the coefficients C(M) are uniquely defined by C(M) =
〈Ω|aM C|Ω〉.

Claim 1. Any state |ψ〉 satisfying 〈Ω|ψ〉 = 1 can be uniquely written as |ψ〉 = exp(−C) |Ω〉 for some
creation operator C.

Remark: the exponent above is defined by its Taylor series. The nilpotence of operators a†M
implies that Ck = 0 for any k greater than the number of qubits n = |L|, so the Taylor series can be
truncated at k = n.
Proof: Clearly, the states {a†M |Ω〉}, M ⊆ L, constitute the orthonormal basis of the n-qubit Hilbert
space. Let |ψ〉 =

∑

M⊆L ψ(M)a†M |Ω〉. Equation |ψ〉 = exp (−C) |Ω〉 is equivalent to a system of
equations

ψ(∅) = 1, C(M) = −ψ(M) +

|M |
∑

k=2

(−1)k

k!

∑

M=M1∪...∪Mk

C(M1) · · ·C(Mk), M ⊆ L, M 6= ∅. (7)

Here the second summation is over all partitions of M into k disjoint non-empty sets M1, . . . ,Mk.
Suppose we have already found all coefficients C(M) with |M | ≤ p. Then Eq. (7) assigns a unique
value to all coefficients C(M) with |M | = p+ 1. Thus the system Eq. (7) has a unique solution.

2.2 Ansatz for the ground state

Our goal is to find an eigenvector |ψ〉 satisfying H(ǫ) |ψ〉 = E(ǫ) |ψ〉, where E(ǫ) is the smallest
eigenvalue of H(ǫ). We shall use the following ansatz for |ψ〉 (we don’t care about the normalization):

|ψ〉 = exp (−C) |Ω〉, C =
∑

∅6=M⊆L

C(M) a†M . (8)

Claim 1 asserts that the ground state can be represented in this form unless it is orthogonal to |Ω〉.
Since we don’t require |ψ〉 to be a normalized state, the ansatz Eq. (8) is meaningful only if C is a
bounded operator. We shall define a norm of a creation operator as

‖C‖1 = max
u∈L

∑

M∋u

|C(M)|. (9)

Thus the ansatz Eq. (8) must be supplemented by a requirement that C is a creation operator with a
finite norm ‖C‖1. Of course, it may happen that H has several eigenvectors of the form Eq. (8). One
has to invoke some extra arguments to select an eigenvector corresponding to the smallest eigenvalue,
see subsection 2.4.

The “physical meaning” of the norm ‖C‖1 can be illustrated by considering a product state:
|ψ〉 = ⊗

u∈L |ψu〉, where |ψu〉 = |0〉+ αu |1〉. Obviously, |ψ〉 = exp (−C) |Ω〉 with C = −∑

u∈L αu a
†
u.

Accordingly, ‖C‖1 = maxu∈L |αu|. Thus one can think about ‖C‖1 as a density of quantum fluctua-
tions.

Using the identity exp (C) exp (−C) = I valid for arbitrary operator C, see [20], one can rewrite
the Schrödinger equation H(ǫ) |ψ〉 = E(ǫ) |ψ〉 as

exp (Ĉ)(H0)|Ω〉+ ǫ exp (Ĉ)(V )|Ω〉 = E(ǫ) |Ω〉. (10)

7



Here we introduced a superoperator2 Ĉ such that

Ĉ(X) = CX −XC.

The exponent exp (Ĉ) is defined by the Taylor series. The advantage of the ansatz Eq. (8) is that
we can truncate expansion of the exponent exp (Ĉ) after a few lowest orders since all higher order
terms turn out to be identically zero. It follows from the two lemmas stated below.

Lemma 1. Let C1, C2 be creation operators. Then

Ĉ1Ĉ2(H0) = 0. (11)

Proof: To simplify notations we shall consider operators a instead of a†. Let u,M1,M2 ⊆ L and
X = âM1

âM2
(|1〉〈1|u). By linearity, it is enough to prove that X = 0. Since the operators aM1

and
aM2

commute, X = 0 unless u ∈M1 ∩M2. Then [aM2
, |1〉〈1|u] = aM2

and X = [aM1
, aM2

] = 0.

Lemma 2. Let C1, C2, . . . , C5 be creation operators. Then

Ĉ1Ĉ2 · · · Ĉ5(V ) = 0. (12)

Proof: To simplify notations we shall consider operators a instead of a†. LetM1,M2, . . . ,M5 ⊆ L,
(u, v) ∈ E and X = âM1

âM2
· · · âM5

(Vu,v). By linearity it is enough to prove that X = 0. Since the
operators aM1

, . . . , aM5
commute with each other, X = 0 unless each of the subsets Mj contains at

least one of the vertices u, v. Therefore, expanding the commutators one can represent X as a linear
combination of 25 terms, where each term contains at least five operators au, av on the pair of qubits
u, v. Some of these operators a are on the right of Vu,v and some of them are on the left. Thus at
least three operators a are on the same side of Vu,v. Then at least two operators a act on the same
side of Vu,v and on the same qubit. Thus each of the 25 terms in X contains either a2u or a2v. Thus
X = 0.

Combining Lemmas 1,2 we get the following truncations:

exp (Ĉ)(H0) = H0 + Ĉ(H0), (13)

exp (Ĉ)(V ) =

4
∑

k=0

1

k!
Ĉk(V ). (14)

Here a convention Ĉ0(V ) = V is adopted.
Let us point out an analogy between the truncation effect observed above and the Lieb-Robinson

bound [17, 18]. The latter asserts that for any local observable Ou acting only on a qubit u and
for any Hamiltonian H with short-range interactions of bounded norm the time evolved observable
Ou(t) = exp (iĤt)(Ou) can be approximated very well by an operator acting only on spins within

2In our context a superoperator is a linear operator acting on the space of linear operators on H. Throughout the
paper we shall use a notation Â for a superoperator Â(X) = AX −XA associated with a linear operator A.
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distance v|t| from u, where v is a group velocity. If one takes a creation operator C for which
the coefficients C(M) are non-zero only for subsets M of size O(1) (an analogue of short-range
interactions), then the ”time-evolved” observable exp (Ĉ)(Ou) acts only on the spins within distance
O(1) from u (apply the same arguments as in the proof of Lemma 2). As opposed to the Lieb-
Robinson bound scenario, the size of a region acted on by the evolved operator does not depend on
the norm of C (which is analogous to the evolution time ) and no approximations are involved.

2.3 Kirkwood-Thomas equations

Substituting Eqs. (13) into the Schrödinger equation Eq. (10) and taking into account thatH0 |Ω〉 = 0
one gets

−
∑

∅6=M⊆L

C(M)H0 a
†
M |Ω〉+ ǫ exp (Ĉ)(V ) |Ω〉 = E(ǫ) |Ω〉. (15)

Let us introduce eigenvalues of the unpertubed Hamiltonian E0(M) such that

H0 a
†
M |Ω〉 = E0(M) a†M |Ω〉, E0(M) =

∑

u∈M

∆u. (16)

Multiplying Eq. (15) on the left by 〈Ω|aM , M 6= ∅, and employing Eq. (14) one arrives at

C(M) =
ǫ

E0(M)

4
∑

k=0

1

k!
〈Ω|aM Ĉk(V )|Ω〉, ∅ 6=M ⊆ L. (17)

Following [4], we shall refer to Eq. (17) as Kirkwood-Thomas equations. Similarly, multiplying
Eq. (15) by 〈Ω| on the left one gets

E(ǫ) = ǫ

4
∑

k=0

1

k!
〈Ω|Ĉk(V )|Ω〉. (18)

It is clear that the Kirkwood-Thomas equations Eq. (17) may have several solutions C since the
equations do not explicitly include the eigenvalue E(ǫ). In the worst case when neither eigenvector
of H(ǫ) is orthogonal to |Ω〉 the Kirkwood-Thomas equations would have 2n solutions since any
eigenvector could be represented in the form Eq. (8). We shall explain how to select the solution
corresponding to the smallest eigenvalue in the next subsection.

The following lemma asserts that the norm ‖ · ‖1 has a property analogous to submultiplicativity.
It is the main technical tool that allows one to manipulate easily with equations like Eq. (17).

Lemma 3. Let k be any integer and C1, . . . , Ck be creation operators. Define a creation operator C
such that

C =
∑

∅6=M⊆L

C(M)a†M where C(M) =
1

E0(M)
〈Ω|aM Ĉ1 · · · Ĉk(V )|Ω〉.

Then

‖C‖1 ≤
213dJ

∆

k
∏

j=1

‖Cj‖1. (19)

9



Besides,

|〈Ω|Ĉ1 · · · Ĉk(Vu,v)|Ω〉| ≤ 24J

k
∏

j=1

‖Cj‖1 for any (u, v) ∈ E . (20)

The proof of the lemma is presented in Appendix A.

2.4 A lower bound on the spectral gap

Suppose we can find some eigenvalue E ′(ǫ) of the Hamiltonian H(ǫ) such that E ′(0) = 0, E ′(ǫ) is a
continuous function of ǫ, and E ′(ǫ) has multiplicity 1 for |ǫ| ≤ ǫc. Then it follows immediately that
E ′(ǫ) is the smallest eigenvalue of H(ǫ) for all |ǫ| ≤ ǫc. Of course, the main difficulty in using this
argument is proving non-degeneracy of an eigenvalue. The following lemma asserts that a solution
of the Kirkwood-Thomas equations Eq. (17) with a sufficiently small norm ‖C‖1 corresponds to a
non-degenerate eigenvalue separated from the rest of the spectrum by a constant gap.

Lemma 4. Suppose H(ǫ) |ψ〉 = E(ǫ) |ψ〉, where |ψ〉 = exp (−C) |Ω〉 and C is a creation operator
with a finite norm ‖C‖1 satisfying the inequality

1 >
214dJ |ǫ|

∆

3
∑

k=0

(‖C‖1)k
k!

. (21)

Then E(ǫ) has multiplicity 1 and any other eigenvalue of H(ǫ) is separated from E(ǫ) by a gap at
least ∆/2.

Proof: Let us abbreviate H ≡ H(ǫ). Assume that H |φ〉 = (E(ǫ) + δ) |φ〉 where |δ| < ∆/2 and
the states |ψ〉, |φ〉 are linearly independent (the latter condition is fulfilled automatically if δ 6= 0).
We can always write |φ〉 as

exp (C) |φ〉 =
∑

M⊆L

B(M) a†M |Ω〉 (22)

for some complex numbers B(M). Note that B(M) 6= 0 for some non-empty set M since otherwise
|φ〉 is proportional to |ψ〉. Thus we can define a creation operator B =

∑

∅6=M⊆LB(M) a†M with a
non-zero norm ‖B‖1 > 0. Using commutativity [C,B] = 0 we can represent |φ〉 as

|φ〉 = B |ψ〉+B(∅) |ψ〉.
Then the eigenvalue equations H |φ〉 = (E(ǫ) + δ) |φ〉 and H |ψ〉 = E(ǫ) |ψ〉 imply

[B,H ] |ψ〉 = [B,H−E(ǫ)I] |ψ〉 = B(H−E(ǫ)I) |ψ〉−(H−E(ǫ)I) |φ〉 = −δ |φ〉 = −δB |ψ〉−δB(∅) |ψ〉.
(23)

Commutativity [C,B] = 0 yields exp (Ĉ)(B) = B. Hence, multiplying Eq. (23) by exp (C) on the
left one arrives at

[B, exp (Ĉ)(H)] |Ω〉+ δB |Ω〉+ δB(∅) |Ω〉 = 0. (24)

From Lemma 1 we know that [B, exp (Ĉ)(H0)] = [B,H0]. Choosing any M 6= ∅ and multiplying
Eq. (24) by 〈Ω|aM on the left one gets

B(M) =
ǫ

E0(M)− δ
〈Ω|aM B̂ exp (Ĉ)(V )|Ω〉 = ǫE0(M)

E0(M)− δ

3
∑

k=0

1

k!

1

E0(M)
〈Ω|aM B̂Ĉk(V )|Ω〉.

10



Here we have taken into account that B̂Ĉk(V ) = 0 for k ≥ 4, see Lemma 2. Note that condition
|δ| < ∆/2 implies a bound |E0(M)/(E0(M) − δ)| ≤ 2. Applying Lemma 3 to the operator B and
using the triangle inequality for the norm one gets

‖B‖1 ≤
214dJ |ǫ|

∆
‖B‖1

3
∑

k=0

1

k!
(‖C‖1)k.

Since ‖B‖1 > 0 we can divide both sides by ‖B‖1 getting an inequality opposite to the one stated in
the lemma. Thus the assumption from which we started the proof leads to a contradiction.

Remark: Note that at ǫ = 0 the Hamiltonian H(ǫ) = H0 has many degenerate eigenvalues, so one
can certainly find two eigenvalues with separation |δ| < ∆/2. It might seem to be in contradiction
with the lemma above. However at ǫ = 0 the condition that ‖C‖1 is finite can not be fulfilled for
degenerate eigenvalues, since the corresponding eigenvectors are orthogonal to |Ω〉.

Corollary 2. Suppose H(ǫ) has an eigenvector |ψ〉 = exp (−C) |Ω〉 with an eigenvalue E ′(ǫ) such
that E ′(ǫ) is a continuous function of ǫ, E ′(0) = 0, and ‖C‖1 ≤ cmax for all |ǫ| ≤ ǫ′c. Define ǫ′′c such
that

1 =
214dJǫ′′c

∆

3
∑

k=0

1

k!
(cmax)

k.

Let ǫc = min (ǫ′c, ǫ
′′
c ). Then for all |ǫ| ≤ ǫc

(1) E ′(ǫ) is the smallest eigenvalue of H(ǫ)
(2) E ′(ǫ) has multiplicity 1
(3) E ′(ǫ) is separated from the rest of the spectrum by a gap at least ∆/2

Proof: (1) Indeed, Lemma 4 implies that no level crossings involving the eigenvector |ψ〉 can
occur for |ǫ| ≤ ǫc. Since |ψ〉 is the ground state for ǫ = 0, it is the ground state for all |ǫ| ≤ ǫc. (2)
and (3) follow immediately from Lemma 4.

3 Solution of the Kirkwood-Thomas equations

In their original paper [8] Kirkwood and Thomas employed the expansion in powers of ǫ in order
to find the ground state. Alternative approach proposed by Datta and Kennedy in Ref. [9] and
generalized by Yarotsky in Ref. [4] is to regard equation Eq. (17) as a fixed point equation for a
non-linear map on the space of creation operators. One can prove that this map is a contraction in
the unit ball (for a properly defined metric) if ǫ is below certain threshold value. Then one can invoke
Brouwer fixed point theorem to argue that the unit ball contains a unique fixed point. Although the
latter method is more elegant, we adopt the original Kirkwood-Thomas approach based on power
series, because it naturally lends itself for getting approximation to the ground state energy with a
controllable error.

11



3.1 Solution by formal power series

Let us first solve Kirkwood-Thomas equation Eq. (17) in terms of formal power series ignoring the
convergence issue. Recall that C =

∑

M⊆LC(M) a†M , where the sum is over all non-empty sets.
Define a series

C(M) =
∞
∑

p=1

Cp(M) ǫp, ∅ 6=M ⊆ L. (25)

Let us agree that C0(M) = 0 for any M . Define also

Cp =
∑

∅6=M⊆L

Cp(M) a†M , Ĉp =
∑

∅6=M⊆L

Cp(M) â†M , (26)

so that C =
∑∞

p=1Cp ǫ
p and Ĉ =

∑∞
p=1 Ĉp ǫ

p. Substituting the series Eqs. (25,26) into the Kirkwood-
Thomas equation Eq. (17) and equating the coefficients for each power of ǫ one gets

C1(M) = E0(M)−1 〈Ω|aM V |Ω〉, (27)

Cp(M) = E0(M)−1

4
∑

k=1

1

k!

∑

p1+...+pk=p−1

〈Ω|aM Ĉp1 · · · Ĉpk(V )|Ω〉, p ≥ 2. (28)

Clearly, the equations above have a unique solution. Substituting Eqs. (25,26) into the formula for
the ground state energy Eq. (18) one gets

E(ǫ) =
∞
∑

p=1

Ep ǫ
p, E1 = 〈Ω|V |Ω〉, Ep =

4
∑

k=1

1

k!

∑

p1+...+pk=p−1

〈Ω|Ĉp1 · · · Ĉpk(V )|Ω〉, p ≥ 2. (29)

Of course, formal power series do not represent an actual solution of the Kirkwood-Thomas equations
unless we prove their convergence.

3.2 Convergence of C-series

We would like to prove that the series C =
∑∞

p=1Cp ǫ
p are convergent with respect to the norm

Eq. (9) with a non-zero convergence radius. We shall need to get a lower bound on the convergence
radius in terms of ∆, d, and J . Clearly, it is enough to analyze convergence of the series

χ(ǫ) =
∞
∑

p=1

χp ǫ
p, χp = ‖Cp‖1. (30)

Note that ‖C‖1 ≤ χ(|ǫ|).
Lemma 5. The series χ(ǫ) =

∑∞
p=1 χp ǫ

p converges absolutely for

|ǫ| ≤ 2ǫ0 =
2−17∆

dJ
. (31)

Besides, for any ǫ as above one has the following bounds:

|χ(ǫ)| ≤ 2−15, χp ≤
2−15

(2ǫ0)p
for p ≥ 1. (32)
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Proof: Let us first get an upper bound on ‖C1‖1. From Eq. (27) it clear that C1(M) = 0 unless
M ⊆ {u, v} for some edge (u, v) ∈ E . Let u ∈ L be the vertex that achieves the maximum in
‖C1‖1 = maxu∈L

∑

M∋u |C1(M)|. Then the sum contains at most d + 1 sets M , namely, M = {u}
and M = {u, v} for (u, v) ∈ E . Therefore ‖C1‖1 ≤ (d+ 1)J/∆ ≤ 2dJ/∆, that is

χ1 ≤
2dJ

∆
. (33)

Define a polynomial function Fp of real variables x1, . . . , xp−1 according to

Fp(x1, . . . , xp−1) = xp−1 +
1

2

∑

p1+p2=p−1

xp1xp2 +
1

6

∑

p1+p2+p3=p−1

xp1xp2xp3 +
1

24

∑

p1+...+p4=p−1

xp1xp2xp3xp4 .

(34)
Applying Lemma 3 and triangle inequality to Eq. (28) one gets

χp ≤
213dJ

∆
Fp(χ1, . . . , χp−1), p ≥ 2. (35)

To simplify notations, define constants

a =
2dJ

∆
, b =

213dJ

∆
, (36)

so that χ1 ≤ a and χp ≤ bFp(χ1, . . . , χp−1) for p ≥ 2. Consider the formal power series

µ(ǫ) =
∞
∑

p=1

µpǫ
p, µ1 = a, µp = bFp(µ1, . . . , µp−1), p ≥ 2. (37)

Since the polynomial Fp has non-negative coefficients one can prove inductively that χp ≤ µp for all
p ≥ 1. Hence it suffices to prove that the series Eq. (37) converges absolutely for |ǫ| ≤ 2ǫ0.

Our strategy will be to guess a function µ(ǫ) analytic for |ǫ| ≤ 2ǫ0 whose Taylor series at ǫ = 0
coincides with the series Eq. (37). By inspecting the recursive relation Eq. (37) one can easily
convince oneself that µ(ǫ) has to obey the following equation

µ(ǫ) = a ǫ+ b ǫ

(

µ(ǫ) +
1

2
µ2(ǫ) +

1

6
µ3(ǫ) +

1

24
µ4(ǫ)

)

. (38)

We can use it to write down the inverse function

ǫ(µ) =
µ

Q(µ)
, Q(µ) = a + b

(

µ+
1

2
µ2 +

1

6
µ3 +

1

24
µ4

)

. (39)

Simple algebra shows that

|Q(µ)| ≥ a

2
if |µ| ≤ a

4b
= 2−14. (40)

Thus ǫ(µ) is analytic for |µ| ≤ 2−14. Define a set M = {µ : |µ| ≤ 2−15}.

Claim 2. Let ǫ be a complex number such that |ǫ| ≤ 2ǫ0. Then equation ǫ(µ) = ǫ has a unique
solution µ ∈M .
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Proof: One can easily show that for any µ1, µ2 ∈M

|Q(µ1)−Q(µ2)| ≤ 2b|µ1 − µ2|. (41)

Assume ǫ(µ1) = ǫ(µ2) = ǫ for some µ1, µ2 ∈ M . If ǫ = 0 then µ1 = µ2 = 0. Assume ǫ 6= 0. Then
µ1, µ2 6= 0 and

µ1 − µ2 =
µ2(Q(µ1)−Q(µ2))

Q(µ2)
.

Applying the lower bound Eq. (40) and the upper bound Eq. (41) we get

|µ1 − µ2| ≤
2−15|Q(µ1)−Q(µ2)|

a/2
≤ 2−13 b|µ1 − µ2|

a
≤ 1

2
|µ1 − µ2|.

Thus µ1 = µ2 and equation ǫ(µ) = ǫ has at most one solution µ ∈ M . Therefore ǫ : M → ǫ(M) is
an injection. Let us prove that ǫ(M) contains a ball of radius 2ǫ0. Indeed, ǫ(M) is an open set and
0 ∈ ǫ(M). Let γ be the boundary of M , i.e., a circle of radius 2−15 centered at 0. Then ǫ(γ) is the
boundary of ǫ(M). For any µ ∈ γ one has |Q(µ)| ≤ a+ 2b|µ| = a+ 2−14b ≤ 2a. Thus ǫ(M) contains
a ball of radius

R = min
µ∈γ

|ǫ(µ)| ≥ 2−15

2a
=

2−17∆

dJ
= 2ǫ0

It completes the proof of the claim.
Let K = {ǫ : |ǫ| ≤ 2ǫ0}. From Claim 2 we infer that ǫ(µ) is an analytic bijection from the

set ǫ−1(K) ⊆ M to the set K. It follows from the inverse function theorem for analytic functions,
see [10], that the inverse function µ(ǫ) is analytic for ǫ ∈ K. Therefore the series Eq. (37) converges
absolutely for |ǫ| ≤ 2ǫ0.

The upper bound on µp can be obtained by standard methods using Cauchy’s formula:

µp =
1

2πi

∮

|ǫ|=2ǫ0

µ(ǫ)dǫ

ǫp+1
.

Thus

|µp| ≤
1

(2ǫ0)p
max

ǫ : |ǫ|=2ǫ0
|µ(ǫ)| ≤ 2−15

(2ǫ0)p
.

Recall that χp ≤ µp, so the lemma is proved.

One can summarize the results of this subsection as follows.

Corollary 3. Suppose |ǫ| ≤ 2ǫ0. Then the Kirkwood-Thomas equations Eq. (17) have a unique
solution C defined by the power series Eq. (25) with ‖C‖1 ≤ 2−15.

3.3 Convergence of E-series

In this subsection we analyze convergence of the series E(ǫ) =
∑∞

p=1Ep ǫ
p for the eigenvalue obtained

from the Kirkwood-Thomas equation, see Eq. (4).
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Lemma 6. The series E(ǫ) =
∑∞

p=1Ep ǫ
p converges absolutely for

|ǫ| ≤ 2ǫ0 =
2−17∆

dJ
. (42)

Besides,

|Ep| ≤
2−16 n∆

(2ǫ0)p
for p ≥ 1. (43)

Proof: Applying Lemma 3 and triangle inequality to Eq. (29) one gets

|E1| ≤ ndJ, |Ep| ≤ 24ndJFp(χ1, . . . , χp−1), p ≥ 2, (44)

where χp = ‖Cp‖1 and the polynomial Fp is defined in Eq. (34). Define a formal series

e(ǫ) =

∞
∑

p=1

ep ǫ
p, e1 = ndJ, ep = 24ndJFp(χ1, . . . , χp−1), p ≥ 2. (45)

By definition, |Ep| ≤ ep for all p. Besides, e(ǫ) can be expressed in terms of χ(ǫ) =
∑∞

p=1 χp ǫ
p as

e(ǫ) = 24ndJǫ

(

χ(ǫ) +
1

2
χ2(ǫ) +

1

6
χ3(ǫ) +

1

24
χ4(ǫ)

)

+ ndJ ǫ.

This equality can be verified by equating coefficients for each power of ǫ. Lemma 5 implies that χ(ǫ)
is analytic for |ǫ| ≤ 2ǫ0. Therefore e(ǫ) and E(ǫ) are analytic for |ǫ| ≤ 2ǫ0 and the first statement of
the lemma is proved. In order to get an upper bound on ep (and thus on Ep), use Cauchy’s formula:

ep =
1

2πi

∮

|ǫ|=2ǫ0

e(ǫ)dǫ

ǫp+1
.

It follows from Lemma 5 that |χ(ǫ)| ≤ 2−15 for |ǫ| ≤ 2ǫ0. Therefore

|ep| ≤
1

(2ǫ0)p
max

ǫ : |ǫ|=2ǫ0
|e(ǫ)| ≤ 1

(2ǫ0)p
(

24ndJ(2ǫ0)2
−14 + ndJ(2ǫ0)

)

≤ 2−16n∆

(2ǫ0)p
.

The lemma is proved.

Corollary 4. Suppose |ǫ| ≤ 2ǫ0. Then the series Eq. (29) converges absolutely to the smallest
eigenvalue of H(ǫ). The smallest eigenvalue is non-degenerate and is separated from the rest of the
spectrum by a gap at least ∆/2.

Proof: It follows from Corollary 2. Indeed, we have already shown that the conditions of Corollary 2
are satisfied with ǫ′c = 2ǫ0 and cmax = 2−15, see Corollary 3. It yields ǫ′′c ≤ 2−15∆/(dJ). Thus
ǫc = min (ǫ′c, ǫ

′′
c ) = 2ǫ0.
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Lemma 6 allows one to estimate an error resulting from truncation of the series for the ground
state energy at a finite order p.

Corollary 5. Suppose |ǫ| ≤ ǫ0. Then
∣

∣

∣

∣

∣

E(ǫ)− n

p
∑

q=1

Eq ǫ
q

∣

∣

∣

∣

∣

≤ n∆2−16−p. (46)

Proof: Use Eq. (43).

Summarizing, we have proved Theorems 1,2.

4 Linked cluster theorems

Throughout this section we shall use a term linked cluster which refers to a subset of vertices inducing
a connected subgraph of G. More formally,

Definition 2. A subset M ⊆ L is called a linked cluster iff for any u, v ∈ M there exists a sequence
of vertices u0, u1, . . . , ut ∈M such that u0 = u, ut = v and (uj, uj+1) ∈ E for all j = 0, . . . , t− 1.

Definition 3. A connected size of a subset M ⊆ L is the minimal size of a linked cluster that
contains all vertices of M . We shall denote a connected size of M as |M |c.

4.1 Linked cluster expansion for the ground state

Lemma 7. Let C(M) =
∑∞

p=1Cp(M)ǫp be the solution of the Kirkwood-Thomas equations obtained
in Section 3. Then

Cp(M) = 0 unless |M |c ≤ p+ 1. (47)

Proof: We shall prove the lemma by induction in p. From Eq. (27) one infers that C1(M) = 0
unless M ⊆ {u, v} for some edge (u, v) ∈ E . In particular, C1(M) = 0 unless |M |c ≤ 2. It proves
the statement of the lemma for p = 1. Suppose the statement is proved for p = 1, . . . , q − 1. From
Eq. (28) one infers that Cq(M) is a linear combination of terms like

x = Cp1(M1) · · ·Cpk(Mk)〈Ω|aM â†M1
· · · â†Mk

(Vu,v)|Ω〉, (48)

where p1 + . . . + pk = q − 1. Let us figure out under what circumstances the matrix element in
Eq. (48) can be non-zero.

Claim 3. Let M,M1, . . . ,Mk ⊆ L be non-empty sets, N =M1 ∪ . . . ∪Mk, (u, v) ∈ E . Denote

y = 〈Ω|aM â†M1
· · · â†Mk

(Vu,v)|Ω〉.

Then y = 0 unless the following conditions are met:
(i) Each set M1, . . . ,Mk contains at least one of the vertices u, v.
(ii) N\{u, v} ⊆M ⊆ N ∪ {u, v}.
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Remark: this claim is true even for M = ∅ if one adopts a convention a∅ = I.
Proof: Suppose some set Mj contains neither u nor v. Then a†Mj

commutes with Vu,v as well as with

all operators a†Mi
for i 6= j. Thus y = 0. Suppose condition N\{u, v} ⊆ M is violated. Then there

exists a set Mj and a vertex w ∈Mj such that w 6= u, v and w /∈M . Thus a†Mj
contains a factor a†w

which commutes with all other operators involved in y. By moving a†w leftwards one can show that
each of 2k terms in y starts from 〈Ω|a†w, that is, y = 0. Suppose conditionM ⊆ N∪{u, v} is violated,
that is, there exists a vertex w ∈M such that w /∈ N and w 6= u, v. Then the operator aM contains
a factor aw which commutes with all other operators involved in y. By moving aw rightwards one
can show that each of 2k terms in y tails with aw |Ω〉, that is, y = 0.

Returning to Eq. (48) we conclude that x = 0 unless each set Mj contains either u or/and v, and
M ⊆ N ∪ {u, v}. Let M̃j be a linked cluster of minimal size containing Mj , that is, |Mj|c = |M̃j |.
Let Ñ = M̃1 ∪ . . . ∪ M̃k and C = Ñ ∪ {u} ∪ {v}. Then C is a linked cluster and M ⊆ C. Note that

|C| ≤
k

∑

j=1

|M̃j |+ 2− k =
k

∑

j=1

|Mj |c + 2− k

where we have taken into account that each M̃j contains either u or/and v. By induction hypothesis
we have Cpj(Mj) = 0 unless |Mj|c ≤ pj + 1. Thus for any non-zero term x one has

|C| ≤
k

∑

j=1

(pj + 1) + 2− k = q − 1 + k + 2− k = q + 1.

Thus Cq(M) = 0 unless |M |c ≤ q + 1.

4.2 Upper bound on the number of linked clusters

The following lemma asserts that the number of linked clusters of size p containing a given vertex
grows at most exponentially with p (if the maximal degree of the graph d is a constant). To the best
of our knowledge, this lemma has been originally proved in Ref. [21] by Aliferis, Gottesman, and
Preskill in the context of fault-tolerant quantum computation3.

Lemma 8. Let Np(u) be the number of linked clusters with p vertices that contain a vertex u and
Np = maxu∈LNp(u). Then

Np ≤ (4d)p−1. (49)

Proof: Let Tp(u) be a set of trees with p vertices that contain a vertex u (naturally, we consider
only those trees that are subgraphs of G). Let Tp(u) = |Tp(u)| be the number of such trees. For any
tree T ∈ Tp(u), a set of vertices of T is a linked cluster that contains u. Conversely, if M ∋ u is
a linked cluster, |M | = p, consider a subgraph GM induced by M . Then any spanning tree of GM

belongs to Tp(u). Thus Np(u) ≤ Tp(u).

3The authors became aware of it after completion of the present work.
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Denote Tp = maxu∈L Tp(u). Obviously, T1 = 1 and T2 ≤ d. Let us prove that

Tp ≤ d
∑

p1+p2=p

Tp1Tp2, (50)

where the convention T0 = 0 is adopted. Indeed, for any edge e incident to a vertex u define a set
Tp(u, e) that includes all trees T ∈ Tp(u) that contain an edge e. Let Tp(u, e) = |Tp(u, e)|. Clearly,

Tp(u) = ∪eTp(u, e), Tp(u) ≤
∑

e

Tp(u, e) ≤ dmax
e
Tp(u, e). (51)

Let e = (u, v) be the edge that achieves the maximum. Note that any tree T ∈ Tp(u, e) consists of
the edge (u, v) and two disjoint trees T1 ∈ Tp1(u) and T2 ∈ Tp2(v), where p1 + p2 = p. Thus we have
an upper bound

Tp(u, e) ≤
∑

p1+p2=p

Tp1(u)Tp2(v) ≤
∑

p1+p2=p

Tp1Tp2 .

Substituting it into Eq. (51) and taking the maximum over u ∈ L we obtain Eq. (50).
Define a sequence S1, S2, . . . such that

S1 = 1, Sp = d
∑

p1+p2=p

Sp1Sp2 for p ≥ 2. (52)

Clearly, T1 = S1 = 1 and T2 ≤ d = S2. It follows that Tp ≤ Sp for all p. In order to derive
an explicit formula for Sp define a generating function S(x) =

∑∞
p=1 Sp x

p. It obeys an equation

S(x) = dS(x)2 + x, which implies

S(x) =
1−

√
1− 4dx

2d
.

Taking the derivatives one gets

Sp =
1

p!

dpS

dxp

∣

∣

∣

∣

x=0

= − (4d)p

2d(p!)

p−1
∏

a=0

(

a− 1

2

)

.

It follows that

Sp ≤
(4d)p(p− 1)!

4d(p!)
≤ (4d)p−1

p
≤ (4d)p−1.

Summarizing, Np ≤ Tp ≤ Sp ≤ (4d)p−1.

4.3 Linked cluster expansion for the ground state energy

This subsection provides the necessary tools for computing spin-spin correlators. A reader interested
only in computing the ground state energy can safely skip it.

Let us consider a more general family of Hamiltonians for which the parameter ǫ may be different
on different edges. Let variable ǫu,v be assigned to an edge (u, v) ∈ E . For any subset of edges A ⊆ E
denote ǫ[A] a collection of variables assigned to edges of A. The Hamiltonian is

H(ǫ[E ]) = H0 +
∑

(u,v)∈E

ǫu,vVu,v. (53)
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Let E(ǫ[E ]) be the ground state energy of H(ǫ[E ]). We shall consider multivariate Taylor series for
the function E(ǫ[E ]).
Lemma 9. The multivariate Taylor series for E(ǫ[E ]) at the point ǫ[E ] = 0 converges absolutely if
|ǫu,v| ≤ ǫ0 for all (u, v) ∈ E .

Proof: Let Ω = {ǫ[E ] : |ǫu,v| ≤ 2ǫ0 for all (u, v) ∈ E}. Let us firstly show E(ǫ[E ]) is analytic
function of each individual variable ǫu,v for ǫ[E ] ∈ Ω. Indeed, let Ẽ be a set of all edges except (u, v).
Define an unperturbed Hamiltonian H̃0 = H0 +

∑

(u,v)∈Ẽ ǫu,vVu,v and a perturbation ǫu,v Vu,v. It

follows from Corollary 4 that H̃0 has non-degenerate ground state and the spectral gap at least ∆/2.
Applying the standard perturbation theory to a perturbed Hamiltonian H̃0 + ǫu,v Vu,v we conclude
that E(ǫ[E ]) is analytic function of ǫu,v as long as the Weyl condition ‖ǫu,v Vu,v‖ < ∆/4 is satisfied.
Since we assumed that |ǫu,v| ≤ 2ǫ0, one has ‖ǫu,v Vu,v‖ < 2ǫ0J = 2−17∆/d < ∆/4. Thus E(ǫ[E ]) is
analytic in Ω with respect to each individual variable ǫu,v. Repeatedly using Cauchy’s formula one
gets

E(ǫ[E ]) =





∏

(u,v)∈E

1

2πi

∮

|zu,v|=2ǫ0

1

(zu,v − ǫu,v)



E(z[E ]). (54)

Since H0 and V are bounded operators, the absolute value |E(z[E ])| can be bounded by a constant
(maybe depending on n). The Taylor series in ǫu,v at the point ǫu,v = 0 for any factor 1/(zu,v − ǫu,v)
in Eq. (54) converges absolutely as long as |ǫu,v| < 2ǫ0. Thus the Taylor series for E(ǫ[E ]) converges
absolutely if |ǫu,v| ≤ ǫ0 for all (u, v) ∈ E .

The Taylor series for E(ǫ[E ]) can be uniquely written in the form

E(ǫ[E ]) =
∑

A⊆E





∏

(u,v)∈A

ǫu,v



 pA(ǫ[A]), (55)

where the sum is over all subsets of edges A and pA(ǫ[A]) is the series that involves only variables
ǫu,v pertaining to A. Clearly, the coefficients of pA(ǫ[A]) are functionals of interactions Vu,v with
(u, v) ∈ A only. The main goal of this section is to show that the expansion Eq. (55) involves only
linked clusters of edges. Let us firstly define this notion.

Definition 4. A subset of edges A ⊆ E is called a linked cluster iff the subset of vertices induced by
A is a linked cluster.

Lemma 10. The series Eq. (55) involves only linked clusters of edges A.

Proof: Suppose A ⊆ E is not a linked cluster of edges. Let M ⊆ L be a set of vertices induced by
A. Since M is not a linked cluster, it can be represented as a disjoint union M = M1 ∪M2, where
M1,M2 ⊆ L, M1 ∩M2 = ∅, and no edge connects M1 and M2. Accordingly, A can be represented as
a union A = A1 ∪ A2, where A1 and A2 are the set of edges inducing M1 and M2 respectively. Let
us choose variables ǫ[E ] such that ǫu,v = 0 unless (u, v) ∈ A. Then it is clear that the Hamiltonian
H(ǫ[E ]) splits into a sum of three terms acting on non-overlapping sets of qubits:

H(ǫ[E ]) = H1+H2+Helse, Hj =
∑

u∈Mj

∆u |1〉〈1|u+
∑

(u,v)∈Aj

ǫu,vVu,v, Helse =
∑

u∈L\(M1∪M2)

∆u |1〉〈1|u.
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The ground state energy of H(ǫ[E ]) is equal to the sum of ground state energies of H1, H2, and Helse.
It implies that

E(ǫ[E ]) = E(ǫ[A1]) + E(ǫ[A2]). (56)

If we assume that pA(ǫ[A]) 6= 0, when E(ǫ[E ]) would include at least one monomial including variables
from both sets A1, A2 which contradicts to Eq. (56).

The following implication of Lemma 10 will simplify computation of spin-spin correlators .

Corollary 6. Consider a Hamiltonian H = H0 + ǫ V , where V =
∑

(u,v)∈E Vu,v. Let E(ǫ) =
∑∞

p=1Ep ǫ
p be the series for the ground state energy of H. Suppose the interaction Vs,t depends

on a parameter η for some edge (s, t) ∈ E . Then a derivative

Kp =
∂Ep

∂η

∣

∣

∣

∣

η=0

can be computed by setting Vu,v = 0 for all edges (u, v) having distance p+1 or greater from the edge
(s, t).

Proof: Indeed, Ep can be obtained from Eq. (55) by setting ǫu,v = ǫ on all edges, restricting the
sum to linked clusters A of size at most p and collecting all monomials of total degree p. Clusters A
that do not contain the edge (s, t) will not contribute to Kp. Clusters A that contain the edge (s, t)
cannot contain any edge (u, v) having distance p+ 1 or greater from the edge (s, t).

5 Computational algorithms

In this section we describe an algorithm that takes as input a description of the Hamiltonians H0, V
and an integer p. The algorithm returns a list of coefficients E1, . . . , Ep in the series for the ground
state energy E(ǫ) =

∑∞
p=1Ep ǫ

p. The running time of the algorithm is n exp (O(p)). In Section 5.3 we
describe a generalization of the algorithm that allows one to compute spin-spin correlation functions.

5.1 Computing the coefficients Cp(M)

The first part of the algorithm is to compute the coefficients Cq(M), ∅ 6= M ⊆ L sequentially for
q = 1, . . . , p using the solution of the Kirkwood-Thomas equations, see Eqs. (27,28). This gives an
approximate description of the ground state.

We shall store triples (M, q, Cq(M)) in n bins (memory registers) Bu labeled by vertices of the
graph u ∈ L. Once a coefficient Cq(M) is computed, the triple (M, q, Cq(M)) is placed into every
bin Bu for which u ∈ M . From Lemma 7 we learn that Cq(M) = 0 unless M is a subset of some
linked cluster M̃ of size at most q + 1. According to Lemma 8, the number of linked clusters M̃
of size q + 1 containing vertex u is bounded by exp (O(q)), where the coefficient in the exponent
depends only on d. Each linked cluster of size q + 1 containing vertex u has 2q subsets containing
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vertex u. Thus we can bound the number of entries in the bin Bu at the moment when all coefficients
C1(M), . . . , Cp(M) have been computed as |Bu| ≤

∑p
q=1 2

q exp (O(q)) = exp (O(p)).
Suppose we have already computed all non-zero coefficients C1(M), . . . , Cq−1(M), M ⊆ L. The

next step is to compute coefficients Cq(M) for all sets M ⊆ L satisfying the condition of Lemma 7,
that is |M |c ≤ q + 1. Expanding Eq. (28) one gets

Cq(M) = E0(M)−1
∑

(u,v)∈E

4
∑

k=1

1

k!

∑

p1+...+pk=q−1

∑

M1,...,Mk⊆L

Cp1(M1) · · ·Cpk(Mk) 〈Ω|aM âM1
· · · âMk

(Vu,v)|Ω〉.

(57)
Note that the right hand side of this equation involves only coefficients Cpj(Mj) that have been
already computed. For simplicity let us assume that computation of any term in Eq. (57) requires
one unit of time4. Denote

x = 〈Ω|aM â†M1
· · · â†Mk

(Vu,v)|Ω〉. (58)

Recall, see Claim 3, that x = 0 unless the following conditions are met:
(i) Each set M1, . . . ,Mk contains at least one of the vertices u, v.
(ii) N\{u, v} ⊆M ⊆ N ∪ {u, v}, where N =M1 ∪ . . . ∪Mk.
The property (i) implies that for a fixed edge (u, v) we can restrict the three rightmost sums in
Eq. (57) by taking triples (Mj , pj, Cpj(Mj)) either from the bin Bu or from the bin Bv. Therefore for
a fixed (u, v), the overall number of non-zero terms in the three rightmost sums in Eq. (57) can be
bounded by (|Bu|+ |Bv|)k ≤ (|Bu|+ |Bv|)4 = exp (O(q)).

We shall now prove that only a small number of edges (u, v) can give a non-zero contribution to
Cq(M). Indeed, there are two cases: (1) M ⊆ {u, v}; (2) There exists w ∈ M such that w /∈ {u, v}.
Clearly only O(1) edges (u, v) can lead to the case (1), so let us focus on the case (2). Consider
any term x as in Eq. (58). Properties (i),(ii) above imply that x = 0 unless there exists a set Mj

such that w ∈Mj and one of the vertices u, v belongs to Mj . Without loss of generality, w, u ∈Mj .
Lemma 7 implies that Cpj(Mj) = 0 unless |Mj|c ≤ pj + 1 ≤ q. Therefore the distance between u
and w is at most q. Taking into account that |M | ≤ |M |c ≤ q + 1, we can bound the number of
edges (u, v) that can give a non-zero contribution to Cq(M) by |M |dq+1 ≤ (q + 1)dq+1 = exp (O(q)).
Summarizing, the overall number of non-zero terms in Eq. (57) is exp (O(q)).

In order to compute all non-zero coefficients Cq(M) we will have to repeat the procedure above
for each subset M satisfying the condition of Lemma 7, that is |M |c ≤ q + 1. By Lemma 8, the
number of such sets is n exp (O(q)). Summarizing, the overall time one needs to compute all the
coefficients C1(M), . . . , Cp(M) is n exp (O(p)).

5.2 Computing the ground state energy

The final step of the algorithm is to compute the coefficients E1, . . . , Ep using Eq. (29). This equation
can be expanded as

Ep =
∑

(u,v)∈E

4
∑

k=1

1

k!

∑

p1+...+pk=p−1

∑

M1,...,Mk⊆L

Cp1(M1) · · ·Cpk(Mk)〈Ω|âM1
· · · âMk

(Vu,v)|Ω〉. (59)

4 This assumption might seem unjustified, because the precision up to which the coefficient Cq(M) must be
computed depends upon δ. However, taking into account these subtleties will lead to an additional overhead
poly(logn, log δ−1) which can be neglected since the algorithm has running time poly(n, δ−1).
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Expanding the commutators in the matrix element one gets 2k terms. However, only the term in
which Vu,v is the leftmost operator gives a non-zero contribution. Thus

〈Ω|âM1
· · · âMk

(Vu,v)|Ω〉 = (−1)k 〈Ω|Vu,v a†Mk
· · ·a†M1

|Ω〉.

In particular, we can restrict the summation over M1, . . . ,Mk by subsets of {u, v} only. There are
only 3 such subsets: {u}, {v}, and {u, v}. This observation implies that the number of terms in the
rightmost sum in Eq. (59) is O(1). Since there are O(p3) partitions p1 + . . .+ pk = p− 1, k ≤ 4, the
overall number of terms in Eq. (59) is O(np3).

Combining the results of Subsections 5.1,5.2 we conclude that the overall time needed to compute
the coefficients E1, . . . , Ep scales as n exp (O(p)). In the above analysis we did not keep track of the
coefficients in the exponents O(p). If one computes the exact coefficient, it yields the overall running
time n215+6 log (d), where log stands for the base two logarithm. Accordingly, the running time as a
function of n and δ scales as

T (n, δ) ∼ n(nδ−1)15+6 log (d).

For example, implementing the algorithm on a 2D square lattice (d = 4) would require a running
time T (n, δ) ∼ n(nδ−1)27, which is certainly not practical. Note however, that the power of nδ−1

depends upon the ratio |ǫ|/R, where R is the convergence radius of the series Eq. (4). The power
15 + 6 log (d) corresponds to the most pessimistic scenario R = 2ǫ0 (the best lower bound on the
convergence radius that we can prove) and |ǫ| = ǫ0.

5.3 Computing spin-spin correlation functions

Let s, t ∈ L be any pair of vertices. It may or may not be an edge of the graph G. Let us add (s, t)
to the set of edges E (by creating a double edge between s and t if necessary). The modified graph
has maximal degree d∗ = d+1. Let Os,t be a Hermitian operator acting non-trivially only on qubits
s, t. We shall assume that ‖Os,t‖ ≤ J . The quantity we are interested in is the expectation value

K =
〈ψ|Os,t|ψ〉
〈ψ|ψ〉 ,

where |ψ〉 is the ground state of H(ǫ) = H0+ǫ V . Our goal is to compute K with a specified precision
δ. To this end let us define a Hamiltonian

H(ǫ, η) = H0 + ǫ V + η Os,t. (60)

Let E(ǫ, η) be the smallest eigenvalue of H(ǫ, η). As we know from Lemma 9, the Taylor series

E(ǫ, η) =
∞
∑

p,q=0

Ep,q ǫ
p ηq (61)

converges absolutely for |ǫ|, |η| ≤ ǫ∗0, where

ǫ∗0 =
2−18∆

d∗J
=

2−18∆

(d+ 1)J
.
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The Hellman-Feynman theorem asserts that

K =
∂E(ǫ, η)

∂η

∣

∣

∣

∣

η=0

=

∞
∑

p=0

Ep,1 ǫ
p. (62)

Our algorithm will get an approximation to K by computing a truncation of series in Eq. (62). The
following lemma provides a bound on the error resulting from the truncation.

Lemma 11. Suppose |ǫ| ≤ ǫ∗0/(2d). Then
∣

∣

∣

∣

∣

K −
p

∑

q=0

Eq,1 ǫ
q

∣

∣

∣

∣

∣

≤ 2−16−p Jd(d+ 1). (63)

Proof: Let us firstly prove that

|Ep,1| ≤
2−16 dp+1∆

(ǫ∗0)
p+1

. (64)

Indeed, use Cauchy’s formula:

Ep,1 =
1

(2πi)2

∮

|ǫ|=ǫ∗
0

∮

|η|=ǫ∗
0

E(ǫ, η) dǫ dη

ǫp+1 η2
. (65)

From Lemma 6 we infer that |E(ǫ, η)| ≤ 2−16 n∆. However, we would like to have an upper bound
independent of n. To this end we employ Corollary 6 according to which Ep,1 can be computed
by restricting the Hamiltonian on (d + 1)-neighborhood of the edge (s, t). The number of spins
in this neighborhood is at most n∗ = dp+1. Therefore |E(ǫ, η)| ≤ 2−16 dp+1∆. Substituting this
bound into Eq. (65) one gets Eq. (64). Finally, using the condition |ǫ| ≤ ǫ∗0/(2d) we bound the sum
∑∞

q=p+1 |Eq,1| ǫq as in Eq. (63).

Lemma 11 shows that in order to compute K with an absolute error δ it is enough to compute
the coefficients E0,1, E1,1, . . . , Ep,1 in the series Eq. (61) with p = log (δ−1) +O(1).

Computation of the coefficients Ep,1 requires only minor modifications of the algorithm described
in Sections 5.1,5.2. Indeed, consider a function Ẽ(ǫ, η) = E(ǫ, ǫη). Using the series Eq. (61) one gets

Ẽ(ǫ, η) =
∞
∑

r=1

Ẽr(η) ǫ
r, Ẽr(η) =

∑

p+q=r

Ep,q η
q.

In particular,

Ep,1 =
∂Ẽp+1(η)

∂η

∣

∣

∣

∣

∣

η=0

. (66)

On the other hand, Ẽ(ǫ, η) is the ground state energy of a Hamiltonian H0 + ǫ (V + η Os,t). Thus we
can compute the coefficients Ẽ1(η), . . . , Ẽp+1(η) using the already available algorithm for the ground
state energy. Moreover, from Corollary 6 we know that the coefficients E0,1, E1,1, . . . , Ep,1 can be
computed by restricting the Hamiltonian to the (p + 1)-neighborhood of the edge (s, t). Thus we
can apply Theorem 3 with n replaced by n∗ = dp+1, obtaining an algorithm with a running time
exp (O(p)) for computing Ẽ1(η), . . . , Ẽp+1(η). In fact, at every step of this algorithm we have to
retain only the terms independent of η and the terms linear in η, see Eq. (66). Since we have chosen
p = log (δ−1) +O(1), the running time of the algorithm is poly(δ−1).
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6 Discussion and open problems

We have proved that the ground state properties of a spin Hamiltonian with sufficiently weak inter-
actions between qubits can be computed efficiently. We hope that this result could be generalized
in several different directions. Firstly, one could try to consider more general class of unperturbed
Hamiltonians H0, for example, classical Ising-like Hamiltonians. In addition, one could consider sys-
tems of fermionic modes rather than spins. Secondly, one could investigate possible generalizations
of the Kirkwood-Thomas ansatz to the case of degenerate ground state. In this case the ansatz
should be constructed for an effective Hamiltonian acting on a low-energy subspace rather than for
the ground state. Results of this kind could provide a rigorous basis for perturbative derivations
of low-energy effective Hamiltonians, for example the mapping from the half-filled Hubbard model
to the Heisenberg model. Thirdly, one could try to get a stronger lower bound on the convergence
radius R of the series E(ǫ) =

∑∞
p=1Ep ǫ

p. We note that a stronger lower bound R ≥ ∆/dJ can be
easily obtained for classical Hamiltonians, when all interactions Vu,v are diagonal in the |0〉, |1〉 basis.
Therefore, one could speculate that in the quantum case R should be close to ∆/dJ .
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8 Appendix A

In this section we prove Lemma 3. By definition of the norm, ‖C‖1 = maxu∈L Yu, where

Yu =
∑

M∋u

E0(M)−1
∣

∣

∣
〈Ω|aM Ĉ1 · · · Ĉk(V )|Ω〉

∣

∣

∣
.

Applying the triangle inequality one can bound Yu as

Yu ≤ Xu :=
∑

M∋u

E0(M)−1
∑

(v,w)∈E

∑

M1,...,Mk

∣

∣

∣
〈Ω|aM â†M1

· · · â†Mk
(Vv,w)|Ω〉

∣

∣

∣
|C1(M1)| · · · |Ck(Mk)|(67)

Here the last sum is over all non-empty subsets M1, . . . ,Mk ⊆ L. Claim 3 allows one to restrict the
summation in Eq. (67) only by tuples (M,M1, . . . ,Mk, v, w) satisfying conditions (i),(ii). We shall
partition Xu into k + 1 (possibly overlapping) sums that will be dealt with separately. We define

X
(j)
u , j = 1, . . . , k as a sum of all terms in Eq. (67) for which u ∈Mj . We define X

(0)
u as a sum of all

terms in Eq. (67) for which u ∈ {v, w}. In other words,

X(j)
u =

∑

M∋u

E0(M)−1
∑

(v,w)∈E

∑

M1,...,Mk

χMj
(u)

∣

∣

∣
〈Ω|aM â†M1

· · · â†Mk
(Vv,w)|Ω〉

∣

∣

∣
|C1(M1)| · · · |Ck(Mk)|,
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where χMj
is the characteristic function5 of Mj and

X(0)
u =

∑

M∋u

E0(M)−1
∑

v : (u,v)∈E

∑

M1,...,Mk

∣

∣

∣
〈Ω|aM â†M1

· · · â†Mk
(Vu,v)|Ω〉

∣

∣

∣
|C1(M1)| · · · |Ck(Mk)|

Condition (ii) in Claim 3 implies that u ∈ M ⊆ N ∪ {v, w}, so that each term in Eq. (67) appears

at least one time in the sums X
(0)
u , . . . , X

(k)
u , hence

Xu ≤
k

∑

j=0

X(j)
u . (68)

Upper bound on X(j), 1 ≤ j ≤ k: The property (i) in Claim 3 implies that at least one end-point
of the edge (v, w) belongs to Mj . W.l.o.g. v ∈ Mj . Then property (ii) implies Mj ⊆ M ∪ {w},
so that |Mj| ≤ 2|M | (recall that M is a non-empty set because u ∈ M). It gives us a bound
E0(M) ≥ ∆|M | ≥ (∆/2)|Mj |. Note also that for any fixed M1, . . . ,Mk and v, w there exist at
most four sets M satisfying condition (ii) of Claim 3 (take N and add/subtract vertices v and w).
Therefore

X(j)
u ≤ 8

∆
max
M

∑

(v,w)∈E

∑

M1,...,Mk

χMj
(u)χMj

(v)
1

|Mj |
∣

∣

∣
〈Ω|aM â†M1

· · · â†Mk
(Vv,w)|Ω〉

∣

∣

∣
|C1(M1)| · · · |Ck(Mk)|.

Now we can bound the matrix element by 2kJ and add a restrictionMi∩{v, w} 6= ∅ to the summations
over sets Mi, i 6= j, see Claim 3, property (i). Taking into account that

∑

Mi :Mi∩{v,w}6=∅

|Ci(Mi)| ≤
∑

Mi∋v

|Ci(Mi)|+
∑

Mi∋w

|Ci(Mi)| ≤ 2‖Ci‖1 (69)

we arrive to

X(j)
u ≤ 22k+2J

∆

∏

i 6=j

‖Ci‖1
∑

(v,w)∈E

∑

Mj

χMj
(u)χMj

(v)
1

|Mj|
|Cj(Mj)|.

Changing the order of summations and bounding the sum over (v, w) by d|Mj| one gets

X(j)
u ≤ 22k+2dJ

∆

∏

i 6=j

‖Ci‖1
∑

Mj

χMj
(u)|Cj(Mj)| ≤

22k+2dJ

∆

k
∏

i=1

‖Ci‖1.

Finally, Lemma 2 implies that it is enough to consider k ≤ 4, so that

k
∑

j=1

X(j)
u ≤ 212dJ

∆

k
∏

j=1

‖Cj‖1. (70)

Upper bound on X(0): Claim 3 implies that for any fixed (M1, . . . ,Mk, v) there exist at most four
sets M satisfying (ii). Using a bound E0(M) ≥ ∆ we arrive to

X(0)
u ≤ 4

∆
max
M

∑

v : (u,v)∈E

∑

M1,...,Mk

∣

∣

∣
〈Ω|aM â†M1

· · · â†Mk
(Vu,v)|Ω〉

∣

∣

∣
|C1(M1)| · · · |Ck(Mk)|.

5That is χMj
(u) = 1 if u ∈ Mj and χMj

(u) = 0 otherwise.

25



Claim 3, property (i) allows us to bound the matrix element by 2kJ and add a restrictionMi∩{u, v} 6=
∅ to the summations over sets Mi. Using Eq. (69) we arrive to

X(0)
u ≤ 22k+2J

∆

k
∏

j=1

‖Cj‖1
∑

v : (u,v)∈E

1 ≤ 210dJ

∆

k
∏

j=1

‖Cj‖1. (71)

Combining Eqs. (68,70,71) we prove the upper bound Eq. (19).
The second bound Eq. (20) of Lemma 3 is much easier to prove. Applying the triangle inequality

one gets

|〈Ω|Ĉ1 · · · Ĉk(Vu,v)|Ω〉| ≤
∑

M1,...,Mk

|〈Ω|â†M1
· · · â†Mk

(Vu,v)|Ω〉||C1(M1)| · · · |Ck(Mk)|.

Clearly the matrix element is zero unless Mj ⊆ {u, v} for all j. Expanding the commutators one
gets 2k terms, but only the term in which all creation operators stand on the right of Vu,v gives a
non-zero contribution. Taking into account that

∑

Mj :Mj⊆{u,v}

|Cj(Mj)| ≤ 2‖Cj‖1,

one arrives at

|〈Ω|Ĉ1 · · · Ĉk(Vu,v)|Ω〉| ≤ 2kJ
k
∏

j=1

‖Cj‖1 ≤ 24J
k
∏

j=1

‖Cj‖1,

where we have applied Lemma 2 to argue that k ≤ 4.
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