arXiv:0707.4643v4 [stat.ME] 18 Mar 2011

Active Set and EM Algorithms for Log-Concave Densities
Based on Complete and Censored Data

Lutz Dimbgen, André Husler and Kaspar Rufibach
University of Bern

August 2007, revised March 2011

Abstract. We develop an active set algorithm for the maximum likelitha@stimation of a
log-concave density based on complete data. Building anfésit algorithm, we indicate an EM

algorithm to treat arbitrarily censored or binned data.

1 Introduction

A probability densityf on the real line is called log-concave if it may be written as

f(z) = expo(z)

for some concave functiop : R — [—o0, 00). The class of all log-concave densities provides an
interesting nonparametric model consisting of unimodalsttees and containing many standard
parametric families; see Dimbgen and Rufibach (2009) foorerthorough overview.

This paper treats algorithmic aspects of maximum likelth@stimation for this particular
class. In Sectiohl2 we derive a general finite-dimensionafropation problem which is closely
related to computing the maximum likelihood estimator obg-toncave probability density
based on independent, identically distributed obsematiGection 3 is devoted to the latter op-
timization problem. At first we describe generally an actbet algorithm, a useful tool from
optimization theory (cf. Fletcher, 1987) with many potahtipplications in statistical computing.
A key property of such algorithms is that they terminate rafitdtely many steps (in principle).
Then we adapt this approach to our particular estimatiomlprno, which yields an alternative
to the iterative algorithms developed by Rufibach (2006,72@hd Pal, Woodroofe and Meyer
(2006). The resulting active set algorithm is similar inrgfb the vertex direction and support
reduction algorithms described by Groeneboom, Jongbloddellner (2008), who consider the

special setting of mixture models.
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In Section(# we consider briefly the problem of estimating @bpbility distribution P on
(0, 00] based on censored or binned data. Censoring occurs quiigefily in biomedical ap-
plications, e.g.X being the time point when a person develops a certain diswadies from a
certain cause. Another field of application is quality cohtrhere X is the failure time of a cer-
tain object. A good reference for event time analysis is tbaograph of Klein and Moeschberger
(1997). Binning is typical in socioeconomic surveys, e.gew persons or households are asked
which of several given intervals their yearly incon¥efalls into. We discuss maximum likelihood
estimation ofP under the assumption that it is absolutely continuougono) with log-concave
probability densityf. The resulting estimator is an alternative to those of Dgembet al. (2006).
The latter authors restrict themselves to interval-ceetsatata and considered the weaker con-
straints off being non-increasing or unimodal. Introducing the strotge still natural constraint
of log-concavity allows us to treat arbitrarily censoredagdaimilarly as Turnbull (1976). In Sec-
tion [§ we indicate an expectation-maximization (EM) algon for the estimation of?, using
the aforementioned active set algorithm as a building blddks approach is similar to Turnbull
(1976) and Braun et al. (2005); the latter authors consitleedf-consistent kernel density esti-
mators. For more information and references on EM and eelaligorithms in general we refer
to Lange et al. (2000). A detailed description of our methmdcensored or binned data will be
given elsewhere.

Sectior[_ 6 contains most proofs and various auxiliary result

2 The general log-likelihood function for complete data

Independent, identically distributed observations. Let X, X,,..., X,, be independent ran-
dom variables with log-concave probability densfty= exp ¢ on R. Then the normalized log-

likelihood function is given by

() == n"" ) ¢(X),
=1

It may happen that due to rounding errors one obseXeis place ofX;. In that case, let; <
z9 < --- < x, be the different elements ¢fX|, X5, ..., X,,} and defing; := n 1 #{j : X; =

x;}. Then an appropriate surrogate for the normalized lodiiked is

Ue) = pidl(xs). 1)
i=1



The general log-likelihood function. In what follows we consider the functiondll (1) for ar-
bitrary given pointsz; < z3 < --- < =z, and probability weight®1,ps,...,pm > 0, i.€.
>, pi = 1. Suppose that we want to maximiggp) over all functionsp within a certain family
F of measurable functions frofit into [—oo, co) satisfying the constrainf exp ¢(z) dz = 1. If

F is closed under addition of constants, e+ ¢ € F for arbitrary¢ € F andc € R, then one
can easily show that maximizing(¢) over all¢ € F with [exp ¢(x)dz = 1 is equivalent to
maximizing

L(¢) = Zpigb(:zi) —/equb(x) dx
i=1

over the whole familyF; see also Silverman (1982, Theorem 3.1).

Restricting the set of candidate functions. The preceding considerations apply in particular
to the family F of all concave functions. Now laf be the set of all continuous functions :
[z1, 2] — R which are linear on each intervaly, xx11], 1 < k < m, and we define) := —oo
onR\ [z1,z,,]. Moreover, letG..,. be the set of all concave functions withgh For any¢ € F
with L(¢) > —oo let ¢ be the unique function iG..,. such thaty) = ¢ on {x1,x9,..., 2}
Then it follows from concavity of thaty < ¢ pointwise, andL(¢)) > L(¢). Equality holds if,
and only if,p = ¢. Thus maximizingL over the classF is equivalent to its maximization over

gCOl’lC .

Properties of L(-).  For explicit calculations it is useful to rewrite(+)) as follows: Any function
¥ € G may be identified with the vectap := (¢)(z;))7, € R™. Likewise, any vectogy € R™

defines a function) € G via

Tr—x Tr—x
¢(3§') = (1_ 5k k>wk+Tkwk+l forz € [xkvmk-i-l]vl §k<m>

whered, := xx1 — xx. Then one may write

m m—1
L(y) = L) = pithi — > pJ (i, i)
i=1

k=1
with
1
J(r,s) = / exp((1 —t)r +ts)dt
0
for arbitraryr, s € R. The latter function/ : R x R — R is infinitely often differentiable and

strictly convex. Hencd.(-) is an infinitely often differentiable and strictly concawen€tional on



R™. In addition it is coercive in the sense that

L(y) — —oo as|¢|| = oo. 2
This entails that both
1; := argmax L(¢) and 3)
YeG
1; := argmax L(v)) 4)
wegcollc

are well defined and unique.
Let us discuss some further propertiesgf) and its unrestricted maximize/}. To maximize

L(-) we need its Taylor expansion of second order. In fact, foctionsy, v € G,

gt = gp i)~ [ o) e via) da. )
2
ﬁ‘t:oL(zﬁ_‘_tv) = —/’U(m)2eXp¢(ﬂj)d;p' (6)

Note that the latter expression yields an alternative poddfs strict concavity. Explicit formulae
for the gradient and hessian matrix bfas a functional ofiR™ are given in Sectionl6, and with
these tools one can easily compuﬁa/ery precisely via Newton type algorithms. We end this
section with a characterization and interesting propeighe maximizeiZ. In what follows let

aa—i—b

Jan(r8) = 5253

1
J(r,s) = /0 (1 — )% exp((1 — t)r + ts) dt.

for nonnegative integers andb.

Theorem 2.1 Letty) € G with corresponding densitf(x) := exp ¢ (x) and distribution function
F(r) = f;l f(z)dz on[zy1,z,]. The functiom) maximizesL if, and only if, its distribution

function F' satisfies

Th+1 k
Tk i=1

In that case,

/xm xf(x)dx = Zm:pixi
x i=1

1

and

1

Tm m m—1
[ s = 3 bt = 3 8 b
z i=1 k=1



Some auxiliary formulae. Forv € G with density f(x) := exp 1 (z) and distribution function
F(r):= f;l f(z)dzx on[zy,x,], one can easily derive explicit expressions foand the first two

moments off in terms ofJ(-, -) and its partial derivatives: Fdr< k& < m,

k
F(l‘k+1) = Z5ZJ(¢2771Z)Z+1)

i=1
and
1 Th+41
(5,; / F(ac) der = F(mk) + 5kJ10(1/1k,1/1k+1) S (F(ack), F(ack+1)).
Tk
Moreover, for any: € R,

3
L

/xm(ﬂc —a)f(z)dz = Ok ((zr — a)Jro(Wks Yrs1) + (a1 — a)Jor (ks Yrs1)),

1

3 >
Tl
_

/:vm (z —a)’f(z)de = Sk ((zx — a)* Jro(Vk, Yia1) + (@1 — @) Jor (Vi Yrs1))

T 1

= > ST (ks Yrs)-

k=1

B
Il
—

3 An active set algorithm
3.1 The general principle
We consider an arbitrary continuous and concave fundtiolR” — [—o0, co) which is coercive

in the sense of {2) and continuously differentiable on thelsen(L) := {¢» € R™ : L(¢) >

—oo}. Our goal is to maximizd, on the closed convex set
K = {zpe]R{m:vngciforizl,...,q},

wherevy, ..., v, are nonzero vectors iR™ andcy, . . ., ¢, real numbers such th&tNdom(L) #

(). These assumptions entail that the set

K. := argmax L(v))
pek

is a nonvoid and compact subsetdofin(L). For simplicity we shall assume that
v1,v2,...,V, are linearly independent )

but see also the possible extensions indicated at the ehisafdction.
An essential tacit assumption is that for any index4et {1,...,q} and the corresponding

affine subspace

V(4) = {w ER™ v =c,forallac A}
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of R™, we have an algorithm computing a point

P(A) € V,(A) := argmax L(1),
PeV(A)
provided thatV(A) Ndom(L) # (. Now the idea is to vary suitably until, after finitely many
stepsap(A) belongs tak,.

In what follows we attribute to any vectaf ¢ R™ the index set

A(p) = {ie{l,...,q} : v,-T«,bch-}.

Fori € K the setA(v)) identifies the “active constraints” fap. The following theorem provides

useful characterizations &, andV,(A).

Theorem 3.1 Letbq,...,b,, be a basis dR™ such that
=0 else
(a) A vectoryp € K ndom(L) belongs tdC. if, and only if,

=0 forallic{1,...,m}\ A®y),

) . ®)
< 0 forallie A(W).

b VL() {

(b) For any given set C {1, ...,q}, avector) € V(A)Ndom(L) belongs to/.(A) if, and only
if,

b/ VL(x) = 0 forall ie{1,...,m}\ A. 9)

The characterizations in this theorem entail that any vagte K, belongs to/,.(A(¢)). The

active set algorithm performs one of the following two prdwees alternately:

Basic procedure 1: Replacing a feasible point with a “condibnally” optimal one. Let) be

an arbitrary vector ikC N dom(L). Our goal is to find a vectop,.,, such that

L(Ilpnew) 2 L('l,b) and sznow € ’Cﬁv*(A(wnow)) (10)

To this end, setd := A(s) and define the candidate vectpy, 4 := % (A). By construction,

L(Ilpcand) > L(’l,b) If L(’l:bcand) = L(’l,b), we Set":bncw = ’l,b If L(Ilpcand) > L('l:b) and
Yeang € K, we setyp, ., = ¥..nq- Here [10) is satisfied, becauggy, .,,) 2 A(v), so that

V(A(/l/)new)) - V(A) Fina”y' if L(/l/)cand) > L(’(ﬁ) bUt"pcand ¢ K, let
t= t(’(ﬁ, /l/)cand) = max{t S (07 1) : (1 - t)’(b + t’(pcand S ]C} (11)

. Ci — ’U,-T P
= min T T
v, 'lzbcand -, ":b

, T
1< < q,7; "pcand > Ci}'
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Then we replace) with (1 — t)i + t1).,,q- Note thatL(v) does not decrease in this step, due
to concavity of L. Moreover, the sefi(v) increases strictly. Hence, repeating the preceding
manipulations at mosttimes yields finally a vectog, ., satisfying [(10), becausg({1,...,q})

is clearly a subset of. With the new vectow), ., we perform the second basic procedure.

Basic procedure 2: Altering the set of active constraints. Lety € K Ndom(L) NV, (A) with
A = A(%). It follows from Theoreni 3]1 thai) belongs taC. if, and only if,

b, VL() < 0 forallac A.

Now suppose that the latter condition is violated, andalet= a,(¢) be an index inA such
thatb, VL(v) is maximal. Them + tb,, € K and A(¢y + tb,,) = A\ {a,} for arbitrary
t > 0, while L(v + tb,,) > L(v) for sufficiently smallt > 0. Thus we consider the vector
Yeana = V(A \ {a,}), which satisfies necessarily the inequalityz)_,,4) > L(t). It may fail

to be in/C, but it satisfies the inequality

T
Uaoqpcand > Cao-

For,na — 1 may be written as\,, b, + >, 4 Aib; With real coefficients\y, ..., A,,, and

0 < (Yeana — %) VL(¥) = Ag,b, VL(¥)

according to[(). Hence < Ao, = v/ (¥ eand — V) = V4 WYeand — Cap- If Yeana € K, We repeat

this procedure with),, 4 in place ofiy. Otherwise, we replace with (1 — ¢) + t.,,.q4, Where

can

t = t(¢, P anq) > 0 is defined in[(1lL), which results in a strictly larger valueldi)). Then we

perform the first basic procedure.

The complete algorithm and its validity. Often one knows a vectap, € K N dom(L) in
advance. Then the active set algorithm can be started watfirgt basic procedure and proceeds
as indicated in Tablel1. In other applications it is somesirabvious that’({1, ..., q}), which

is clearly a subset of, contains a point inlom(L). In that case the input vectap, is super-
fluous, and the first twelve lines in Tallle 1 may be simplifiedndgcated in Tabl€]2. The latter
approach with starting poinp,, = sz({l, ...,q}) may be numerically unstable, presumably when
this starting point is very far from the optimum. In the spéaettings of concave least squares

regression or log-concave density estimation, a thirdavériurned out to be very reliable: We



start with A = § ande, = 1(A). As long asy, ¢ K, we replaced with the larger setd(y,)
and recomputep, = 1(A); see Tabl&l3.

In Table1, the lines marked with (*) and (**) correspond te #nd of the first basic procedure.
At this stageg) is a vector inK N dom(L) N V.(A(v)). Moreover, whenever the point (**) is
reached, the valué () is strictly larger than previously and equal to the maximum_aver
the setV(A). Since there are only finitely many different setsC {1,...,q}, the algorithm
terminates after finitely many steps, and the resuliinigelongs tokC by virtue of Theorem 3]1.

When implementing these algorithms one has to be aware oéricahinaccuracies and errors,
in particular, if the algorithm}(-) yields only approximations of vectors W.(-). In our specific
applications we avoided endless loops by replacing theitions “b, VL (1) < 0" and “v, ¢ >

¢;” with “ b VL(¢) < —¢"and “vl b > c; + ¢, respectively, for some small constant- 0.

Algorithm ) « ActiveSetl(L, v (-),v,)
Y,

A Ap)

,l:bcand A 'I,b(A)

while v¢,,q4 € K do

'l,b — (1 - t(’l,b, wcand))w + t('l,b, wcand)wcand
A<+ AyY)

wcand A ,l:b (A)

end while
'l:b — 'lzbcand
A A(p) ()
while max,c 4 b VL(1)) > 0 do
a < min (argmaxaeA bIVL(w))
Ae A\ {a}
/l:bcand — ’(ﬁ(A)
while ¥4 € K do

’l/) A (1 - t(/l/)a /l/)cand))/l/) + t(’l/), "pcand)"pcand
A<+ A(Y)

/l:bcand A ’(p (A)

end while

’l/) — "pcand

A Ap) ()
end while.

Table 1: Pseudo-code of an active set algorithm.

Possible extension I. The assumption of linearly independent vectors. . . , v, has been made

for convenience and could be relaxed of course. In particafee can extend the previous consid-



Algorithm < « ActiveSet2(L, 9(-))
Y P({L....q})

A+—{1,...,q}

while max,c 4 b, VL(z)) > 0 do

end while.

Table 2: Pseudo-code of first modified active set algorithm.

Algorithm ¢ < ActiveSet3d L, 4 -))
Y (D)
while ¢ ¢ K do
A A(p)
P < 1p(A)
end while
A+ A®W)
while max,c 4 b, VL(2)) > 0 do

end while.

Table 3: Pseudo-code of second modified active set algarithm
erations easily to the situation whefeconsists of all vectorg) € R™ such that

.
i1 < v P < o

for 1 < ¢ < g with numbers—oco < ¢; 1 < ¢;2 < 00.

Possible extension Il. Again we drop assumptiofl(7) but assume that= --- = ¢, = 0, so
thatC is a closed convex cone. Suppose further that we know a figilit2 af generators ok, i.e.
every vecton) € K may be written as
b= Dhee
ecf

with numbers\, > 0. In that case, a poinp € X N dom(L) belongs taC, if, and only if,

VL(y)"4 = 0 and max VL(y)Te < 0. (12)

Now we can modify our basic procedure 2 as follows: #e€ K N dom(L) N V(A) with A :=
A(w). If [@2) is violated, lete(wp) € € such thatV L(+)) "e(ap) > 0. Further lets(+)), () > 0
such thatp,,.,, := s(¥)y + t(¢)e(y) € K satisfiesL (1)) > L(¢). Then we replace) with

P ,ew @nd perform the first basic procedure.



3.2 The special case of fitting log-concave densities

Going back to our original problem, note thate G lies within G, if, and only if, the corre-
sponding vectot) satisfies

Vip1 =¥ Yy — i

—vjp <0 forj=2,... -1 13

wherev; = (v; ;)i*, has exactly three nonzero components:
Vi-1g = 101, vy = (8- +05)/(0j-165), ity = 1/

Note that we changed the notation slightly by numberingrthe 2 constraint vectors frorg to

m — 1. This is convenient, because theﬁzp # (0 is equivalent to the corresponding function
Y € G changing slope at;. Suitable basis vectois are given, for instance, by, := (1)72,,
b, == (z;)", and

b, = (min(ac,- —wj,O))Zl,

2<j5<m.

For this particular problem it is convenient to rephrasesitte/e set method in terms gfactive
constraints, i.e. trué&notsof functions inG. Throughout letl = {i(1),...,i(k)} be a subset of
{1,2,...,m} with £ > 2 elementsl = i(1) < --- < i(k) = m, and letG(I) be the set of all
functionsy) € G which are linear on all intervalg:; (), z;(s+1)], 1 < s < k. This set corresponds
to V(A) with A := {1,...,m} \ I. Afunctiony € G(I) is uniquely determined by the vector

(w(wi(s)))le, and one may write

L(¢) = Zps(f)l/}(%(s)) - (xi(s-‘rl) - wz(s))'](w(xz(s))aw(xz(s-‘rl)))

with suitable probability weights; (1), ..., px(I) > 0. Precisely, writing

Li(s+1) — X T = Ti(s)

Y(z) = V(i) + ——————— Y(@i(s41))
Ti(s4+1) — Ti(s) ®) Li(s+1) — Ti(s) (e+1)
for1 <s < kandz;,) < x < xy,41) Yields the explicit formulae
-1 o —
i(2) — Ti
I = UG A
id) ZZ:; Ti(2) — *1 bi
i(s+1)-1 i — Ty Tty — i
ps(l) = Z min( ) , is+1) ‘ )pi for2 < s <k,
i=i(s—1)+1 Li(s) — Li(s—1) Li(s+1) — Li(s)
ik T — Lj(k—
pe(I) = Z #pz

Tm — Ti(k-1)
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Consequently, the computationfor () := argmax ¢,y L() are optimization problems of
the same type.

Since the vectorss, . .., b, correspond to the functioni,, ..., A,, in G with
Aj(z) = min(z — x4, 0), (14)

checking the inequality)IVL(z,b) < 0 for a € A amounts to checking whether the directional
derivative

Tm

Hi() =) pilhj(as) — / Aj(x) exp(z) da (15)
i=1 z

1
is nonpositive for allj € {1,...,m}\ 1. If v = v!) and; ¢ I, the inequalityf7; (1)) > 0 means
that Z(¢) could be increased strictly by allowing an additional kriat a

Example 3.2 Figure[1 shows the empirical distribution functionsef= 25 simulated random
variables from a Gumbel distribution, while the smooth ritisition function is the estimator
F(r) := J7 . exp ¥(z) dz. Figurel2 illustrates the computation of the log-densititself. Each
picture shows the current functieintogether with the new candidate functigg,.q. We followed
the algorithm in Tablgl2, so the first (upper left) picturewbahe starting point, a linear function
¥ on [z, x95], together withy..nq having an additional knot iz, z25). Sincey.anq IS concave,
it becomes the new function shown in the second (upper right) plot. In the third (lowdt)le
plot one sees the situation where adding another knot essirita non-concave functiof..q.
So the current functiog was replaced with a convex combinationyoéindv...q. The latter new

functiony and the almost identical final f& are depicted in the fourth (lower right) plot.

4 Censored or binned data

In the current and the next section we consider independeom variablesX;, X, ..., X,
with unknown distributionP on (0, co] having sub-probability density = exp ¢ on (0, o),
whereg is concave and upper semicontinuous. In many applicattomslbservations(; are not
completely available. For instance, let the be event times for. individuals in a biomedical
study, whereX; = oo means that the event in question does not happen at all. #ttidy ends
at timec; > 0 from thei-th unit's viewpoint, wherea¥(; > ¢;, then we have a “right-censored”
observation and know only tha; is contained in the intervak; = (¢i,0]. In other settings
one has purely “interval-censored” data: For tkte observation one knows only which of given

intervals (0, ; 1], (ti1,ti2), - - - (ti,m(), 00] containsX;, whered < t;1 < -+ < &) < oo. If

11



Figure 1: Estimated distribution functions for= 25 data points.

these candidate intervals are the same for all observatimesspeaks of binned data. A related
situation are rounded observations, e.g. when we obgeéyerather thanX;.

In all these settings we observe independent random ineksa Xo, ..., X,. More precisely,
we assume that eitheéf; = (L;, R;] > X; with 0 < L; < R; < oo, or X, consists only of the one

pointL; := R; := X; € (0,00). The normalized log-likelihood for this model reads
(¢) = nt Z(l{Li = R;}o(X:) (16)
i=1

+ 1{L; < R;}log (/LRZ exp ¢(x)dx + 1{R; = oo}poo>>,

where

Poo = 1—/Oooexp¢(ac)dx € [0,1].

5 An EM algorithm

Maximizing the log-likelihood functior/(¢) for censored data is a non-trivial task and will be
treated in detail elsewhere. Here we only indicate how thrste achieved in principle, assuming
for simplicity that P({co}) = 0, i.e. [;° exp ¢(z) dz = 1 andps = 0. In this case, the log-

likelihood simplifies to
— n RZ
p) = n7! Z(l{Li = Ri}o(X;) + H{L; < R,-}log</L exp ¢(z) d$>>
=1 i

12
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Figure 2: Estimating the log-density fer= 25 data points.

Again one may get rid of the constraifg>O exp ¢(z) dxz = 1 by considering

L() == (o) - /0 " exp b(a) de 17)

for arbitrary concave and upper semicontinuous functiengo, oo) — [—o0, 00).

A major problem is that(¢) is not linear but convex ig. Namely, forv : (0,00) — R and
0<L<R<o,

a R Ey(v(X)| X € (L ifa=1

O ron( [ (o) + @ ar) = (RGO X LA ez

t=0 Vary(v(X)| X € (L,R]) ifa=2.

— 18
T : (18)

Thus we propose to maximizés) iteratively as follows: Starting from a functianwith L(¢) >

—o0, We replace the target functidin¢y,c., ) with

Lo |6) = L 76+ tbuew — 6)) — /0 "~ exp nen () dar.

4
dt lt=0

By means of[(18), this may be written as

E((bnew |$) = const(p) + / Gnew (z) P(dx | @) — /000 exp Pnew () dz, (29)

13



where
P(-|¢) :=n"" Z(l{Li = Ri}0x, + {Li < Ri}Ly(X | X € (Li7Ri])>7
=1
a probability measure depending on the data and.dm other words, for any Borel subsgt of

(0, 00),

-1 meL Ri) exp ¢(z) dx
P(B|¢) Z<1{L—R € B} +1{L; < R;} Tom exp¢>() >

Note also thaIL(gbnOW | ) equals the conditional expectation of the complete-dagdikelihood

L(¢new ), given the available data and assuming the curgentbe the true log-density:
E(gbnow | ¢) = E¢(L(¢n0w) ‘ Xz' € )?z for 1 <i< ’I’L),

where theX;; are treated temporarily as fixed.

After approximating the probability measuR¥- | ¢) by a discrete distribution with finite sup-
port, one can maximizE(qanW | ) over all concave functions,,., with the active-set algorithm
presented in Sectidni 3. Then we replaceith ¢,.,, and repeat this procedure until the change of

¢ becomes negligable.

6 Auxiliary results and proofs

Explicit formulae for J and some of its partial derivatives. Recall the auxiliary function
J(r,s) = fol exp((1 — t)r + ts) dt. One may write explicitly

J(r,s) = J(s,r) = {(GXP(T) —exp(s))/(r —s) it f s,
eXp(r) if r=s,
or utilize the fact that/ (r, s) = exp(r)J(0, s — r) with J(0,0) = 1 and

= (&X - = 3 yk
J0.9) = (exp(y) = 1)/y kZ:oU@“)!'

To compute the partial derivative, (r, s) of J(r, s), one may utilize the facts thdt,(r, s) =

Jpa(s,7) = exp(r)Jap(0,s — 7). Moreover, elementary calculations reveal that

©© k
o) = (ewl) —1-0/v* = 3 iy
e k
0(0y) = 2@qmg_1_y_yy@/f==25@%%j,
2 (k+1)yF

Tn(0y) = (ylexp(y) +1) —2exply) — 1) /v* = 3

2 kT3
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The Taylor series may be deduced as follows:

1
Tu(0,y) = /0 (1— 0otbetv dt

iigi al(b+ k)
k' (k+a+b+ 1)

k=0
B ii al(b+ k) y*
N = kl(k+a+b+ 1)l

according to the general formufé(l — t)ktt dt = K101/ (k + £ + 1)! for integersk, £ > 0.
Numerical experiments revealed that a fourth degree Tegpproximation forJ,;(0,y) is

advisable and works very well if

lyl < 001 (a+b=1),
0.02 (a+b=2).

Explicit formulae for the gradient and hessian matrix of L. At 1) € R™ these are given by

P 61J10(¢1,92) if k=1,
O—WLW) = P —  Ok—1Jo1 (Vr—1, V%) + Ok Jro(Vr, Y1) 2 <k <m,
Om—1J01 (Vm—1, ¥m) if k& =m,
1J20(¢1,v2) ifj=4k=1,
52 Op—1Jo2(Vr—1,Vr) + S Joo(Vr, Y1) H2<j=Fk <m,
- WLW) = Om—1J02(V¥m—1,Vm) ff j= k; =m,
0511 (Y5, ) fl1<j=k—1<m,
0 if |7 — k| > 1.

Proof of (@). In what follows letmin(v) andmax(v) denote the minimum and maximum, re-
spectively, of all components of a vector Moreover letR(v) := max(v) — min(v). Then with

p = (pj)" andd = (6);", note first that

L(¢) < max(¢h) — (xm — 21) exp(min(e)))
= R(¥) + min() — (2 — x1) exp(min(¢))

— —oo as||yp|| = cowhile R(yp) <,
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for any fixedr, < co. Secondly, Ieth := ¢); — min(ep). Thenmin(e) = 0, max(¥) = R(v),

whence
L(y) = Zpﬂzz + min(?) — exp(min(t))) /wm exp({/;(ac)) dx
i=1 1
< (1 - min(p)) R(w) + sup(s - exp(s) [ exp(i(a)) da)
seR T
=<meMMWJ%/%mM»m—1
m—1
= (1 min(p)) R() —log (Y 0 (Yr, ts1)) — 1
k=1
guﬂm@mm—mﬁmwmmwyﬂ
= (1 —min(p)) R(¢) — log J (0, R(¢)) — log(e min(4)),
where we used the fact thatax,cr(s — exp(s)A) = —log A — 1 for any A > 0. Moreover, for
r >0,
—log J(0,r) = log<6rr_ 1) = —r +log<1 _Te_r> < —r+log(l+7),
whence

L(v) < —min(p)R(¢) + log(1 + R(7))) — log(emin(d)) — —oo asR(¢) — co. O

Proof of Theorem[Z.1. It follows from strict concavity ofZ and [%) that the function) equals

¢ if, and only if, ~
Zpiv(azi) = /xm v(x)f(x)dx (20)
i= z1
for any functionw € G. 1
Note that any vectop € R™ is a linear combination of the vectoes!), v(?, ..., (™) where

o) = (1{i < kDT,
With the corresponding functiong®) e G we conclude thaty maximizesL if, and only if,
k .
S = [P ds (21)
i=1 z1

for 1 < k < m. Now the vectow ™ corresponds to the constant functiofi) := 1, so that[[Zll)

with & = m is equivalent taF'(z,,) = 1. In case ofl < k < m,

1 if x <ag,
v ¥ (z) = (g1 — ) /0 If xp <2 < xp41,
0 if x> xp1,
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and it follows from Fubini’'s theorem that

/:mv(k)(x)f(w)dx = /:m/oll{uév““)@)}duf(””)d“

1

1 Tm
= / / He <y —udi}f(z) de du
0 Jz
) 1
= / F(zp41 — udy) du
0
Th+1
= 51;1/ F(r)dr.
Tk,

These considerations yield the characterization of theinrmagr of L.

As for the first and second moments, equat{od (20) with) := x yields the assertion that
o P equalsfjlm zf(x) dr. Finally, letv := (2?)_, andv € G the corresponding piecewise
linear function. Then

Tm

St — [t @ de = [ (o) — o)) de

1

m—1 Tyl

- L / (& —ap) (w1 — 2)f () da

= SpJ11 (VYry Yretr)-

Proof of Theorem[3.1. Itis well known from convex analysis that € X N dom(L) belongs to
K, if, and only if, vTVL(w) < 0 for any vectorv € R™ such thatw) + tv € K for somet > 0.
By the special form ofC, the latter condition om is equivalent taw] v > 0 for all a € A(+)). In
other wordsp = >, \;b; with A\, > 0 for all a € A(¢p). Thusy € K belongs tok, if, and
only if, it satisfies[(8).

Similarly, a vectorp € V(A) N dom(L) belongs toV,(A) if, and only if, v " VL(v) = 0 for

any vectorv in the linear space
{veR™:vjv=0forallae A} = span{b;:ie {1,...,m}\ A}.

But this requirement is obviously equivalent fid (9). O
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Software. The methods of Rufibach (2006, 2007) as well as the active stttod from Sectiohl3

are available in the R package ogcondens " written by K. Rufibach and L. Dimbgen; see also

Dumbgen and Rufibach (2011). Corresponding Matlab codeasable from the first author’s

homepage omww.stat .unibe.ch.

References

[1] W.J. BRAUN, T. DucHEsNEand J.E. $SAFFORD (2005). Local likelihood estimation for

[2]

[3]

[4]

[5]
[6]

interval censored dat&Canad. J. Statis83, 39-60.

L. DUMBGEN, S. RREITAG-WOLF and G. &NGBLOED (2006). Estimating a unimodal

distribution from interval-censored datd. Amer. Statist. Assod 01, 1094-1106.

L. DUMBGEN and K. RUFIBACH (2009). Maximum likelihood estimation of a log-concave
density and its distribution function: basic propertiesl amiform consistency.Bernoulli
151), 40-68.

L. DUMBGEN and K. RUFIBACH (2011). logcondens: Computations related to univariate

log-concave density estimatiod. Statist. Softwar89(6).
R. FLETCHER (1987). Practical Methods of Optimization (2nd edition)iley, New York.

P. GROENEBOOM G. JONGBLOED and J.A. WELLNER (2007). The support reduction
algorithm for computing nonparametric function estimatesnixture models. Scand. J.

Statist.35, 385-399.

[7] J.P. KLEIN and M.L. MOESCHBERGER(1997). Survival Analysis.Springer Verlag.

[8]

K. LANGE, D.R. HUNTER and I. YANG (2000). Optimization transfer using surrogate

objective functions (with discussion). Comp. Graph. Statis®, 1-59.

[9] J. PAL, M. WoobpRooOFEand M. MEYER (2006). Estimating a Polya frequency function.

[10]

In: Complex datasets and Inverse problems: Tomography, Nksvaord Beyond (R. Liu,
W. Strawderman, C.-H. Zhang, edsiMS Lecture Notes and Monograph Serig§ pp.
239-249.

K. RUFIBACH (2006). Log-Concave Density Estimation and Bump Hunting for I.I(Db-

servationsDissertation, Universities of Bern and Gottingen.

18



[11] K. RUFIBACH (2007). Computing maximum likelihood estimators of a lagicave density

function. J. Statist. Comp. Sin¥.7, 561-574.

[12] K. RuFIBACH and L. DUMBGEN (2009). logcondens: Estimate a log-concave probability

density from iid observationskR package version 1.3.5.

[13] B.W. SILVERMAN (1982). On the estimation of a probability density functmnthe maxi-
mum penalized likelihood method\nn. Statist.10, 795-810.

[14] B.T. TURNBULL (1976). The empirical distribution function with arbitilgrgrouped, cen-
sored and truncated datd. Royal Statist. Soc. B8, 290-295.

[15] J.A. WELLNER and Y. ZHAN (1997). A hybrid algorithm for computation of the non-
parametric maximum likelihood estimator from censoreciddt Amer. Statist. Asso@2,

945-959.

19



	1 Introduction
	2 The general log-likelihood function for complete data
	3 An active set algorithm
	3.1 The general principle
	3.2 The special case of fitting log-concave densities

	4 Censored or binned data
	5 An EM algorithm
	6 Auxiliary results and proofs

