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Abstract. We develop an active set algorithm for the maximum likelihood estimation of a

log-concave density based on complete data. Building on this fast algorithm, we indicate an EM

algorithm to treat arbitrarily censored or binned data.

1 Introduction

A probability densityf on the real line is called log-concave if it may be written as

f(x) = expφ(x)

for some concave functionφ : R→ [−∞,∞). The class of all log-concave densities provides an

interesting nonparametric model consisting of unimodal densities and containing many standard

parametric families; see Dümbgen and Rufibach (2009) for a more thorough overview.

This paper treats algorithmic aspects of maximum likelihood estimation for this particular

class. In Section 2 we derive a general finite-dimensional optimization problem which is closely

related to computing the maximum likelihood estimator of a log-concave probability densityf

based on independent, identically distributed observations. Section 3 is devoted to the latter op-

timization problem. At first we describe generally an activeset algorithm, a useful tool from

optimization theory (cf. Fletcher, 1987) with many potential applications in statistical computing.

A key property of such algorithms is that they terminate after finitely many steps (in principle).

Then we adapt this approach to our particular estimation problem, which yields an alternative

to the iterative algorithms developed by Rufibach (2006, 2007) and Pal, Woodroofe and Meyer

(2006). The resulting active set algorithm is similar in spirit to the vertex direction and support

reduction algorithms described by Groeneboom, Jongbloed and Wellner (2008), who consider the

special setting of mixture models.
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In Section 4 we consider briefly the problem of estimating a probability distributionP on

(0,∞] based on censored or binned data. Censoring occurs quite frequently in biomedical ap-

plications, e.g.X being the time point when a person develops a certain diseaseor dies from a

certain cause. Another field of application is quality control whereX is the failure time of a cer-

tain object. A good reference for event time analysis is the monograph of Klein and Moeschberger

(1997). Binning is typical in socioeconomic surveys, e.g. when persons or households are asked

which of several given intervals their yearly incomeX falls into. We discuss maximum likelihood

estimation ofP under the assumption that it is absolutely continuous on(0,∞) with log-concave

probability densityf . The resulting estimator is an alternative to those of Dümbgen et al. (2006).

The latter authors restrict themselves to interval-censored data and considered the weaker con-

straints off being non-increasing or unimodal. Introducing the stronger but still natural constraint

of log-concavity allows us to treat arbitrarily censored data, similarly as Turnbull (1976). In Sec-

tion 5 we indicate an expectation-maximization (EM) algorithm for the estimation ofP , using

the aforementioned active set algorithm as a building block. This approach is similar to Turnbull

(1976) and Braun et al. (2005); the latter authors considered self-consistent kernel density esti-

mators. For more information and references on EM and related algorithms in general we refer

to Lange et al. (2000). A detailed description of our method for censored or binned data will be

given elsewhere.

Section 6 contains most proofs and various auxiliary results.

2 The general log-likelihood function for complete data

Independent, identically distributed observations. Let X1,X2, . . . ,Xn be independent ran-

dom variables with log-concave probability densityf = expφ on R. Then the normalized log-

likelihood function is given by

ℓ(φ) := n−1
n∑

i=1

φ(Xi).

It may happen that due to rounding errors one observesX̃i in place ofXi. In that case, letx1 <

x2 < · · · < xm be the different elements of{X̃1, X̃2, . . . , X̃n} and definepi := n−1#{j : X̃j =

xi}. Then an appropriate surrogate for the normalized log-likelihood is

ℓ(φ) :=
m∑

i=1

piφ(xi). (1)
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The general log-likelihood function. In what follows we consider the functional (1) for ar-

bitrary given pointsx1 < x2 < · · · < xm and probability weightsp1, p2, . . . , pm > 0, i.e.
∑m

i=1 pi = 1. Suppose that we want to maximizeℓ(φ) over all functionsφ within a certain family

F of measurable functions fromR into [−∞,∞) satisfying the constraint
∫
expφ(x) dx = 1. If

F is closed under addition of constants, i.e.φ + c ∈ F for arbitraryφ ∈ F andc ∈ R, then one

can easily show that maximizingℓ(φ) over allφ ∈ F with
∫
expφ(x) dx = 1 is equivalent to

maximizing

L(φ) :=

m∑

i=1

piφ(xi)−

∫
expφ(x) dx

over the whole familyF ; see also Silverman (1982, Theorem 3.1).

Restricting the set of candidate functions. The preceding considerations apply in particular

to the familyF of all concave functions. Now letG be the set of all continuous functionsψ :

[x1, xm]→ R which are linear on each interval[xk, xk+1], 1 ≤ k < m, and we defineψ := −∞

onR \ [x1, xm]. Moreover, letGconc be the set of all concave functions withinG. For anyφ ∈ F

with L(φ) > −∞ let ψ be the unique function inGconc such thatψ = φ on {x1, x2, . . . , xm}.

Then it follows from concavity ofφ thatψ ≤ φ pointwise, andL(ψ) ≥ L(φ). Equality holds if,

and only if,ψ = φ. Thus maximizingL over the classF is equivalent to its maximization over

Gconc.

Properties ofL(·). For explicit calculations it is useful to rewriteL(ψ) as follows: Any function

ψ ∈ G may be identified with the vectorψ := (ψ(xi))
m
i=1 ∈ R

m. Likewise, any vectorψ ∈ R
m

defines a functionψ ∈ G via

ψ(x) :=
(
1−

x− xk
δk

)
ψk +

x− xk
δk

ψk+1 for x ∈ [xk, xk+1], 1 ≤ k < m,

whereδk := xk+1 − xk. Then one may write

L(ψ) = L(ψ) :=
m∑

i=1

piψi −
m−1∑

k=1

δkJ(ψk, ψk+1)

with

J(r, s) :=

∫ 1

0
exp

(
(1− t)r + ts

)
dt

for arbitraryr, s ∈ R. The latter functionJ : R × R → R is infinitely often differentiable and

strictly convex. HenceL(·) is an infinitely often differentiable and strictly concave functional on
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R
m. In addition it is coercive in the sense that

L(ψ) → −∞ as‖ψ‖ → ∞. (2)

This entails that both

ψ̃ := argmax
ψ∈G

L(ψ) and (3)

ψ̂ := argmax
ψ∈Gconc

L(ψ) (4)

are well defined and unique.

Let us discuss some further properties ofL(·) and its unrestricted maximizer̃ψ. To maximize

L(·) we need its Taylor expansion of second order. In fact, for functionsψ, v ∈ G,

d

dt

∣∣∣
t=0

L(ψ + tv) =
m∑

i=1

piv(xi)−

∫
v(x) expψ(x) dx, (5)

d2

dt2

∣∣∣
t=0

L(ψ + tv) = −

∫
v(x)2 expψ(x) dx. (6)

Note that the latter expression yields an alternative proofof L’s strict concavity. Explicit formulae

for the gradient and hessian matrix ofL as a functional onRm are given in Section 6, and with

these tools one can easily computeψ̃ very precisely via Newton type algorithms. We end this

section with a characterization and interesting properties of the maximizer̃ψ. In what follows let

Jab(r, s) :=
∂a+b

∂ra∂sb
J(r, s) =

∫ 1

0
(1− t)atb exp((1 − t)r + ts) dt.

for nonnegative integersa andb.

Theorem 2.1 Letψ ∈ G with corresponding densityf(x) := expψ(x) and distribution function

F (r) :=
∫ r
x1
f(x) dx on [x1, xm]. The functionψ maximizesL if, and only if, its distribution

functionF satisfies

F (xm) = 1 and δ−1
k

∫ xk+1

xk

F (x) dx =

k∑

i=1

pi for 1 ≤ k < m.

In that case, ∫ xm

x1

xf(x) dx =
m∑

i=1

pixi

and ∫ xm

x1

x2f(x) dx =

m∑

i=1

pix
2
i −

m−1∑

k=1

δ3kJ11(ψk, ψk+1).
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Some auxiliary formulae. Forψ ∈ G with densityf(x) := expψ(x) and distribution function

F (r) :=
∫ r
x1
f(x) dx on [x1, xm], one can easily derive explicit expressions forF and the first two

moments off in terms ofJ(·, ·) and its partial derivatives: For1 ≤ k < m,

F (xk+1) =

k∑

i=1

δiJ(ψi, ψi+1)

and

δ−1
k

∫ xk+1

xk

F (x) dx = F (xk) + δkJ10(ψk, ψk+1) ∈
(
F (xk), F (xk+1)

)
.

Moreover, for anya ∈ R,

∫ xm

x1

(x− a)f(x) dx =

m−1∑

k=1

δk
(
(xk − a)J10(ψk, ψk+1) + (xk+1 − a)J01(ψk, ψk+1)

)
,

∫ xm

x1

(x− a)2f(x) dx =

m−1∑

k=1

δk
(
(xk − a)

2J10(ψk, ψk+1) + (xk+1 − a)
2J01(ψk, ψk+1)

)

−
m−1∑

k=1

δ3kJ11(ψk, ψk+1).

3 An active set algorithm

3.1 The general principle

We consider an arbitrary continuous and concave functionL : Rm → [−∞,∞) which is coercive

in the sense of (2) and continuously differentiable on the set dom(L) := {ψ ∈ R
m : L(ψ) >

−∞}. Our goal is to maximizeL on the closed convex set

K :=
{
ψ ∈ R

m : v⊤i ψ ≤ ci for i = 1, . . . , q
}
,

wherev1, . . . ,vq are nonzero vectors inRm andc1, . . . , cq real numbers such thatK∩dom(L) 6=

∅. These assumptions entail that the set

K∗ := argmax
ψ∈K

L(ψ)

is a nonvoid and compact subset ofdom(L). For simplicity we shall assume that

v1,v2, . . . ,vq are linearly independent, (7)

but see also the possible extensions indicated at the end of this section.

An essential tacit assumption is that for any index setA ⊆ {1, . . . , q} and the corresponding

affine subspace

V(A) :=
{
ψ ∈ R

m : v⊤a ψ = ca for all a ∈ A
}
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of Rm, we have an algorithm computing a point

ψ̃(A) ∈ V∗(A) := argmax
ψ∈V(A)

L(ψ),

provided thatV(A) ∩ dom(L) 6= ∅. Now the idea is to varyA suitably until, after finitely many

steps,ψ̃(A) belongs toK∗.

In what follows we attribute to any vectorψ ∈ R
m the index set

A(ψ) :=
{
i ∈ {1, . . . , q} : v⊤i ψ ≥ ci

}
.

Forψ ∈ K the setA(ψ) identifies the “active constraints” forψ. The following theorem provides

useful characterizations ofK∗ andV∗(A).

Theorem 3.1 Let b1, . . . , bm be a basis ofRm such that

v⊤i bj

{
< 0 if i = j ≤ q,

= 0 else.

(a) A vectorψ ∈ K ∩ dom(L) belongs toK∗ if, and only if,

b⊤i ∇L(ψ)

{
= 0 for all i ∈ {1, . . . ,m} \ A(ψ),

≤ 0 for all i ∈ A(ψ).
(8)

(b) For any given setA ⊆ {1, . . . , q}, a vectorψ ∈ V(A)∩dom(L) belongs toV∗(A) if, and only

if,

b⊤i ∇L(ψ) = 0 for all i ∈ {1, . . . ,m} \ A. (9)

The characterizations in this theorem entail that any vector ψ ∈ K∗ belongs toV∗(A(ψ)). The

active set algorithm performs one of the following two procedures alternately:

Basic procedure 1: Replacing a feasible point with a “conditionally” optimal one. Letψ be

an arbitrary vector inK ∩ dom(L). Our goal is to find a vectorψnew such that

L(ψnew) ≥ L(ψ) and ψnew ∈ K ∩ V∗(A(ψnew)). (10)

To this end, setA := A(ψ) and define the candidate vectorψcand := ψ̃(A). By construction,

L(ψcand) ≥ L(ψ). If L(ψcand) = L(ψ), we setψnew := ψ. If L(ψcand) > L(ψ) and

ψcand ∈ K, we setψnew := ψcand. Here (10) is satisfied, becauseA(ψnew) ⊇ A(ψ), so that

V(A(ψnew)) ⊆ V(A). Finally, if L(ψcand) > L(ψ) butψcand 6∈ K, let

t = t(ψ,ψcand) := max
{
t ∈ (0, 1) : (1− t)ψ + tψcand ∈ K

}
(11)

= min
{ ci − v

⊤
i ψ

v⊤i ψcand − v
⊤
i ψ

: 1 ≤ i ≤ q,v⊤i ψcand > ci

}
.
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Then we replaceψ with (1 − t)ψ + tψcand. Note thatL(ψ) does not decrease in this step, due

to concavity ofL. Moreover, the setA(ψ) increases strictly. Hence, repeating the preceding

manipulations at mostq times yields finally a vectorψnew satisfying (10), becauseV({1, . . . , q})

is clearly a subset ofK. With the new vectorψnew we perform the second basic procedure.

Basic procedure 2: Altering the set of active constraints. Letψ ∈ K∩dom(L)∩V∗(A) with

A = A(ψ). It follows from Theorem 3.1 thatψ belongs toK∗ if, and only if,

b⊤a∇L(ψ) ≤ 0 for all a ∈ A.

Now suppose that the latter condition is violated, and letao = ao(ψ) be an index inA such

that b⊤ao∇L(ψ) is maximal. Thenψ + tbao ∈ K andA(ψ + tbao) = A \ {ao} for arbitrary

t > 0, while L(ψ + tbao) > L(ψ) for sufficiently smallt > 0. Thus we consider the vector

ψcand := ψ̃(A \ {ao}), which satisfies necessarily the inequalityL(ψcand) > L(ψ). It may fail

to be inK, but it satisfies the inequality

v⊤aoψcand > cao .

Forψcand −ψ may be written asλaobao +
∑

i 6∈A λibi with real coefficientsλ1, . . . , λm, and

0 < (ψcand −ψ)
⊤∇L(ψ) = λaob

⊤
ao∇L(ψ)

according to (9). Hence0 < λao = v⊤ao(ψcand −ψ) = v
⊤
aoψcand − cao . If ψcand ∈ K, we repeat

this procedure withψcand in place ofψ. Otherwise, we replaceψ with (1− t)ψ+ tψcand, where

t = t(ψ,ψcand) > 0 is defined in (11), which results in a strictly larger value ofL(ψ). Then we

perform the first basic procedure.

The complete algorithm and its validity. Often one knows a vectorψo ∈ K ∩ dom(L) in

advance. Then the active set algorithm can be started with the first basic procedure and proceeds

as indicated in Table 1. In other applications it is sometimes obvious thatV({1, . . . , q}), which

is clearly a subset ofK, contains a point indom(L). In that case the input vectorψo is super-

fluous, and the first twelve lines in Table 1 may be simplified asindicated in Table 2. The latter

approach with starting pointψo = ψ̃({1, . . . , q}) may be numerically unstable, presumably when

this starting point is very far from the optimum. In the special settings of concave least squares

regression or log-concave density estimation, a third variant turned out to be very reliable: We
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start withA = ∅ andψo = ψ̃(A). As long asψo 6∈ K, we replaceA with the larger setA(ψo)

and recomputeψo = ψ̃(A); see Table 3.

In Table 1, the lines marked with (*) and (**) correspond to the end of the first basic procedure.

At this stage,ψ is a vector inK ∩ dom(L) ∩ V∗(A(ψ)). Moreover, whenever the point (**) is

reached, the valueL(ψ) is strictly larger than previously and equal to the maximum of L over

the setV(A). Since there are only finitely many different setsA ⊆ {1, . . . , q}, the algorithm

terminates after finitely many steps, and the resultingψ belongs toK by virtue of Theorem 3.1.

When implementing these algorithms one has to be aware of numerical inaccuracies and errors,

in particular, if the algorithm̃ψ(·) yields only approximations of vectors inV∗(·). In our specific

applications we avoided endless loops by replacing the conditions “b⊤a∇L(ψ) < 0” and “v⊤i ψ >

ci” with “ b⊤a∇L(ψ) < −ǫ” and “v⊤i ψ > ci + ǫ”, respectively, for some small constantǫ > 0.

Algorithm ψ ← ActiveSet1(L, ψ̃(·),ψo)
ψ ← ψo
A← A(ψ)

ψcand ← ψ̃(A)
while ψcand 6∈ K do

ψ ← (1− t(ψ,ψcand))ψ + t(ψ,ψcand)ψcand

A← A(ψ)

ψcand ← ψ̃(A)
end while
ψ ← ψcand

A← A(ψ) (*)
while maxa∈A b

⊤
a∇L(ψ) > 0 do

a← min
(
argmaxa∈A b

⊤
a∇L(ψ)

)

A← A \ {a}

ψcand ← ψ̃(A)
while ψcand 6∈ K do

ψ ← (1− t(ψ,ψcand))ψ + t(ψ,ψcand)ψcand

A← A(ψ)

ψcand ← ψ̃(A)
end while
ψ ← ψcand

A← A(ψ) (**)
end while.

Table 1: Pseudo-code of an active set algorithm.

Possible extension I. The assumption of linearly independent vectorsv1, . . . ,vq has been made

for convenience and could be relaxed of course. In particular, one can extend the previous consid-
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Algorithm ψ ← ActiveSet2(L, ψ̃(·))

ψ ← ψ̃({1, . . . , q})
A← {1, . . . , q}

while maxa∈A b
⊤
a∇L(ψ) > 0 do

. . .
end while.

Table 2: Pseudo-code of first modified active set algorithm.

Algorithm ψ ← ActiveSet3(L, ψ̃(·))

ψ ← ψ̃(∅)
while ψ 6∈ K do

A← A(ψ)

ψ ← ψ̃(A)
end while
A← A(ψ)

while maxa∈A b
⊤
a∇L(ψ) > 0 do

. . .
end while.

Table 3: Pseudo-code of second modified active set algorithm.

erations easily to the situation whereK consists of all vectorsψ ∈ R
m such that

ci,1 ≤ v⊤i ψ ≤ ci,2

for 1 ≤ i ≤ q with numbers−∞ ≤ ci,1 < ci,2 <∞.

Possible extension II. Again we drop assumption (7) but assume thatc1 = · · · = cq = 0, so

thatK is a closed convex cone. Suppose further that we know a finite setE of generators ofK, i.e.

every vectorψ ∈ K may be written as

ψ =
∑

e∈E

λee

with numbersλe ≥ 0. In that case, a pointψ ∈ K ∩ dom(L) belongs toK∗ if, and only if,

∇L(ψ)⊤ψ = 0 and max
e∈E
∇L(ψ)⊤e ≤ 0. (12)

Now we can modify our basic procedure 2 as follows: Letψ ∈ K ∩ dom(L) ∩ V(A) with A :=

A(ψ). If (12) is violated, lete(ψ) ∈ E such that∇L(ψ)⊤e(ψ) > 0. Further lets(ψ), t(ψ) > 0

such thatψnew := s(ψ)ψ + t(ψ)e(ψ) ∈ K satisfiesL(ψnew) > L(ψ). Then we replaceψ with

ψnew and perform the first basic procedure.
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3.2 The special case of fitting log-concave densities

Going back to our original problem, note thatψ ∈ G lies within Gconc if, and only if, the corre-

sponding vectorψ satisfies

ψj+1 − ψj
δj

−
ψj − ψj−1

δj−1
= v⊤j ψ ≤ 0 for j = 2, . . . ,m− 1, (13)

wherevj = (vi,j)
m
i=1 has exactly three nonzero components:

vj−1,j := 1/δj−1, vj,j := −(δj−1 + δj)/(δj−1δj), vj+1,j := 1/δj .

Note that we changed the notation slightly by numbering them − 2 constraint vectors from2 to

m − 1. This is convenient, because thenv⊤j ψ 6= 0 is equivalent to the corresponding function

ψ ∈ G changing slope atxj . Suitable basis vectorsbi are given, for instance, byb1 := (1)mi=1,

bm := (xi)
m
i=1 and

bj =
(
min(xi − xj, 0)

)m
i=1

, 2 ≤ j < m.

For this particular problem it is convenient to rephrase theactive set method in terms ofinactive

constraints, i.e. trueknotsof functions inG. Throughout letI = {i(1), . . . , i(k)} be a subset of

{1, 2, . . . ,m} with k ≥ 2 elements1 = i(1) < · · · < i(k) = m, and letG(I) be the set of all

functionsψ ∈ G which are linear on all intervals[xi(s), xi(s+1)], 1 ≤ s < k. This set corresponds

to V(A) with A := {1, . . . ,m} \ I. A functionψ ∈ G(I) is uniquely determined by the vector
(
ψ(xi(s))

)k
s=1

, and one may write

L(ψ) =

k∑

s=1

ps(I)ψ(xi(s))−
k−1∑

s=1

(xi(s+1) − xi(s))J
(
ψ(xi(s)), ψ(xi(s+1))

)

with suitable probability weightsp1(I), . . . , pk(I) > 0. Precisely, writing

ψ(x) =
xi(s+1) − x

xi(s+1) − xi(s)
ψ(xi(s)) +

x− xi(s)
xi(s+1) − xi(s)

ψ(xi(s+1))

for 1 ≤ s < k andxi(s) ≤ x ≤ xi(s+1) yields the explicit formulae

p1(I) =

i(2)−1∑

i=1

xi(2) − xi

xi(2) − x1
pi,

ps(I) =

i(s+1)−1∑

i=i(s−1)+1

min
( xi − xi(s−1)

xi(s) − xi(s−1)
,
xi(s+1) − xi

xi(s+1) − xi(s)

)
pi for 2 ≤ s < k,

pk(I) =

m∑

i=i(k−1)+1

xi − xi(k−1)

xm − xi(k−1)
pi.
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Consequently, the computation ofψ̃ or ψ̃(I) := argmaxψ∈G(I) L(ψ) are optimization problems of

the same type.

Since the vectorsb2, . . . , bm correspond to the functions∆2, . . . ,∆m in G with

∆j(x) := min(x− xj, 0), (14)

checking the inequalityb⊤a∇L(ψ) ≤ 0 for a ∈ A amounts to checking whether the directional

derivative

Hj(ψ) :=

m∑

i=1

pi∆j(xi)−

∫ xm

x1

∆j(x) expψ(x) dx (15)

is nonpositive for allj ∈ {1, . . . ,m} \ I. If ψ = ψ(I) andj 6∈ I, the inequalityHj(ψ) > 0 means

thatL(ψ) could be increased strictly by allowing an additional knot at xj.

Example 3.2 Figure 1 shows the empirical distribution function ofn = 25 simulated random

variables from a Gumbel distribution, while the smooth distribution function is the estimator

F̂ (r) :=
∫ r
−∞

exp ψ̂(x) dx. Figure 2 illustrates the computation of the log-densityψ̂ itself. Each

picture shows the current functionψ together with the new candidate functionψcand. We followed

the algorithm in Table 2, so the first (upper left) picture shows the starting point, a linear function

ψ on [x1, x25], together withψcand having an additional knot in(x1, x25). Sinceψcand is concave,

it becomes the new functionψ shown in the second (upper right) plot. In the third (lower left)

plot one sees the situation where adding another knot resulted in a non-concave functionψcand.

So the current functionψ was replaced with a convex combination ofψ andψcand. The latter new

functionψ and the almost identical final fit̂ψ are depicted in the fourth (lower right) plot.

4 Censored or binned data

In the current and the next section we consider independent random variablesX1, X2, . . . ,Xn

with unknown distributionP on (0,∞] having sub-probability densityf = expφ on (0,∞),

whereφ is concave and upper semicontinuous. In many applications the observationsXi are not

completely available. For instance, let theXi be event times forn individuals in a biomedical

study, whereXi = ∞ means that the event in question does not happen at all. If thestudy ends

at timeci > 0 from thei-th unit’s viewpoint, whereasXi > ci, then we have a “right-censored”

observation and know only thatXi is contained in the interval̃Xi = (ci,∞]. In other settings

one has purely “interval-censored” data: For thei-th observation one knows only which of given

intervals(0, ti,1], (ti,1, ti,2], . . . , (ti,m(i),∞] containsXi, where0 < ti,1 < · · · < ti,m(i) < ∞. If

11
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Figure 1: Estimated distribution functions forn = 25 data points.

these candidate intervals are the same for all observations, one speaks of binned data. A related

situation are rounded observations, e.g. when we observe⌈Xi⌉ rather thanXi.

In all these settings we observe independent random intervals X̃1, X̃2, . . . ,X̃n. More precisely,

we assume that either̃Xi = (Li, Ri] ∋ Xi with 0 ≤ Li < Ri ≤ ∞, or X̃i consists only of the one

pointLi := Ri := Xi ∈ (0,∞). The normalized log-likelihood for this model reads

ℓ̄(φ) := n−1
n∑

i=1

(
1{Li = Ri}φ(Xi) (16)

+ 1{Li < Ri} log
(∫ Ri

Li

expφ(x) dx + 1{Ri =∞}p∞
))

,

where

p∞ := 1−

∫ ∞

0
expφ(x) dx ∈ [0, 1].

5 An EM algorithm

Maximizing the log-likelihood function̄ℓ(φ) for censored data is a non-trivial task and will be

treated in detail elsewhere. Here we only indicate how this can be achieved in principle, assuming

for simplicity thatP ({∞}) = 0, i.e.
∫∞

0 expφ(x) dx = 1 andp∞ = 0. In this case, the log-

likelihood simplifies to

ℓ̄(φ) = n−1
n∑

i=1

(
1{Li = Ri}φ(Xi) + 1{Li < Ri} log

(∫ Ri

Li

expφ(x) dx
))

.
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Figure 2: Estimating the log-density forn = 25 data points.

Again one may get rid of the constraint
∫∞

0 expφ(x) dx = 1 by considering

L̄(φ) := ℓ̄(φ)−

∫ ∞

0
expφ(x) dx (17)

for arbitrary concave and upper semicontinuous functionsφ : (0,∞)→ [−∞,∞).

A major problem is that̄ℓ(φ) is not linear but convex inφ. Namely, forv : (0,∞) → R and

0 ≤ L < R ≤ ∞,

da

dta

∣∣∣
t=0

log
(∫ R

L

exp(ψ(x) + tv(x)) dx
)

=

{
IEφ

(
v(X)

∣∣X ∈ (L,R]
)

if a = 1,

Varφ
(
v(X)

∣∣X ∈ (L,R]
)

if a = 2.
(18)

Thus we propose to maximizēℓ(φ) iteratively as follows: Starting from a functionφ with L̄(φ) >

−∞, we replace the target function̄L(φnew) with

L̃(φnew |φ) :=
d

dt

∣∣∣
t=0

ℓ̄
(
φ+ t(φnew − φ)

)
−

∫ ∞

0
expφnew(x) dx.

By means of (18), this may be written as

L̃(φnew |φ) = const(φ) +

∫
φnew(x)P (dx |φ) −

∫ ∞

0
expφnew(x) dx, (19)
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where

P (· |φ) := n−1
n∑

i=1

(
1{Li = Ri}δXi

+ 1{Li < Ri}Lφ
(
X

∣∣X ∈ (Li, Ri]
))
,

a probability measure depending on the data and onφ. In other words, for any Borel subsetB of

(0,∞),

P (B |φ) := n−1
n∑

i=1

(
1{Li = Ri ∈ B}+ 1{Li < Ri}

∫
B∩(Li,Ri)

expφ(x) dx
∫
(Li,Ri)

expφ(x) dx

)
.

Note also that̃L(φnew |φ) equals the conditional expectation of the complete-data log-likelihood

L(φnew), given the available data and assuming the currentφ to be the true log-density:

L̃(φnew |φ) = IEφ
(
L(φnew)

∣∣Xi ∈ X̃i for 1 ≤ i ≤ n
)
,

where theX̃i are treated temporarily as fixed.

After approximating the probability measureP (· |φ) by a discrete distribution with finite sup-

port, one can maximizẽL(φnew |φ) over all concave functionsφnew with the active-set algorithm

presented in Section 3. Then we replaceφ with φnew and repeat this procedure until the change of

φ becomes negligable.

6 Auxiliary results and proofs

Explicit formulae for J and some of its partial derivatives. Recall the auxiliary function

J(r, s) :=
∫ 1
0 exp((1 − t)r + ts) dt. One may write explicitly

J(r, s) = J(s, r) =

{(
exp(r)− exp(s)

)/
(r − s) if r 6= s,

exp(r) if r = s,

or utilize the fact thatJ(r, s) = exp(r)J(0, s − r) with J(0, 0) = 1 and

J(0, y) = (exp(y)− 1)/y =

∞∑

k=0

yk

(k + 1)!
.

To compute the partial derivativesJab(r, s) of J(r, s), one may utilize the facts thatJab(r, s) =

Jba(s, r) = exp(r)Jab(0, s − r). Moreover, elementary calculations reveal that

J10(0, y) =
(
exp(y)− 1− y

)/
y2 =

∞∑

k=0

yk

(k + 2)!
,

J20(0, y) = 2
(
exp(y)− 1− y − y2/2

)/
y3 =

∞∑

k=0

2yk

(k + 3)!
,

J11(0, y) =
(
y(exp(y) + 1)− 2(exp(y)− 1)

)/
y3 =

∞∑

k=0

(k + 1)yk

(k + 3)!
.
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The Taylor series may be deduced as follows:

Jab(0, y) =

∫ 1

0
(1− t)atbety dt

=

∞∑

k=0

yk

k!

∫ 1

0
(1− t)atb+k dt

=

∞∑

k=0

yk

k!

a!(b+ k)!

(k + a+ b+ 1)!

=

∞∑

k=0

a!(b+ k)! yk

k!(k + a+ b+ 1)!
,

according to the general formula
∫ 1
0 (1− t)

ktℓ dt = k!ℓ!/(k + ℓ+ 1)! for integersk, ℓ ≥ 0.

Numerical experiments revealed that a fourth degree Taylorapproximation forJab(0, y) is

advisable and works very well if

|y| ≤





0.005 (a = b = 0),

0.01 (a+ b = 1),

0.02 (a+ b = 2).

Explicit formulae for the gradient and hessian matrix of L. At ψ ∈ R
m these are given by

∂

∂ψk
L(ψ) = pk −





δ1J10(ψ1, ψ2) if k = 1,

δk−1J01(ψk−1, ψk) + δkJ10(ψk, ψk+1) if 2 ≤ k < m,

δm−1J01(ψm−1, ψm) if k = m,

−
∂2

∂ψj∂ψk
L(ψ) =





δ1J20(ψ1, ψ2) if j = k = 1,

δk−1J02(ψk−1, ψk) + δkJ20(ψk, ψk+1) if 2 ≤ j = k < m,

δm−1J02(ψm−1, ψm) if j = k = m,

δjJ11(ψj , ψk) if 1 ≤ j = k − 1 < m,

0 if |j − k| > 1.

Proof of (2). In what follows letmin(v) andmax(v) denote the minimum and maximum, re-

spectively, of all components of a vectorv. Moreover letR(v) := max(v)−min(v). Then with

p := (pj)
m
j=1 andδ = (δk)

m−1
k=1 , note first that

L(ψ) ≤ max(ψ)− (xm − x1) exp(min(ψ))

= R(ψ) + min(ψ)− (xm − x1) exp(min(ψ))

→ −∞ as‖ψ‖ → ∞ whileR(ψ) ≤ ro
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for any fixedro < ∞. Secondly, let̃ψj := ψj −min(ψ). Thenmin(ψ̃) = 0, max(ψ̃) = R(ψ),

whence

L(ψ) =

m∑

i=1

piψ̃i +min(ψ)− exp(min(ψ))

∫ xm

x1

exp(ψ̃(x)) dx

≤ (1−min(p))R(ψ) + sup
s∈R

(
s− exp(s)

∫ xm

x1

exp(ψ̃(x)) dx
)

= (1−min(p))R(ψ)− log

∫ xm

x1

exp(ψ̃(x)) dx − 1

= (1−min(p))R(ψ)− log
(m−1∑

k=1

δkJ(ψ̃k, ψ̃k+1)
)
− 1

≤ (1−min(p))R(ψ)− log
(
min(δ)J(0, R(ψ))

)
− 1

= (1−min(p))R(ψ)− log J(0, R(ψ))− log(emin(δ)),

where we used the fact thatmaxs∈R(s − exp(s)A) = − logA− 1 for anyA > 0. Moreover, for

r > 0,

− log J(0, r) = log
( r

er − 1

)
= −r + log

( r

1− e−r

)
≤ −r + log(1 + r),

whence

L(ψ) ≤ −min(p)R(ψ) + log(1 +R(ψ))− log(emin(δ)) → −∞ asR(ψ)→∞. ✷

Proof of Theorem 2.1. It follows from strict concavity ofL and (5) that the functionψ equals

ψ̌ if, and only if,
m∑

i=1

piv(xi) =

∫ xm

x1

v(x)f(x) dx (20)

for any functionv ∈ G.

Note that any vectorv ∈ R
m is a linear combination of the vectorsv(1), v(2), . . . ,v(m), where

v(k) = (1{i ≤ k})mi=1 .

With the corresponding functionsv(k) ∈ G we conclude thatψ maximizesL if, and only if,

k∑

i=1

pi =

∫ xm

x1

v(k)(x)f(x) dx (21)

for 1 ≤ k ≤ m. Now the vectorv(m) corresponds to the constant functionv(m) := 1, so that (21)

with k = m is equivalent toF (xm) = 1. In case of1 ≤ k < m,

v(k)(x) :=





1 if x ≤ xk,

(xk+1 − x)/δk if xk ≤ x ≤ xk+1,

0 if x ≥ xk+1,

16



and it follows from Fubini’s theorem that

∫ xm

x1

v(k)(x)f(x) dx =

∫ xm

x1

∫ 1

0
1{u ≤ v(k)(x)} du f(x) dx

=

∫ 1

0

∫ xm

x1

1{x ≤ xk+1 − uδk}f(x) dx du

=

∫ 1

0
F (xk+1 − uδk) du

= δ−1
k

∫ xk+1

xk

F (r) dr.

These considerations yield the characterization of the maximizer ofL.

As for the first and second moments, equation (20) withv(x) := x yields the assertion that
∑m

i=1 pixi equals
∫ xm
x1

xf(x) dx. Finally, letv := (x2i )
n
i=1 andv ∈ G the corresponding piecewise

linear function. Then

m∑

i=1

pix
2
i −

∫ xm

x1

x2f(x) dx =

∫ xm

x1

(v(x)− x2)f(x) dx

=
m−1∑

k=1

∫ xk+1

xk

(x− xk)(xk+1 − x)f(x) dx

=
m−1∑

k=1

δ3kJ11(ψk, ψk+1).
✷

Proof of Theorem 3.1. It is well known from convex analysis thatψ ∈ K ∩ dom(L) belongs to

K∗ if, and only if,v⊤∇L(ψ) ≤ 0 for any vectorv ∈ R
m such thatψ + tv ∈ K for somet > 0.

By the special form ofK, the latter condition onv is equivalent tov⊤a v ≥ 0 for all a ∈ A(ψ). In

other words,v =
∑m

i=1 λibi with λa ≥ 0 for all a ∈ A(ψ). Thusψ ∈ K belongs toK∗ if, and

only if, it satisfies (8).

Similarly, a vectorψ ∈ V(A) ∩ dom(L) belongs toV∗(A) if, and only if,v⊤∇L(ψ) = 0 for

any vectorv in the linear space

{
v ∈ R

m : v⊤a v = 0 for all a ∈ A
}

= span
{
bi : i ∈ {1, . . . ,m} \ A

}
.

But this requirement is obviously equivalent to (9). ✷
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Software. The methods of Rufibach (2006, 2007) as well as the active set method from Section 3

are available in the R package"logcondens"written by K. Rufibach and L. Dümbgen; see also

Dümbgen and Rufibach (2011). Corresponding Matlab code is available from the first author’s

homepage onwww.stat.unibe.ch.
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