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Decoherence of a Single Qubit from Quantum Anomaly
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We show via an explicit example that quantum mechanical anomalies can lead to decoherence

of a single quantum qubit through phase relaxation. The anomaly causes the Hamiltonian to

develop an non-self-adjoint piece due to the non-invariance of the domain of the Hamiltonian

under symmetry transformation. The resulting decoherence originates completely from the

dynamics of the system itself and not from interactions with the environment.

A physically realizable quantum computer must satisfy some delicate requirements [1]. One of

these requirements is that coherence must be maintained within a single qubit and also among

entangled qubits. Coherence within a single qubit requires dynamics of the two-level quantum

state to be controlled by unitary evolution. This in turn is guaranteed by the self-adjointness of

the Hamiltonian in the Schrödinger equation. Up to now, attention has been given mostly to deco-

herence that originates from the interaction of the quantum system with its external environment

[2]. The purpose of this letter is to point out that decoherenece can also come from anomalous

symmetry breaking of the quantum mechanical system. The novelty of this phenomenon is that

the decoherence originates from the system itself and not via interactions do with an external en-

vironment. This anomalous decoherence, which we make explicit in the following via a toy model,

is potentially significant for quantum information theory and should in principle be taken into

account in the construction of quantum computing models.

The model we consider is an electron in a magnetic field produced by the Dirac monopole. It

is described by the following Hamiltonian,

H =
[σ · (p− eA)]2

2m
=

(p− eA)2

2m
− e

2m
σ ·B (1)

where A is the singularity-free vector potential of the Dirac magnetic monopole [3] and B =

∇ × A = gr/r3, the corresponding magnetic field. Further, the single-valueness of the wave

function requires that 2eg should be an integer.

The model (1) possess a rotational symmetry SO(3) as well as a dynamical superconformal

symmetry OSP (1, 1) [4]. The SO(3) symmetry is generated by the angular momentum of the
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electron-monopole system, J = r× (p− eA)− egr/r + σ/2. The OSP (1, 1) consists of two parts:

one is the conformal symmetry SO(2, 1) generated by the Hamiltonian H, the dilatation operator

D and the conformal generator K, and the other part is the N = 1/2 conformal supersymmetry

generated by the supercharge Q and conformal supersymmetry generator S. The SO(2, 1) con-

formal symmetry is a generic feature of physical systems with 1/r2 potential [5], whose algebra is

realized as [H,D] = iH, [H,K] = 2iD, [D,K] = iK.

The large symmetry described above allows the model (1) to be solved exactly with a suitable

representation of SO(3) × OSP (1, 1) [4]. The quantum states are characterized by the eigen-

states |j,m, α,E〉 of a complete set of compatible operators J2, Jz, signA and H, respectively.

The dynamical operator A = σ · (J+ egr/r) − 1/2 is related to the Casimir of OSP (1, 1), and

the eigenvalues α = ±1 of signA describe the two helicity states of the electron related by the

superconformal transformation. Hence the state of the system is given by [4]

H|j,m, α,E〉 = E|j,m, α,E〉

J2|j,m, α,E〉 = j(j + 1)|j,m, α,E〉, j = eg − 1

2
, eg +

1

2
, · · ·

Jz|j,m, α,E〉 = m|j,m, α,E〉, m = −j,−j + 1, · · · , j − 1, j

A|j,m, α,E〉 = αdj |j,m, α,E〉, α = ±1, dj =

[(
j +

1

2

)2

− e2g2
]1/2

(2)

The wave function in spherical coordinate and the Pauli two-component representation is

ΨE(r, θ, φ) = 〈r, θ, φ, σ|j,m, α,E〉 = ΦE(r)ηj,m,α(θ, φ) [4]. The angular part ηj,m,α(θ, φ) can be

expressed explicitly in terms of the monopole harmonics [3].

Once the angular part of the wave function has been fixed, the Hamiltonian (1) reduces to

H = − 1

2m

1

r

d2

dr2
r +

1

2mr2
(−A)(−A+ 1). (3)

The radial eigenfunction ΦE(r) is the solution to the eigenvalue equation HΦE(r) = EΦE(r).

We are interested only in bound states (E < 0) since the goal is to describe a system which can

be used for quantum computing. The bound state radial eigenfunction reads

ΦE(r) = Nr−1/2K2δj,α−1(βr),

β = (−2mE)1/2, δj,α =
1

2
− 1

4
α+

1

2
dj (4)

where Kν is the modified Bessel function of the second kind and N is a normalization constant.

It is easy to see that only when ν < 1, Kν is normalizable over the region containing the origin.

It turns out that there exists only one such bound state, ΦE(r) = 2βK1/2(βr)/
√
πr, which arises
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when j = |eg| − 1/2. In particular, the orbit angular momentum L2 is diagonal in the basis

|j = |eg| − 1/2,m, α,E〉 and there exists σ · r/r|j = |eg| − 1/2,m〉 = ±|j = |eg| − 1/2,m〉 [4].
However, in this case ΦE(r) is singular at the origin, and we need to perform regularization

and renormalization operations on the Hamiltonian (1) to make it regular. It should be noted

that the regularization of the model (1) is considerably complicated. First, the solvability of the

theory depends on the larger dynamical symmetry OSP (1, 1), which should be preserved as much

as possible by the regularization scheme. Second, the theory has a U(1) gauge symmetry encoded

in the angular wave function. The regularization should keep the angular part ηj,m,α(θ, φ) intact

so that the Hamiltonian can reduce to the form (3). Otherwise, the exact solvability of theory will

be ruined. The regularization scheme we use is described as follows. First, we observe that the

reduced Hamiltonian (3) at j = |eg| − 1/2 becomes

H = − 1

2m

1

r

d2

dr2
r +

1

2m

L2 − e2g2 − egσ · er
r2

= − 1

2m
∇2 − e2g2

2m

(
1 +

1

|eg|

)
1

r2
(5)

The Hamiltonian (5) implies that at j = |eg| − 1/2 the radial sector of the spinning particle is

equivalently described by a spinless particle in a spherically symmetric potential V (r) = −λ/r2,

λ ≡ (1 + 1/|eg|) e2g2/(2m).

We choose a real-space cut-off regularization by introducing a length scale L as the regulator

and re-defining the effective potential as VR(r) = −λ/r2θ(r−L), θ denoting the Heaviside function.

The regularized energy eigenvalue equation H̃Φ̃E(r) = EΦ̃E(r) reads
[
d2

dr2
+

2

r

d

dr
− |eg|(|eg| + 1)

r2
+

2mλ

r2
θ(r − L) + 2mE

]
Φ̃E(r) = 0 (6)

The normalizable bound state solution expressed in the modified Bessel functions is

Φ̃E(r) = Ar−1/2I|eg|+1/2(βr), r < L,

= Br−1/2K1/2(βr), r > L (7)

The continuity of Φ̃E(r) at r = L yields A = BK1/2(βL)/I|eg|+1/2(βL), and the normalization

condition

∫ ∞

0
drr2|φ̃E(r)|2 = 1 fixes B = 2β/

√
π as L → 0. Finally, the continuity of dφ̃E(r)/dr

at r = L leads to

1 + 2βL = −βL
I|eg|−1/2(βL) + I|eg|+3/2(βL)

I|eg|+1/2(βL)
(8)

Further, the expansion of Iν(x) near x = 0 gives the lowest order reduction of (8) at L → 0,

βL = − (|eg|+ 1). Hence we get the regularized bound state energy E = −(|eg| + 1)2/(2mL2).
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Obviously, the regulator dependent E is divergent as L → 0, and the spectrum is unbounded

from below in this limit. There are two ways to cure this pathology. The first one is to adopt

the viewpoint of the Wilsonian effective field theory [6]. We directly take the regulator L as the

cut-off length scale Λ and consider the regularized Hamiltonian H̃ ≡ −∇2/(2m)+VR as an effective

Hamiltonian above the length scale Λ. The bound state energy at r = Λ is

EB = −(|eg| + 1)2

2mΛ2
(9)

The second one is the traditional approach of calculating the one-particle irreducible (1PI) effective

action and performing a renormalization procedure as advocated in Ref. [7]. At the renormalization

scale r = Λ, we make the subtraction by splitting E = EB + Ediv. In order to enforce the

physical requirement that the wave function should vanish at the origin, which is needed for

the self-adjointness of the Hamiltonian, we introduce a counterterm to the 1/r2 potential. This

counterterm cancels the short-distance divergence Ediv =
(
1/Λ2 − 1/L2

)
(|eg|+ 1)2/(2m) in the

regularized energy E. Furthermore, as in field theory, the counterterm should be absorbed into

the redefinition of the coupling constant λ. One particular challenge in the present context is that

the condition 2eg ∈ Z must be preserved for quantum mechanical consistency. A detailed analysis

of this procedure will be presented elsewhere [8].

It is clear that both of the above approaches break the SO(2, 1) conformal symmetry due to the

unavoidable presence of a length scale Λ. This is a direct manifestation of the conformal anomaly

in this system, which has been shown in the modification of the SO(2, 1) commutator algebra

through a deformation of the Hamiltonian by the anomaly operator:

H → H + Â, Â ≡ −i[H,D]A (10)

The resulting anomalous conformal algebra [7, 9] is composed of [H,D] = iH + [H,D]A, [H,K] =

2iD + 2t[H,D]A and [D,K] = iK + t2[H,D]A. The Heisenberg equation further reveals the

conformal anomaly as the non-conservation of the conformal charges, dD/dt = Â, dK/dt = 2tÂ.

An algebraic calculation of the first anomalous commutator shows that the anomaly operator

Â is directly related to the scaling behavior of the 1/r2 potential at the quantum level [7],

Â ≡ −i[H,D]A ≡ i[H,D] +H =

(
1 +

1

2
r · ∇

)
V (r) (11)

We use the regularized wave function (7) and the regularized potential VR to explicitly evaluate

expectation value of the anomaly operator (11),

A = 〈Â〉 = 〈Veff (r)〉+
1

2
〈r · ∇VR(r)〉
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= lim
L→0

∫ ∞

0
drr2

(
1 +

1

2
r
∂

∂r

)
VR(r)|Φ̃E(r)|2 (12)

A straightforward calculation gives

A =
e2g2β2

m

(
1 +

1

|eg|

)
= −2EBe

2g2
(
1 +

1

|eg|

)
(13)

On the other hand, an alternative and elegant interpretation on the origin of the anomaly in

the Hamiltonian formalism has been presented in [9], where it was demonstrated that the anomaly

is due to the fact that the symmetry generator does not leave the domain of definition of the

Hamiltonian invariant. By a careful observation on the Heisenberg equation, it had been shown

[9] that the anomaly arises as A = i〈Ψ(t)|
(
H† −H

)
G|Ψ(t)〉, G denoting a certain symmetry

generator operator which is D for the scale symmetry. This means that the anomaly operator can

formally written as

Â =
(
H† −H

)
G = −iA|Ψ(t)〉〈Ψ(t)| (14)

According to the rigorous definition of a self-adjoint operator [10], Eq. (14) implies that the Hamil-

tonian has always acquired a non-self-adjoint piece once its domain of definition cannot be preserved

by the symmetry transformation.

The non-self-adjointness induced by the anomaly greatly modifies the quantum dynamics of the

system. In the Heisenberg picture, the generator G satisfies a generalized Heisenberg equation [9],

dG

dt
=

∂G

∂t
+ i [H,G] + i

(
H† −H

)
G =

∂G

∂t
+ i[H,G] + iÂ (15)

and it implies the following time-evolution of G,

G(t) = exp

[
i

∫ t

0
ds
(
H†(s)−H(s)

)]
exp

[
i

∫ t

0
dsH(s)

]
G(0) exp

[
−i

∫ t

0
dsH(s)

]
(16)

In the Schrödinger picture, we have the time-evolution in terms of the modified Hamiltonian shown

in Eq. (10)

|Ψ(t)〉 = exp

[
−i

∫ t

0
dsH(s)−

∫ t

0
dsA|Ψ(s)〉〈Ψ(s)|

]
|Ψ(0)〉 (17)

The formal integration solution (17) for |Ψ(t)〉 shows that in the presence of the anomaly the

quantum system undergoes a non-unitary evolution resultant from the anomaly. This is consistent

with the fact that anomalous effects in a quantum theory contribute only to the imaginary part of

the quantum effective action [11].

Turning to the model at hand, we take G to be the generator D of the scale symmetry. The

conformal anomaly arises only for the normalizable bound state ΨE(r, θ, φ, σ) in the s-wave sector,
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and originates from its radial part ΦE(r). Therefore, Eq. (17) tells that the time-evolution for this

specific stationary state should be

|ΦE(t)〉 = e−i(E−iA)t|ΦE(0)〉 (18)

where the energy and anomaly are provided by Eqs. (9) and (13), respectively. Note that the

completeness condition
∑

E

|ΦE〉〈ΦE| = 1 is used in deriving Eq. (18). Although all the energy

eigenstates, including the scattering states, should be taken into account in the the completeness

condition, the anomaly only pertains to the bound state and vanishes for all other eigenstates.

Thus we effectively take |ΦE〉〈ΦE | = 1 and get Eq. (18).

We now consider the electron-monopole system as a physical model for quantum computing. The

quantum state we manipulate is just the normalizable bound state ΨE(r, θ, φ, σ) at j = |eg| − 1/2,

its two-level spin degrees of freedom playing the role of a qubit:

ΨE(r, θ, φ, σ) = ΦE(r)ηj,m,α(θ, φ, α) ≡ f1(r, θ, φ)




1

0


+ f2(r, θ, φ)




0

1


 (19)

The spatial amplitudes fi(r, θ, φ) (i = 1, 2) can be obtained with some algebraic operations [4].

As we will show below, it is the time-evolution of fi(r, θ, φ) related to ΦE(r) that brings about

the decoherence between two spin states during a quantum computing due to the presence of

anomaly. Roughly speaking, the two spin states constitutes a qubit, and one must control their

dynamical evolution to carry out information processing. We therefore switch on a time-dependent

Hamiltonian to make the spin flips that can ultimately be used in a quantum algorithm. However,

the spatial sector fi(r, θ, φ) of the wave function will evolves in time controlled by the quantum

effective Hamiltonian of the system itself along with the spin flipping dominated by the external

Hamiltonian. According to Eq. (18), the anomaly will cause fi(r, θ, φ, t) to have a damping factor

which in turn will lead to decoherence. In the following we show the details of how this phenomenon

happens.

Let us first analyze the quantum effective Hamiltonian provided by the system itself. Obviously,

the time-evolution (18) of ΦE(r) of the bound state wave function gives the spatial part, Hspa =

E − iA. As for the spin sector, we use the fact that at j = |eg| − 1/2 the orbit- and spin- angular

momenta decouple, and the spin part of the wave function is the eigenstate of the operator σ · r/r.
Specifically, the form of the radial Hamiltonian (5) shapes only when the eigenvalue equation of

the operator σ · r/r has been applied. So we can simply choose Hspin = σ · r/r. A combination

of the spatial and spin sectors determines that the effective Hamiltonian with resect to the bound



7

state (19) should take the following form:

Hsys = Hspa ⊗Hspin = (E − iA)
σ · r
r

= (E − iA) (σx sinϑ cosϕ+ σy sinϑ sinϕ+ σz cos ϑ) (20)

where (ϑ,ϕ) represents the spin orientation in three-dimensional space.

Eq. (20) is the effective Hamiltonian realized on the bound sate of the system. We now switch

on a time-dependent external Hamiltonian to make the spin flip. A typical choice is the inter-

action of the spin with an oscillating external magnetic field in two-dimensional x − y plane,

Bext = B0 (cosωtex + sinωtex), and the Hamiltonian Hext = e/2mσ ·Bext. The spin dynamics is

dominated by the Schrödinger equation

i
∂ΨE(t)

∂t
= (Hsys +Hext)ΨE(t) =

{[
eB0

2m
cosωt+ (E − iA) sinϑ cosϕ

]
σx

+

[
eB0

2m
sinωt+ (E − iA) sinϑ sinϕ

]
σy + (E − iA) cos ϑσz

}
ΨE(t) (21)

We neglect the E − iA term in the σx and σy components since usually the microscopic values of

the energy E and the anomaly are much smaller than the macroscopic magnetic field, |E|, |A| ≪
|e|B0/2m. In this approximation the time-evolution of the spin state reads

ΨE(t) = exp

{
−A cos ϑσzt− i

[(
E cos ϑ− ω

2

)
σz +

eB0

2m
σx

]
t

}
ΨE(0) (22)

To show explicitly the occurrence of the decoherence implied from ΨE(t), we take E cos ϑ = ω/2

as in nuclear magnetic resonance and use again |A| ≪ |e|B0/2m. Assume that the initial state is

spin-up, ΨE(0) = f1(r, θ, φ) (1, 0)
T , Eq. (22) yields

ΨE(t) = c1(t)




1

0


+ c2(t)




0

1


 ,

c1(t) = cos



(
e2B2

0

4m2
−A2 cos2 ϑ

)1/2

t


−A cosϑ

sin



(
e2B2

0

4m2
−A2 cos2 ϑ

)1/2

t




(
e2B2

0

4m2
−A2 cos2 ϑ

)1/2

c2(t) = eiπ/2
eB0

2m

sin



(
e2B2

0

4m2
−A2 cos2 ϑ

)1/2

t




(
e2B2

0

4m2
−A2 cos2 ϑ

)1/2
(23)

Clearly, the non-vanishing A leads to |c1(t)|2 + |c2(t)|2 6= 1, and hence the decoherence between

the two helicity states occurs and the qubit is destroyed.
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To summarize, we have used an electron-monopole system to reveal a phenomenon not previ-

ously discussed in the quantum computing literature: a quantum mechanical anomaly can result

in decoherence. Note that anomaly is a quantum dynamical phenomenon rooted within the sys-

tem itself. It reflects how quantum effects can render a classically feasible symmetry unrealizable.

One typical example is the case where the configuration space has non-trivial topology so that

the Hilbert space constructed via the quantization procedure from the classical phase space can-

not sustain all the classical symmetries. In the case we have just considered, the source of the

anomaly is the singular behaviors of the interaction potential near the magnetic monopole. The

classical conformal symmetry does not preserve the Hilbert space as the domain of definition of

the Hamiltonian due to the singular behavior of the wave function in the s-wave sector.

Until now the search for a physically realizable quantum computer has been concerned only

with decoherence that arises due to interactions with the external environment. It is important

to emphasize that decoherence can also in principle be induced by quantum anomalies. Since this

dissipation originates from the dynamics of the quantum system itself, it seems that it has the

potential of being more destructive than the standard mechanisms for decoherence.
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