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Abstract

Correlated proportions arise in longitudinal (panel) studies. A typical ex-

ample is the “opinion swing” problem: “Has the proportion of people favoring

a politician changed after his recent speech to the nation on TV?”. Since the

same group of individuals is interviewed before and after the speech, the two

proportions are correlated. A natural null hypothesis to be tested is whether

the corresponding population proportions are equal. A standard Bayesian ap-

proach to this problem has already been considered in the literature, based on a
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Dirichlet prior for the cell-probabilities of the underlying two-by-two table un-

der the alternative hypothesis, together with an induced prior under the null.

In lack of specific prior information, a diffuse (e.g. uniform) distribution may be

used. We claim that this approach is not satisfactory, since in a testing prob-

lem one should make sure that the prior under the alternative be adequately

centered around the region specified by the null, in order to obtain a fair com-

parison between the two hypotheses. Following an intrinsic prior methodology,

we develop two strategies for the construction of a collection of objective pri-

ors increasingly peaked around the null. We provide a simple interpretation of

their structure in terms of weighted imaginary sample scenarios. We illustrate

our method by means of three examples, carrying out sensitivity analysis and

providing comparison with existing results.

Keywords: Bayes factor; Bayesian robustness, Dirichlet prior; marginal homo-

geneity; matched pair; objective Bayes.

1 Introduction

Panel data are often used to investigate changes in opinion or behavior. For instance,

suppose the same group of individuals is interviewed about their support for the

President before and after the State of the Union Address. A natural issue is whether

the speech has generated or not a net change in attitude. If the answer can only be

“I support the President” or “I do not support the President”, i.e. it is binary, the

problem reduces to the comparison of two proportions in the population: of those

supporting the President before and after the address. We say that no net change
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has occurred if the two proportions are equal. Clearly, the two sample proportions

are correlated, since the same group of people is involved in the two measurements.

A Multinomial model involving the four pairs of outcomes “(Support, Support)”,

“(Support, Not Support)”, “(Not Support, Support)”, “(Not Support, Not Support)”

is the appropriate sampling scheme to be used.

A classic frequentist test dates back to McNemar (1947). The first Bayesian anal-

ysis is attributed to Altham (1971), while more recent contributions include Broemel-

ing & Gregurich (1996), Irony et al. (2000) and Kateri et al. (2001). In particular,

the latter two papers compute the Bayes Factor (BF) for the hypothesis of no net

change versus the alternative that a net change has occurred, starting from a “de-

fault” Dirichlet prior on the unconstrained cell-probabilities. In lack of specific prior

information, a diffuse (e.g. uniform) distribution may be used. The prior distribu-

tion under the hypothesis of no net change is then induced from the Dirichlet prior.

We call this a “default” BF for testing the equality of two correlated proportions,

and claim that it is not satisfactory, since it might unduly favor the null hypothesis.

To overcome this drawback, we keep the same prior under the null and construct

a suitable intrinsic prior (Berger & Pericchi, 1996) under the alternative, using an

objective approach along the lines recently described by Casella & Moreno (2006,

2007). The intrinsic prior is centered around the region where the null obtains, and

the corresponding BF results in a fairer comparison between the two hypotheses. As

the amount of centering is controlled by a scalar hyper-parameter, we actually have

a family of prior distributions. We suggest studying BF sensitivity to prior choice

within this family.
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The rest of the paper is organized as follows. In Section 2 we give a new derivation

of the above default BF for testing the equality of two correlated proportions; in

Section 3 we discuss the concept of an intrinsic prior for testing hypotheses, and

derive intrinsic priors for the problem at hand; in Section 4 we illustrate our method

by means of three examples. Finally, Section 5 contains a brief discussion.

2 Default approach

We assume the data consist of n++ observations on a pair of binary variables, (U, V )

say, each taking values in {0, 1}, with n++ known by design. To fix ideas, let U = 1

(V = 1) represent the opinion “I support the President”, and U = 0 (V = 0)

the opinion “I do not support the President”, before (after) the State of the Union

Address. A swing occurs whenever (U = 0, V = 1) or (U = 1, V = 0). We can

arrange the four counts in a 2×2 table n = (n00, n01, n10, n11), where n00+n01+n10+

n11 = n++. If the data are independent, conditionally on some common parameter,

the statistical model for the data is quadrinomial with matrix of cell-probabilities

π = (π00, π01, π10, π11), where π00+π01+π10+π11 = 1. If no net change has occurred,

the marginal distributions of U and V are the same, so that the problem under

investigation consists in testing marginal homogeneity in a two-way contingency table,

i.e. π0+ = π+0, where subscript “+” denotes summation over the replaced suffix. In

a 2× 2 table, however, marginal homogeneity reduces to symmetry : π01 = π10.

We take advantage of the following reparametrization: η = π01 + π10, θ =
π01

π01+π10

and γ = π00
π00+π11

. Notice that η is the (unconditional) probability of observing a swing,
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whereas θ is the conditional probability of a swing from 0 to 1, given that a swing

occurs, and γ is the conditional probability of no support for the President, given

that no swing occurs. The sampling distribution of n can thus be written as

f(n|η, θ, γ) = g(n△|η)h(n01|n△, θ)k(n00|n△, γ), (1)

writing n△ = n01 + n10 for the sum of the off-diagonal counts and letting g(n△|η) =

Bin(n△|n++, η), h(n01|n△, θ) = Bin(n01|n△, θ) and k(n00|n△, γ) = Bin(n00|n++ −

n△, γ), where Bin(y|m,ψ) is the Binomial probability function with m trials, and

probability of success ψ, evalutated at y.

With reference to the (η, θ, γ)-parametrization, the null hypothesis of no net

change can be formulated as H0 : θ = 1
2
, whereas the alternative hypothesis is

H : θ 6= 1
2
. Notice that η and γ are nuisance parameters, and that the parameter of

interest θ only appears in h(n01|n△, θ), the conditional distribution of n01 given n△.

Accordingly, Irony et al. (2000) base their analysis exclusively on the partial sampling

model h(n01|n△, θ). This is also true for the classical test by McNemar (1947), which

only makes use of the off-diagonal individual swing-counts (n01, n10), and for Altham

(1971), who performs Bayesian inference on the difference π01 − π10. However, this

issue is controversial, as some Authors suggest that the whole sample size n++ should

also be taken into consideration; see for instance Agresti (2002, p. 442). Therefore, in

the following, we consider the full sampling model (1). Eventually, neither g(n△|η)

nor k(n00|n△, γ) will play a role in the default approch, but g(n△|η) will do in the in-

trinsic approach. We shall return to this issue later on in the paper, when considering

the specification of an intrinsic prior, and in the Discussion.

5



As in previous Bayesian analyses of this problem, we assign a Dirichlet prior on

the matrix of cell-probabilities π. We do this for convenience, and to ease comparisons

with existing results. In this way, we shall obtain a default BF for testing the equality

of two correlated proportions. Later on, however, we shall significantly depart from

previous works on this topic, because the prior under the alternative hypothesis will

be suitably adjusted to the testing problem under consideration. Next lemma shows

that the resulting prior on (η, θ, γ) is a product of independent beta distributions,

shedding light on the implications of choosing a Dirichlet prior for π.

Lemma 2.1 Let π ∼ Dir(a), where a = (a00, a01, a10, a11) is a two-by-two matrix of

(strictly) positive values. Then: i) η ∼ Beta(a01+a10, a00+a11); ii) θ ∼ Beta(a01, a10);

iii) γ ∼ Beta(a00, a11); iv) η, θ and γ are mutually independent.

Proof. Substitute π00 = γ(1− η), π01 = θη and π10 = (1− θ)η in the Dirichlet density

of (π00, π01, π10), and multiply by Jacobian η(1− η) to get the density of (η, θ, γ). ✷

Recall that the BF of H versus H0, or more briefly in favor of H , having ob-

served n, is given by BFH,H0
(n) = mH (n)

mH0
(n)

, where mH(n) and mH0
(n) are the marginal

probabilites of n under H and H0, respectively. More specifically, we have mH(n) =

∫∫∫

f(n|η, θ, γ)pH(η, θ, γ) dηdθdγ and mH0
(n) =

∫∫

f(n|η, θ = 1/2, γ)pH0
(η, γ) dηdγ,

where pH(η, θ, γ) is given by Lemma 2.1 and pH0
(η, γ) has yet to be specified. If we

derive it from pH(η, θ, γ) as i) the marginal pH(η, γ) or ii) the conditional pH(η, γ|θ =

1/2) we obtain the same result: a product of two independent beta densities. Using

this induced prior on H0, the following lemma produces a default BF against the

equality of two correlated proportions.
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Lemma 2.2 If π ∼ Dir(a), then a default BF in favor of H is given by

BFH,H0
(n) =

2n△B(a01 + n01, a10 + n10)

B(a01, a10)
, (2)

where B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt, a > 0, b > 0, is the Beta special function.

Proof. Since the prior density of (η, γ) under H0 corresponds to pH(η, γ|θ = 1/2), the

Savage density ratio applies; see e.g. O’Hagan & Forster (2004, Sec. 7.16). This gives

BFH,H0
(n) = pH(θ=1/2)

pH(θ=1/2|n)
, where pH(θ|n) is the posterior density of θ. Now, from ii) of

Lemma 2.1, the prior of θ is Beta(a01, a10), whence pH(θ = 1/2) = 1
B(a01 ,a10)

(

1
2

)a01+a10 ;

on the other hand, using (1) and the independence of η, θ and γ, the posterior density

of θ is easily seen to be Beta(a01 + n01, a10 + n10). The result follows. ✷

Lemma 2.2 is also derived in Kateri et al. (2001), by direct computation of mH(n)

andmH0
(n), and in Irony et al. (2000), using the conditional model h(n01|n△, θ) in (1).

3 Intrinsic approach

3.1 General

The BF is notoriously sensitive to prior specifications. This suggests that the choice

of prior distributions should be especially thoughtful. In particular, we would like to

consider one specific aspect of prior specification which is often overlooked. When

testingH0 versus H , theH0 hypothesis must have some reasonable grounds, otherwise

we would not have considered it in the first place. Assuming that H0 is nested in H ,

this suggests that the prior under H should be centered around the region in which

H0 obtains. Otherwise, when data are just in reasonable accord with H0, the prior
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under H is simply “wasting away” prior probability mass in regions that are too

unlikely to be supported, and H0 would be unduly favored. This aspect is strictly

related to the Jeffreys-Lindley’s paradox; see Robert (2001, p. 234). Notice that

centering the prior under H around values consistent with H0 does not lend support

to H0, but rather to H : a point which is often overlooked in Bayesian applications.

The previous considerations are lucidly spelled out in Casella & Moreno (2007); see

also Casella & Moreno (2006). We now briefly review their approach, showing some

basic facts about intrinsic priors and the associated BFs.

Let y be the actual data, and denote with x a corresponding set of “imaginary”

data. We shall assume, for simplicity of exposition, that the data are discrete, as in the

problem that motivates our paper. Let the sampling distribution of y be fH(y|λH),

under H , and fH0
(y|λH0

), under H0. Let the priors under both models be given,

and denote them with pH(λH) and pH0
(λH0

), respectively. We shall not insist on the

nature of these priors, although they will typically be standard “estimation-based”

priors. In this paper, we shall restrict our attention to proper priors; see Moreno

et al. (1998) for an intrinsic limiting procedure dealing with improper priors. Finally,

let mH(x) =
∫

fH(x|λH)pH(λH)dλH and mH0
(x) =

∫

fH0
(x|λH0

)pH0
(λH0

)dλH0
be the

marginal probabilities of the imaginary data x under H and H0, respectively.

Definition 3.1 The intrinsic prior for λH conditionally on H0 is given by

pIH(λH |H0) = pH(λH)EλH

[

mH0
(x)

mH(x)

]

= pH(λH)EλH
[

BFH,H0
(x)−1

]

,

where BFH,H0
(x) is the BF of H versus H0 having observed the imaginary data x,

and the expectation is taken with respect to the sampling distribution fH(x|λH).
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Proposition 3.1 If pH and pH0
are proper, the intrinsic prior pIH is also proper.

Proof. Interchanging the sum over x and the integral with respect to λH , we find

∫

pIH(λH |H0)dλH =
∑

x

mH0
(x)

mH(x)

∫

fλH (x|λH)pH(λH)dλH = 1.

✷

Proposition 3.2 The intrinsic prior is equivariant to reparametrization: if λH 7→ψH ,

then pI,ψH

H (ψH |H0) = pI,λHH (λH(ψH)|H0)× |JλH (ψH)|, where JλH(ψH) is the Jacobian.

Proof. Expressing the sampling distribution of y in terms of λH , we find

pI,ψH

H (ψH |H0) = EλH (ψH )

[

mH0
(x)

mH(x)

]

pλHH (λH(ψH))× |JλH (ψH)|

and the thesis follows. ✷

The two propositions above show that Definition 3.1 is well-posed. Note, however,

that the intrinsic prior depends on the sampling distribution of x, and in particular

on its sample size (prior sample size). As for the interpretation of Definition 3.1, the

following proposition is enlightening.

Proposition 3.3 The intrinsic prior is a mixture of imaginary posteriors:

pIH(λH |H0) =
∑

x

pH(λH |x)mH0
(x). (3)

Proof. By direct computation, we find

pIH(λH |H0) = pH(λH)EλH

[

mH0
(x)

mH(x)

]

=
∑

x

mH0
(x)

mH(x)
pH(λH)fH(x|λH)

and (3) follows. ✷
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Proposition 3.3 shows that the intrinsic prior will be more dominated by posteriors

corresponding to imaginary realizations that are more supported under H0, and this

explains why it will be more concentrated around values consistent with H0 than

the original prior pH(λH). The extent of this concentration will depend both on

the structure of pH(λH) and on prior sample size. Notice that pIH(λH |H0) is an

example of expected posterior prior (with base model H0) as defined by Perez &

Berger (2002). As a consequence of Proposition 3.3, intrinsic prior BFs will also be

mixtures of conditional BFs, over all possible configurations of the imaginary data x,

with weights given by the marginal distribution of x under H0.

Definition 3.2 For data y, the intrinsic prior BF in favor of H is given by

BF I
H,H0

(y) =
mI
H(y)

mH0
(y)

, (4)

where mI
H(y) =

∫

fH(y|λH)p
I
H(λH |H0) is the intrinsic marginal probability of y.

Proposition 3.4 For data y, the intrinsic prior BF in favor of H is given by

BF I
H,H0

(y) =
∑

x

BFH,H0
(y|x)mH0

(x),

where BFH,H0
(y|x) =

R

fH (y|λH )pH (λH |x)dλH
mH0

(y)
= mH (y|x)

mH0
(y)
.

Proof. Substituting (3) in (4), then interchanging the sum and the integral, we obtain

BF I
H,H0

(y) =
1

mH0
(y)

∫

fH(y|λH)
∑

x

pH(λH |x)mH0
(x)dλH

=
∑

x

mH0
(x)

∫

fH(y|λH)pH(λH |x)dλH
mH0

(y)

and the thesis follows. ✷
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3.2 Conditionally-Intrinsic Prior and Test

The default BF of Lemma 2.2 for testing the equality of two correlated proportions

was obtained in the full sampling model (1), although it can also be derived using

the conditional model h(n01|n△, θ). The following argument provides a Bayesian

justification for basing inference solely on the conditional model.

Since η and γ are nuisance parameters in the testing problem under consideration,

a natural suggestion is first to integrate them out, thus obtaining an “integrated

model” which only depends on the parameter of interest θ, then to proceed with

the testing problem. Consider first the alternative hypothesis H . Using (1) and the

independence of η, θ and γ, we immediately obtain that the integrated model under H

is given by

f ∗
H(n|θ) = mH(n△)mH(n00|n△)h(n01|n△, θ), (5)

where mH(n△) =
∫

g(n△|η)pH(η)dη andmH(n00|n△) =
∫

k(n00|n△, γ)pH(γ)dγ. Con-

sider next the null hypothesis H0, whose sampling model is obtained from (1) by

setting θ = 1/2. To integrate out η and γ we need a prior pH0
(η, γ). Since they

are nuisance parameters, one possible argument is that this prior should be the

same as that under H ; see e.g. O’Hagan & Forster (2004, Sects. 11.29-11.33) in a

different context. In other words pH0
(η, γ) should be obtained from pH(η, θ, γ) by

marginalization. Alternatively, one could think of obtaining pH0
(η, γ) by condition-

ing, i.e. pH0
(η, γ) = pH(η, γ|θ = 1/2). In either case we obtain the same result,

because of the independence of η, θ and γ, so that the integrated model under H0 is

f ∗
H0
(n) = mH(n△)mH(n00|n△)h (n01|θ = 1/2, n△) ,
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where mH(n△) and mH(n00|n△) are the same as in (5). From the integrated models

f ∗
H(n|θ) and f

∗
H0
(n) one can now compute the BF, by taking the ratio

R

f∗
H
(n|θ)pH (θ)dθ

f∗
H0

(n)
.

We obtain
R

h(n01|n△,θ)pH(θ)dθ

h(n01|n△,θ=1/2)
, as factors mH(n△) and mH(n00|n△) clearly cancel out.

This is the default BF based on the conditional sampling model h(n01|n△, θ). Hence,

provided we are willing to take the same marginal prior for (η, γ) under H and H0,

we can forget about g(n△|η) and k(n00|n△, γ) in (1).

In the following of this subsection, we apply the intrinsic prior methodology based

on the conditional sampling model h(n01|n△, θ): the resulting prior will be called

“Conditionally-Intrinsic” (CI). Both its density and the corresponding BF will be

labeled with a superscript “CI”; moreover, for the sake of clarity, other intermediate

quantities will have the superscript “Co” to remind the reader that they all refer to

the above Conditional model. The general notation of Subsection 3.1 will be reserved

for the next subsection, wherein the full sampling model (1) will be employed. Note

that, within the CI-procedure, the imaginary data x are represented by (x01, x△),

where x△ = x01 + x10, or equivalently by (x01, x10).

We start by defining the CI-prior, which is given by

pCIH (θ|H0) = pH(θ)Eθ
[

BFCo
H,H0

(x)
]−1

,

where BFCo
H,H0

(x) =
R

h(x01|x△,θ)pH (θ)dθ

h(x01|x△,θ=1/2)
.

Proposition 3.5 The CI-prior for θ conditionally on H0 is given by

pCIH (θ|H0) =

x△
∑

x01=0

(

x△
x01

)(

1

2

)x△

Beta(θ|a01 + x01, a△ − a01 + x△ − x01),

where Beta(θ|A,B) is the Beta density with parameters A and B, evaluated at θ.
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Figure 1: Conditional-intrinsic prior densities, for ten different prior sample sizes,

starting from a uniform distribution on the cell-probabilities.

Proof. The general structure of the intrinsic prior is given in (3). It is immediate

to check that pCoH (θ|x) is actually Beta(θ|a01+x01, a△−a01+x△−x01). On the other

hand, it holds that mCo
H0
(x) = h(x01|x△, θ = 1/2) =

(

x△
x01

) (

1
2

)x△. ✷

Proposition 3.5 shows that the CI-prior for θ is a finite mixture of Beta distribu-

tions with x△ +1 components, where x△ is the prior swing count. Figure 1 plots the

CI-prior for θ, starting from a uniform distribution on π, for ten different prior sample

sizes (values of x△). We include the zero sample size, which gives back the uniform

default prior for θ. Notice how the CI-prior gets more and more peaked around the

null value θ = 1/2, as prior sample size grows.
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We now turn to the derivation of the CI-prior BF, namely

BFCI
H,H0

(n) =
mCI
H (n)

mCo
H0
(n)

,

where mCo
H0
(n) = h(n01|n△, θ = 1/2) and mCI

H (n) =
∫

h(n01|n△, θ)p
CI
H (θ|H0)dθ.

Proposition 3.6 The CI-prior BF in favor of H is given by

BFCI
H,H0

(n) =

x△
∑

x01=0

(

x△
x01

)(

1

2

)x△

BFCo
H,H0

(n|x)

where BFCo
H,H0

(n|x) = 2n△
B(a01+x01+n01,a△−a01+x△−x01+n△−n01)

B(a01+x01,a△−a01+x△−x01)
.

Proof. From Proposition 3.4 we immediately derive that the CI-prior BF is a mixture

of conditional BFs. The weights of the mixture are exactly those of Proposition 3.5.

On the other hand BFCo
H,H0

(n|x) =
R

h(n01|n△,θ)p
Co
H (θ|x)dθ

h(n01|n△,θ=1/2)
, with pH(θ|x) a Beta(θ; a01 +

x01, a△ − a01 + x△ − x01) distribution. Standard calculations lead to the result. ✷

3.3 Intrinsic Prior and Test

In this subsection we work in the full sampling model (1), involving all three param-

eters η, θ and γ, and derive the corresponding intrinsic prior. This is defined as

pIH(η, θ, γ|H0) = pH(η, θ, γ)Eη,θ,γ
[

BFH,H0
(x)−1

]

,

according to Definition 3.1, where BFH,H0
(x) is given by (2) with x in place of n. Since

η, θ and γ are independent, and BFH,H0
(x) does not depend on x00, it turns out that

pIH(η, θ, γ|H0) = pH(γ)p
I
H(η, θ|H0), where p

I
H(η, θ|H0) = pH(η, θ)Eη,θ [BFH,H0

(x)−1].

In other words, under the I-prior γ is still independent of (η, θ), and its marginal is

unchanged. As a consequence, parameter γ and data x00 play no role and can be

14



disregarded. In the following we shall focus our attention on parameters η and θ,

and imaginary data x will be represented by the triple (x01, x10, x++), or equivalently

by (x01, x△, x++), where x++ is the prior sample size.

Proposition 3.7 The intrinsic prior for (η, θ) conditionally on H0 is given by

pIH(η, θ|H0) =

x++
∑

x01=0

x++
∑

x△=x01

Beta(η|a△ + x△, a++ − a△ + x++ − x△)

× Beta(θ|a01 + x01, a△ − a01 + x△ − x01)

×

(

x△
x01

)(

1

2

)x△
(

x++

x△

)

B(a△ + x△, a++ − a△ + x++ − x△)

B(a△, a++ − a△)
.

Proof. From (3) we know that pIH(η, θ|H0) =
∑

x pH(η, θ|x)mH0
(x). Recalling (1) and

the distributional results of Lemma 2.1, the expression for pH(η, θ|x) is easily seen to

be pH(η, θ|x) = Beta(η|a△+x△, a++−a△+x++−x△)×Beta(θ|a01+x01, a△−a01+

x△ − x01) so that, conditionally on x, η and θ are independent. On the other hand,

the weight mH0
(x) is given by

mH0
(x) =

∫

g(x△|η)h(x01|x△, θ = 1/2)pH0
(η)dη

=

(

x△
x01

)(

1

2

)x△ ∫
(

x++

x△

)

ηx△(1− η)x++−x△Beta(η|a△, a++ − a△)dη

=

(

x△
x01

)(

1

2

)x△
(

x++

x△

)

B(a△ + x△, a++ − a△ + x++ − x△)

B(a△, a++ − a△)
.

and the thesis follows. ✷

Notice that the prior pH0
(η) is set equal to pH(η), i.e. the marginal prior for η

under H , in agreement with the choice that was made in Subsection 3.2. In this way

we shall be able to make more sensible comparisons with the CI-procedure.

Figure 2 presents the default distribution of (η, θ) corresponding to the uniform

distribution of π, together with two I-priors having different prior sample sizes, namely
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x++ = 10 and x++ = 50, to show the increasing concentration of the joint distribution

around the θ = 1/2 line. An interesting feature is represented by the “pear”-shaped

contour lines depicted in the bottom-right panel: they are all symmetric around the

line θ = 1/2, and they pile up around it as the prior sample size increases, but the

piling is not uniform with respect to η. More precisely, the range of credible values

for θ (effective support) becomes smaller as the value of η increases. This shows a

dependence structure of the two parameters under the I-prior, in contrast with the

independence between η and θ under the default prior. Figure 3 makes this point

explicit by plotting the contour lines of the joint distribution of (η, θ) under the I-

prior, based on x++ = 20 prior observations, and those (represented by ellipsoids) of

a prior having the same marginal distributions, but embodying independence of the

two parameters.

Recall that in the CI-approach parameter η was integrated out at the very begin-

ning, using the same prior under H and H0, since η is a nuisance parameter. One

could argue that the intrinsic approach should implicitly recognize that η is a nui-

sance parameter. In particular, centering the marginal prior for η around H0 makes

no sense, so that the marginal prior for η should remain unaffected by the intrinsic

procedure. This conjecture turns out to be true, as the following proposition shows.

Proposition 3.8 The marginal distribution of η under the intrinsic prior is the same

as the original marginal prior, i.e. pIH(η|H0) = pH(η).

Proof. From the expression of pIH(η|H0) in Proposition 3.7 we derive

pIH(η|H0) =

x++
∑

x01=0

x++−x01
∑

x10=0

Beta(η|a△ + x△, a++ − a△ + x++ − x△)
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Figure 2: Default prior density (top-left), two different intrinsic prior densities (top-

right and bottom-left), and their contour lines (bottom-right).
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Figure 3: Contour lines for the intrinsic prior density with x++ = 20, compared to

those of the bivariate density having the same marginals with η and θ independent.

×
x++!

x△!(x++ − x△)!

x△!

x01!x△ − x01!

1

2x△

×
B(a△ + x01 + x10, a++ − a△ + x++ − x01 − x10)

B(a△, a++ − a△)

=

x++
∑

x01=0

x++−x01
∑

x10=0

(

x++

x01 x10 (x++ − x△)

)

(η

2

)x01 (η

2

)x10
(1− η)x++−x△

× Beta(η|a△, a++ − a△)

=
[η

2
+
η

2
+ (1− η)

]x++

× pH(η) = pH(η).

✷

On the other hand, the CI-prior for θ cannot be recovered (exactly) within the

I-procedure, as shown in Figure 4 for a selection of prior sample sizes, x++, best

approximating the CI-prior based on x△ = 20. The marginal distribution of pa-

rameter θ under the I-procedure is different from the corresponding prior under the
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Figure 4: Marginal intrinsic prior densities for θ best approximating the CI-prior

density based on x△ = 20 (dashed line).

CI-procedure. The reason lies in the different structure of the imaginary data x:

under the CI-procedure we have x = (x01, x△), while under the I-procedure we have

x = (x01, x△, x++). This gives rise to different weights: compare mH(x) in the proof

of Proposition 3.7 to mCo
H (x) in the proof of Proposition 3.5.

Let us now consider the expression for the I-prior BF. From Proposition 3.4 we

immediately derive that this is a mixture of conditional BFs, the weights of the

mixture being the same as in the proof of Proposition 3.7. Hence, BF I
H,H0

(n) =

∑

xBFH,H0
(n|x)mH0

(x), where we need to compute

BFH,H0
(n|x) =

∫ ∫

g(n△|η)h(n01|n△, θ)pH(η, θ|x)dηdθ

mH0
(n)

. (6)
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The denominator of (6) is the same as mH0
(x) with x replaced by n. On the other

hand, the numerator of (6) is equal to

(

n++

n△

)

B(a△ + x△ + n△, a++ − a△ + x++ − x△ + n++ − n△)

B(a△ + x△, a++ − a△ + x++ − x△)

×

(

n△

n01

)

B(a01 + x01 + n01, a△ − a01 + x△ − x01 + n△ − n01)

B(a01 + x01, a△ − a01 + x△ − x01)
,

so that we obtain

BFH,H0
(n|x)mH0

(x) = 2n△
B(a01 + x01 + n01, a△ − a01 + x△ − x01 + n△ − n01)

B(a01 + x01, a△ − a01 + x△ − x01)

×
B(a△ + x△ + n△, a++ − a△ + x++ − x△ + n++ − n△)

B(a△ + n△, a++ − a△ + n++ − n△)

×
1

2x△

(

x++

x01 x10 (x++ − x△)

)

.

One can recognize that the first factor above is exactly BFCo
H,H0

(n|x), as given in

Proposition 3.6. Therefore, multiplying and dividing by 2x++, we get

BF I
H,H0

(n) =
∑

x01

∑

x10

(

x++

x01x10(x++ − x01 − x10)

)

1

2x△+x++

× 2x++
B(a△ + x△ + n△, a++ − a△ + x++ − x△ + n++ − n△)

B(a△ + n△, a++ − a△ + n++ − n△)

× BFCo
H,H0

(n|x).

Curiously, the second line in the above expression can be further recognized as a

particular BF of the hypothesis η 6= 1
2
versus the alternative η = 1

2
, relative to

the marginal binomial sampling model g, having observed the imaginary data x, and

assuming a Beta(a△+n△, a++−a△+n++−n△) “prior” distribution on η. By writing

this Bayes factor as BFM
η 6= 1

2
,η= 1

2

(x|n), and suitably re-writing the factor 1

2
x
△

+x++
, we

get to the following proposition.
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Proposition 3.9 The I-prior BF in favor of H is given by

BF I
H,H0

(n) =
∑

x01

∑

x10

(

x++

x01 x10 x++ − x△

)(

1

4

)x01 (1

4

)x10 (1

2

)x++−x△

× BFM
{η 6= 1

2
,η= 1

2
}
(x|n)× BFCo

H,H0
(n|x),

where BFCo
H,H0

(n|x) = 2n△
B(a01+x01+n01,a△−a01+x△−x01+n△−n01)

B(a01+x01,a△−a01+x△−x01)
and BFM

η 6= 1

2
,η= 1

2

(x|n) =

2x++
B(a△+x△+n△,a++−a△+x++−x△+n++−n△)

B(a△+n△,a++−a△+n++−n△)
.

Hence, BF I
H,H0

(n) is a mixture of products of two BFs: the CI-prior BF derived

in the previous section, and the marginal BF of η 6= 1
2
versus η = 1

2
using imaginary

data and an actual posterior distribution on η.

4 Examples

We illustrate our methodology using three examples. They were chosen by Irony

et al. (2000) in order to reflect agreement or disagreement on testing H0 versus H

between a frequentist approach (p-value) and a Bayesian approach (default BF of

Lemma 2.2 derived from a uniform prior on the vector of cell-probabilities π). The

analysis carried out in Irony et al. (2000) also involves estimating θ, as well as other

parameters, but we shall not report on it. Conventionally, Irony et al. (2000) reject

the null when the p-value is below 5%, in the frequentist mode, and when the default

BF against the null is above 1, in the Bayesian mode.

We shall provide an alternative Bayesian analysis based on our intrinsic prior

methodology, also starting from a uniform prior on the cell probabilities. For ease

of communication, we transform the BF to the probability scale of H0, assuming
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prior odds equal to one, i.e. we consider Pr(H0|n) = 1
1+BFH,H0

(n)
, and similarly for

PrCI(H0|n) and PrI(H0|n).

For each example, rather than selecting a single intrinsic prior, we shall assess the

sensitivity of our results to prior sample size. In the spirit of Fan & Berger (2000),

this will be achieved through a plot of the posterior probability of H0 as a function

of the ratio between prior and actual sample size, which we label q. Specifically,

q = x++/n++ for the I-case, and q = x△/n△ for the CI-case, 0 < q < 1.

We now present and discuss the three examples. Although the data are fictitious,

for the sake of exposition they are presented as a survey of individuals expressing

support (“Yes”, “No”) for the President, before and after a Presidential address.

Example 4.1 The data for this case represent a random sample of 100 interviewed

individuals, and are reported in Table 4.1. The p-value is 25% and Pr(H0|n) = 0.64,

so that neither approach would reject H0.

Example 4.2 In this example a random sample of 100 interviewed individuals gave

rise to Table 4.2. The p-value is 4%, so that H0 would be rejected, while Pr(H0|n) =

0.29, leading to the same conclusion.

Example 4.3 In this last example the sample size is only 14 and the outcome of

the survey is given by Table 4.3. The p-value is 7%, suggesting that H0 should not

be rejected; on the other hand Pr(H0|n) = 0.22, pointing to the opposite conclusion.

Thus, for this example, there seems to be a clear conflict between the conclusions

under the two approaches.
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Support for the President

After

Before No Yes Total

No 20 17 37

Yes 10 53 63

Total 30 70 100

Table 1: Data for Example 1.

Support for the President

After

Before No Yes Total

No 20 21 41

Yes 9 50 59

Total 29 71 100

Table 2: Data for Example 2.

Support for the President

After

Before No Yes Total

No 1 7 8

Yes 1 5 6

Total 2 12 14

Table 3: Data for Example 3.
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We now proceed with the intrinsic analysis of the three examples, having in mind

that sensitivity to prior specifications is a major concern when evaluating BFs. Ac-

cordingly, our results are visually summarized in Figure 4. For each example we

present two panels: on the left-hand-side we plot the CI-prior density for selected

values of the fraction of prior to actual sample size q, namely q = 0, 0.25, 0.50, 0.75, 1.

Clearly, q = 0 corresponds to the starting default prior for θ, that is the uniform dis-

tribution on the interval (0, 1). We also plot in this panel the normalized likelihood

function. In the right panel we present the plots of PrCI(H0|n) and PrI(H0|n), as a

function of q. Notice that for all three datasets the two plots are remarkably similar.

Consider first Example 1. The left panel reveals a mild conflict between the

likelihood and the null hypothesis, as well as the CI-prior which by construction is

centered on H0. The right panel shows that Pr
CI(H0|n) and PrI(H0|n) are decreasing

for 0 < q < 1, spanning a range from 0.64 (default value) to 0.47. This can be ex-

plained as follows: the data do not contradict explicitly H0 and thus there is scope for

diminishing the probability of H0 by peaking the prior under H around H0. Although

the curves cross the 50% threshold, this only occurs if q exceeds 70%: a value that

appears to overemphasize the role of the prior. In conclusion, the rejection of H0 on

conventional grounds is not totally robust, but is broadly justified.

Consider now Example 2. The left panel reveals an appreciable conflict between

the likelihood on the one hand, and the null and the CI-prior on the other. This

aspect translates into a posterior probability of H0 approximately ranging from 0.24

to 0.29 (default value). Notice that in this example the behavior of PrCI(H0|n) and

PrI(H0|n) is not monotone as a function of q. To understand why this occurs, recall
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size for each of the three examples (q is the fraction of prior to actual sample size).
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that the data are in disagreement with the null. As a consequence, centering the prior

under H around the null can only benefit the posterior probability of H0 provided the

prior sample size is not too large; otherwise the prior under H will be too similar to

that under H0. In conclusion, the conventional rejection of H0 appears fully robust;

yet the default value of Pr(H0|n) is possibly too high, since a moderate prior sample

size determines a relatively sharp decrease in PrCI(H0|n) and PrI(H0|n). A value

close to the 0.25 threshold seems therefore more reasonable.

Finally, turn to Example 3. Here the likelihood reveals a marked disagreement

with the null, although it has a rather heavy left tail because of the limited number

of observations. The family of CI-priors is accordingly more dispersed around the

value θ = 1/2, because they are based on prior sample sizes which are a fraction

of n△ = 8. Notice that PrCI(H0|n) and PrI(H0|n) are now monotone increasing

from 0.22 (default value) to 0.26. This is a clear example where the intrinsic prior

methodology contributes to water down the evidence against the null, thus defying

its original purpose. This happens because the data are already in good agreement

with the alternative, and thus peaking the prior under H around H0 only accumulates

probability mass in areas not supported by the likelihood, thus increasing the posterior

probability of H0. Hence, in this case too, the conventional rejection of H0 is robust.

5 Discussion

In this paper we considered Bayesian hypothesis testing for the comparison of two

nested hypotheses, using the BF as a measure of evidence. Alternative approaches
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may be useful, e.g. those based on measures of divergence such as the symmetrized

Kullback-Leibler; see Bernardo (2005). However, when converted to the probability

scale of the null, assuming prior odds equal to one, the BF is a communication

device of unsurpassed clarity. However, since the BF is strongly influenced by prior

specification, whose effect does not decrease as the sample size increases, sensitivity

analysis is needed to evalutate robustness of the conclusions.

An objective framework for sensitivity analysis is offered by the intrinsic prior

methodology: starting from default priors both under the null and the alternative

(encompassing) hypothesis, a family of prior distributions under the alternative is

constructed such that its elements are increasingly concentrated around the null, as

prior sample size grows. In this way, we avoid to unduly favor the null, especially

when the data do not contradict it explicitely

For the problem of testing the equality of two correlated proportions, there is

a choice between using the full sampling model (1) and the conditional sampling

model given the overall number of swing. We considered both approaches, obtaining

I-priors and CI-priors, respectively. When applied to the examples of Section 4, the

two approaches proved to be essentially equivalent, altough in general they are not.

In particular, as shown in Figure 6, the posterior probability of the null depends on

the total sample size n++ in the I-approach only; see Ghosh et al. (2000) for similar

results obtained using a Rash-type Bayesian hierarchical model.

A point that was not addressed in this paper concerns consistency of the CI-prior

and I-prior Bayes factors. Casella & Moreno (2006), discussing tests of independence

in two-way contingency tables, show that the intrinsic BF is consistent provided the
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that n01 = n10 = 5, with x++ = 10 and x△ = 5 for I-priors and CI-priors, respectively.

ratio of prior to (actual) sample size goes to zero as the sample size goes to infinity.

28



Finally, the problem of comparing two correlated proportions is a special case of

the more general problem of testing the hypothesis of marginal homogeneity in square

contingency tables; see Bergsma (1997, Ch. 3) for an extensive review.
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