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We consider a common-components model for multivariate frac-
tional cointegration, in which the s ≥ 1 components have different
memory parameters. The cointegrating rank may exceed 1. We de-
compose the true cointegrating vectors into orthogonal fractional
cointegrating subspaces such that vectors from distinct subspaces
yield cointegrating errors with distinct memory parameters. We esti-
mate each cointegrating subspace separately, using appropriate sets
of eigenvectors of an averaged periodogram matrix of tapered, differ-
enced observations, based on the first m Fourier frequencies, with m

fixed. The angle between the true and estimated cointegrating sub-
spaces is op(1). We use the cointegrating residuals corresponding to
an estimated cointegrating vector to obtain a consistent and asymp-
totically normal estimate of the memory parameter for the given
cointegrating subspace, using a univariate Gaussian semiparametric
estimator with a bandwidth that tends to ∞ more slowly than n.
We use these estimates to test for fractional cointegration and to
consistently identify the cointegrating subspaces.

1. Introduction. Fractional cointegration has been the subject of much
recent attention; see, for example, the work of Robinson [16], Robinson and
Marinucci [19], Robinson and Marinucci [18], Chen and Hurvich [3]. All
of these papers assume either that the observed series is bivariate or that
the cointegrating rank is 1. Arguably the most interesting case, from an
econometric point of view, is the situation where the series is multivariate
and has cointegrating rank which may exceed 1. This situation was cov-
ered by Robinson and Yajima [20], who considered methods for determining
the cointegrating rank, and also by Chen and Hurvich [4], who focused on
estimation of the space of cointegrating vectors.
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Chen and Hurvich [4] studied the properties of eigenvectors of an av-
eraged periodogram matrix of differenced, tapered observations, averaging
over the first m Fourier frequencies, where m is held fixed as the sample
size grows. They showed that the eigenvectors corresponding to the r small-
est eigenvalues (where r is the cointegrating rank) lie close to the space of
true cointegrating vectors with high probability. They also presented an em-
pirical analysis of fractional cointegration in US interest rates for bonds of
seven different maturities. They found evidence that the cointegrating rank
was greater than one and, furthermore, that the memory parameter of the
cointegrating errors may take on a variety of values that differ substantially
if cointegrating vectors corresponding to substantially different eigenvalues
are used. This last finding, while of apparent interest from an econometric
point of view, could not be explained directly from the theoretical results
presented in [4] since they did not attempt in their theory to separate the
space of cointegrating vectors into subspaces yielding different memory pa-
rameters.

The goals of the present paper are to exhibit a model that allows us to
highlight these subspaces, to show that the subspaces and their correspond-
ing memory parameters can be estimated individually and to show how to
use the residual-based Gaussian semiparametric estimates of the memory pa-
rameters to consistently identify the cointegrating subspaces and to test for
fractional cointegration. By contrast, Chen and Hurvich [4] did not consider
either testing for cointegration or estimation of the degree of cointegration.

We first present, in Section 2, a semiparametric common-components
model in which the components have different memory parameters, while
the entries of the observed multivariate series have just one common mem-
ory parameter. Next, we show that the space of cointegrating vectors can
be decomposed into a direct sum of orthogonal cointegrating subspaces such
that vectors from distinct subspaces yield cointegrating errors with distinct
memory parameters.

In Section 5, we show that each of these cointegrating subspaces can be
separately estimated using sets of eigenvectors of the averaged periodogram
matrix. Since m is held fixed, we are able to obtain a rate of convergence
for the estimated cointegrating vectors that depends only on the difference
between the memory parameters in the given and adjacent subspaces and
is not hampered by the rate of increase of m, as in other related work (cf.
[19], in the bivariate case).

To each true cointegrating subspace, there corresponds an estimated coin-
tegrating subspace spanned by an orthonormal set of eigenvectors of the
averaged periodogram matrix, where membership in the set is determined
by a partitioning of the sorted observed eigenvalues into contiguous groups
of sizes that match the dimensions of the corresponding true cointegrating
subspaces. In Section 4, we show that the eigenvalues for the kth estimated
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cointegrating subspace are Op(n
2dk), where n is the sample size and dk is the

memory parameter of the cointegrating error for the kth true cointegrating
subspace. This result and its refinements play a key role in our subsequent
theory.

We will show in Theorem 1 that any vector in the kth estimated cointe-
grating subspace is, with high probability, close to the kth true cointegrating
subspace, in the sense that the norm of the sine of the angle between these
two subspaces converges in probability to zero. The norm of the sine of this
angle is Op(n

−αk), where αk is the shortest distance between the memory
parameters corresponding to the given and adjacent subspaces. This implies
that the sine of the angle between any vector in the kth estimated cointe-
grating subspace and the kth true cointegrating subspace is Op(n

−αk). (We
provide more details on the notion of the sine of the angle between subspaces,
and also the sine of the angle between a vector and a subspace, in Section 5.)
This convergence rate, which improves as αk increases, is at least as fast as
the rates obtained for existing semiparametric estimators of cointegrating
vectors in the bivariate case (see, e.g., [19] and the discussion in [3]), but
not as fast as the parametric rate obtained by Hualde and Robinson [7] of
Op(n

−1/2) in the bivariate asymptotically stationary case if the difference
(α1) between the memory parameters of the observed series and the coin-
tegrating error is less than 1/2. Furthermore, we show in Lemma 15 that
the normalized eigenvectors of the averaged periodogram matrix converge
in distribution to random vectors that lie in the corresponding cointegrating
subspace.

We then show in Section 6 that the cointegrating residuals corresponding
to an estimated cointegrating vector can be used to obtain a consistent and
asymptotically normal estimate of the memory parameter for the given coin-
tegrating subspace, using a univariate Gaussian semiparametric estimator
with a bandwidth that tends to ∞ more slowly than n. We also describe a
procedure for consistently identifying the cointegrating subspaces, that is,
for determining the number of subspaces and their dimensions. In Section 7,
we provide a test for fractional cointegration which is appropriate for our
model.

2. A fractional common components model. Suppose that the original
data are a q × 1 time series such that the (p − 1)th differences {yt} are
weakly stationary with a common memory parameter d0 ∈ (−p+ 1/2,1/2),
where p≥ 1 is a fixed integer. The use of (p− 1)th differences converts any
additive polynomial trend of order p−1 in the original series into an additive
constant. The value of this constant is irrelevant for our purposes since the
estimators considered here are functions of the discrete Fourier transform
at nonzero Fourier frequencies. We can, therefore, take the mean of {yt}
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to be zero, without loss of generality, and our estimators are invariant to
polynomial trends of order p− 1 in the original series.

In order to guarantee that the cointegrating relationships in the stochastic
component of the levels are preserved in the differences, we apply a taper to
the differences, that is, we multiply the differences by a sequence of constants
prior to Fourier transformation. This prevents detrimental leakage effects
due to potential overdifferencing and allows us to obtain uniform results
over a wide range of memory parameters. A convenient family of tapers for
use on the differences, and which we will use here, was given in Hurvich and
Chen [8]. The exact form of the taper is given below.

The fractional common-components model for the (q×1) series {yt} with
cointegrating rank r (1≤ r < q) and s cointegrating subspaces (1≤ s≤ r) is
given by

yt =A0u
(0)
t +A1u

(1)
t + · · ·+Asu

(s)
t ,(1)

where Ak (0 ≤ k ≤ s) are q × ak full-rank matrices with a0 = q − r and
a1+ · · ·+as = r such that all columns of A0, . . . ,As are linearly independent,

and {u(k)t }, k = 0, . . . , s, are (ak × 1) processes with memory parameters
{dk}sk=0 with −p+ 1/2 < ds < · · · < d0 < 1/2. Equation (1) can be written
as

yt =Azt,(2)

where zt = vec(u
(0)
t , . . . , u

(s)
t ) and A=[A0 . . . As]. We will make additional

assumptions on {zt} in Section 3. These assumptions guarantee that {zt} is
not cointegrated. The methodology presented in this paper does not require
either r or s to be known.

Remark 1. Our assumption that all entries of {yt} have memory pa-
rameter d implies that all rows of A0 are nonzero. The model (1), without
the assumption that all entries of {yt} have a common memory parameter,
could also be entertained (though we do not pursue this here) and would
then include the model considered by Robinson and Yajima [20].

Next, we exhibit the cointegrating subspaces. For any matrixA, let M(A)
denote the column space of A and let M⊥(A) denote the orthogonal com-
plement of A. Note that for k = 1, . . . , s,

M⊥(A0, . . . ,Ak)⊂M⊥(A0, . . . ,Ak−1).

Let B0 =M(A0) and Bk, k = 1, . . . , s, be the subspace such that

M⊥(A0, . . . ,Ak−1) =M⊥(A0, . . . ,Ak)⊕Bk
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and Bk ⊥M⊥(A0, . . . ,Ak). Hence, a nonzero vector β ∈ Bk, k ∈ {1, . . . , s},
satisfies β′Aℓ = 0, ℓ = 0, . . . , k − 1, and β′Ak 6= 0. Also, Bj ⊥ Bk for j 6= k,
(j, k) ∈ {0, . . . , s} and

R
q = B0 ⊕B1 ⊕ · · · ⊕ Bs.(3)

It can be seen from (1) and the preceding discussion that any nonzero vector
β ∈ Bk with k ∈ {1, . . . , s} produces a cointegrating error series {β′yt} with
memory parameter dk. Thus, B1, . . . ,Bs are the cointegrating subspaces.
The space B0, on the other hand, is the space spanned by any basis of non-
cointegrating vectors in R

q. Equation (3) shows that R
q may be written

as a direct sum of the space of non-cointegrating vectors and the space of
cointegrating vectors, and that the latter space may be further decomposed
into a direct sum of cointegrating subspaces.

3. Assumptions. Here, we specify a linear model for the series zt =

vec(u
(0)
t , . . . , u

(s)
t ). As stated in the previous section, we assume that {u(k)t },

k = 0, . . . , s, are (ak × 1) processes with memory parameters {dk}sk=0 with
−p + 1/2 < ds < · · · < d0 < 1/2. Define N0 = {1, . . . , a0} and Nk = {(a0 +
· · ·+ ak−1)+ 1, . . . , (a0 + · · ·+ ak)} for k = 1, . . . , s. Our results in this paper
assume s > 0, unless explicitly stated otherwise.

Let ψk be a sequence of q × q matrices such that

ψk =
1

2π

∫ π

−π
eikωΨ(ω)dω,

where for each ω ∈ [−π,π], Ψ(ω) is a complex-valued matrix such that
Ψ(−ω) =Ψ(ω) and where ψ0 is an identity matrix.

Define the q× 1 vector process {zt} as

zt =
∞∑

k=−∞

ψkεt−k,(4)

where {εt = (εt,1, . . . , εt,q)
′} ∼ iid(0,2πΣ), Σ is a symmetric positive definite

matrix with entries σab, a, b∈ {1, . . . , q}, and E‖εt‖4 <∞, where ‖·‖ denotes
the Euclidean norm. The spectral density matrix of {zt} is

f(ω) =Ψ(ω)ΣΨ∗(ω), ω ∈ [−π,π],
where the superscript ∗ denotes conjugate transposition. We further assume
that for ω ∈ [−π,π], the (a, b)th entry of Ψ(ω) is given by

Ψab(ω) = (1− e−iω)−dabτab(ω)e
iφab(ω),(5)

where daa = dk for a ∈ Nk, dab ≤ min(dk, dh) for a ∈ Nk, b ∈ Nh, b 6= a,
k,h= 0, . . . , s, and for all a, b∈ {1, . . . , q}, τab(·) are positive even real-valued
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functions and φab(·) are odd real-valued functions, all continuously differ-
entiable in an interval containing zero. It follows from (5) that the first
derivatives of Ψab(ω) satisfy

Ψ′
ab(ω) =O(|Ψaa(ω)Ψbb(ω)|1/2|ω|−1).(6)

In keeping with (5), we assume that we can write the spectral density matrix
of {zt} as

f(ω) =Υ(ω)f †(ω)Υ∗(ω),(7)

whereΥ(ω) = diag{(1−e−iω)−d0 , . . . , (1−e−iω)−d0 , . . . , (1−e−iω)−ds , . . . , (1−
e−iω)−ds}, that is, the ath diagonal entry is (1 − e−iω)−dk for all a ∈ Nk,
k = 0, . . . , s, and

f †(ω) =Ψ†∗(ω)ΣΨ†(ω)(8)

is positive definite, Hermitian, continuous at zero frequency and, therefore,

real-valued at zero frequency with Ψ†
ab(ω) = τab(ω)e

iφab(ω). Thus, {zt} is not
fractionally cointegrated (see [18]).

4. The averaged periodogram matrix and its eigenvalues. For any vector
sequence of observations {ξt}nt=1, define the tapered discrete Fourier trans-
form by

Jξ(ωj) =
1√

2π
∑ |hp−1

t |2

n∑

t=1

hp−1
t ξte

iωjt,

where ωj = 2πj/n is the jth Fourier frequency and {ht} is the complex-
valued taper of Hurvich and Chen [8],

ht = 0.5(1− ei2πt/n), t= 1, . . . , n.

Note that p= 1 yields the no-tapering case. Next, define the tapered cross-
periodogram matrix of two vector sequences {ξt}nt=1 and {ζt}nt=1 by

Iξζ(ωj) = Jξ(ωj)J
∗
ζ (ωj).

We will work with the (real part of the) averaged periodogram matrix of a
sample of n observations {yt}nt=1,

Im =
m∑

j=1

Re{Iyy(ωj)},

where m is a fixed positive integer, m> q+3. (This condition is motivated
in the proof of Lemma 8.)
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Define Im(ξt, ζt) =
∑m

j=1Re{Iξζ(ωj)}. We first focus on the asymptotic
distribution of Im(zt, zt). Define the function (for x ∈R)

∆p(x) =

(
2p− 2
p− 1

)−1/2 p−1∑

k=0

(
p− 1
k

)
(−1)k∆(x+2πk),

where

∆(x) =
1√
2π

eix − 1

ix
.

Now, define

υj(x) =
1

2
[∆p(−x+ 2πj) +∆p(x+2πj)],

νj(x) =
i

2
[∆p(−x+ 2πj)−∆p(x+2πj)].

Define the Hermitian positive definite q× q matrix-valued measure G0 on
R by

G0(dx) =Π(x)f †(0)Π∗(x)dx(9)

for x > 0 and G0(−dx) =G0(dx), where

Π(x) = diag(e−iπd0/2|x|−d0 , . . . , e−iπd0/2|x|−d0 , . . . , e−iπds/2|x|−ds , . . . ,

e−iπds/2|x|−ds).

Let Un and Vn be q×m matrices given by

Un = d−1
n Re(Jz,1, . . . , Jz,m) and Vn = d−1

n Im(Jz,1, . . . , Jz,m).(10)

Lemma 1. Let dn be a (q × q) diagonal matrix with ith diagonal entry
ndk , i ∈ Nk, k = 0, . . . , s and Qn = d−1

n Im(zt, zt)d
−1
n = (Un,Vn)(Un,Vn)

′.
If m≥ q, then

Qn
D−→UU′ +VV′,

where U=(U1, . . . ,Um) and V=(V1, . . . , Vm), Uj , Vk are q × 1 vectors and
vec(U,V) is a 2mq-variate normal random variable with zero mean and
covariance matrix Ξ determined by

E(UjU
′
k) =

∫

R

υj(x)υk(x)G0(dx),

E(VjV
′
k) =

∫

R

νj(x)νk(x)G0(dx),

E(UjV
′
k) =

∫

R

υj(x)νk(x)G0(dx).

Furthermore, UU′ +VV′ is positive definite and has distinct eigenvalues
with probability 1.
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Proof. The proof is identical to the proof of Lemma 1, Corollary 1 and
2 of [4]. �

We next derive upper and lower bounds for the eigenvalues of Im(yt, yt).
We will use the notation λj(·) for the jth eigenvalue of a given Hermitian
matrix, λj(·)≥ λj+1(·). Also, we let λj = λj(Im(yt, yt)). We have the follow-
ing lemma:

Lemma 2. λj =Op(n
2dk) for j ∈Nk, k = 0, . . . , s.

In the case k ≥ 1, the upper bound in Lemma 2 strengthens Lemma 4
of [4].

Lemma 3. Let j∗k =max{j : j ∈Nk} and let Q
(k)
n be the leading j∗k × j∗k

principal submatrix of Qn for k = 0, . . . , s. Then

n−2dkλj∗
k
≥ ckλj∗

k
(Q(k)

n )
D−→ η

(k)
j∗
k
,

where ck > 0 and η
(k)
j∗
k

is a random variable that has no mass at 0.

5. Estimation of the cointegrating subspaces. LetX(·) = [χ1(·) . . . χq(·)]
be an orthogonal matrix such that χj(·) is the eigenvector corresponding
to the jth largest eigenvalue λj(·) of a given symmetric q × q matrix and
let Xk(·) be a matrix with columns χj(·), j ∈ Nk, for k = 0, . . . , s. Also,
let χj = χj(Im(yt, yt)), X=X(Im(yt, yt)) and Xk =Xk(Im(yt, yt)). For k =
0,1, . . . , s, let Bk be a q × ak matrix with orthonormal columns such that
M(Bk) = Bk and let B = [B0 . . . Bs]. Since B′B = I, it follows that for
any q × q matrix P, B′PB is similar to P, that is, λj(P) = λj(B

′PB) and
χj(P) =B′χj(B

′PB).
Define

Φ=B′Im(yt, yt)B

and partition Φ into (s + 1)2 blocks such that the (k, ℓ) block Φkℓ has
dimension (ak × aℓ) for k, ℓ = 0, . . . , s. Define ΦD = diag[Φ00, . . . ,Φss] and
∆Φ=Φ−ΦD, so that

Φ=ΦD +∆Φ.

We have

Im(yt, yt) =BΦB′ =BΦDB
′ +B∆ΦB′ =:H+∆H,

so we can think of Im(yt, yt) as a perturbed version of H. Using results of
Barlow and Slapničar [2] on perturbation theory for eigenvalues and eigen-
vectors of nonrandom Hermitian matrices, we will show in Lemma 4 that
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the kth estimated cointegrating subspace M(Xk) is close to M(Xk(H)) in
the sense that the norm of the sine of the angle between the two subspaces
converges to 0 in probability.

Let Θ(·, ·) denote the matrix of canonical angles between two subspaces
of the same dimension (see, e.g., [22], page 43). The notion of the sine of
the angle between two subspaces of the same dimension is given in [5].
For simplicity, suppose that S and T are both real q × a matrices (q > a)
with orthonormal columns. Then the orthogonal projector into M(T) is
given by TT′ and the projector into the orthogonal complement M⊥(T)
of M(T) is given by I − TT′, where I is a q × q identity matrix. The
sine of the angle between M(S) and M(T) is an a × a matrix defined
in [5] and denoted by sinΘ(M(S),M(T)). It follows from [5], page 10 that
‖sinΘ(M(S),M(T))‖F = ‖(I − TT′)SS′‖F , where ‖·‖F is the Frobenius
norm. It follows from [22], Corollary 5.4, page 43 that

‖ sinΘ(M(S),M(T))‖F = ‖(T⊥)′S‖F ,(11)

where T⊥ is a matrix with orthonormal columns spanning M⊥(T), so that
‖(T⊥)′S‖F is the square root of the sum of the squared lengths of the residu-
als from the orthogonal projections of the columns of S on the space M(T).

For any nonzero vector x ∈M(S), the sine of the angle between x and
the subspace M(T) is a real number defined as

sinθ(x,M(T)) =
‖(I−TT′)x‖

‖x‖ ,

see [24], page 274. It then follows from (11) that

max
x∈M(S)

| sinθ(x,M(T))| ≤ ‖(T⊥)′S‖F .

In Lemma 5, we show that under the additional assumption that the pro-
cess is Gaussian, M(Xk(H)) is equal to Bk with probability approaching
one, for k = 0, . . . , s. Lemmas 4 and 5, taken together, imply our Theorem 1,
stating that if the process is Gaussian, then the kth estimated cointegrat-
ing subspace M(Xk) is close to the corresponding true cointegrating sub-
space Bk, in the sense that ‖ sinΘ{M(Xk),Bk}‖F =Op(n

−αk), where αk is
the shortest distance between the memory parameters corresponding to the
given and adjacent subspaces, that is,

αk =





d0 − d1, k = 0,

min{(dk−1 − dk), (dk − dk+1)}, k = 1, . . . , s− 1,

ds−1 − ds, k = s.

Lemma 4. The sine of the angle between M(Xk) and M(Xk(H)) sat-
isfies

‖ sinΘ{M(Xk(H)),M(Xk)}‖F =Op(n
−αk).
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The following Gaussianity assumption is sufficient for obtaining a rate
at which P (M(Xk(H)) 6= Bk) converges to zero. More specifically, the as-
sumption allows us to bound the inverse second moment of eigenvalues of
Qn. We believe that such bounds, and therefore Lemma 5, hold without the
Gaussianity assumption, but we will not pursue this here.

Assumption 1. The process {εt} in (4) is Gaussian.

Lemma 5. Under Assumption 1, P (M(Xk(H)) 6= Bk) =O(n−2αk), k =
0, . . . , s.

The following theorem is a corollary of Lemmas 4 and 5:

Theorem 1. Under Assumption 1,

‖ sinΘ{M(Xk),Bk}‖F =Op(n
−αk), k = 0, . . . , s.

6. Estimation of the memory parameters using cointegrating residuals.

Let b= χa, where a ∈ {1, . . . , q}. Recall that χa is the eigenvector of Im(yt, yt)
corresponding to the ath largest eigenvalue of the matrix. Then there exists
a uniquely defined value k ∈ {0, . . . , s} such that a ∈Nk. Note that k is fixed
but unknown. We then use this vector b to construct the residual process
{vt}, where

vt := b′yt = b′A0u
(0)
t + b′A1u

(1)
t + · · ·+ b′Aku

(k)
t + · · ·+ b′Asu

(s)
t .(12)

The periodogram of {vt} is Ivv(ωj) = b′AIzz(ωj)A
′b. We consider the Gaus-

sian semiparametric estimator or GSE (see [10, 17]) for daa [see (5)] based
on {vt},

d̂aa = argmin
d∈Θ

R(d) = argmin
d∈Θ

(
log Ĝ(d)− 2d

(
1

mn

mn∑

j=1

logωj̃

))
,(13)

where Θ = [∆1,∆2], −p+0.5<∆1 <∆2 < 0.5, ωj̃ = 2πj̃/n, j̃ = j+(p−1)/2
and

Ĝ(d) =
1

mn

mn∑

j=1

Ivv(ωj)

ω−2d
j̃

=
1

mn

mn∑

j=1

b′AIzz(ωj)A
′b

ω−2d
j̃

.

Here, we use slightly shifted Fourier frequencies ωj̃ to parallel corresponding
shifts inherent in our tapering scheme and thereby reduce finite-sample bias,
as was also done in [8].

The two theorems below establish the consistency and the limiting distri-
bution of the d̂aa, under some additional conditions on the transfer function

Ψ†
ab(ω) = τab(ω)e

iφab(ω); see (5). Following [9], we define a smoothness class
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for transfer functions as follows. For µ > 1 and 1< ρ≤ 2, let L∗(µ,ρ) be the
set of continuously differentiable functions u on [−π,π] such that for all x, y
with |x| ∈ (0, π], |y| ∈ (0, π],

max0≤z≤π |u(z)|
min0≤z≤π |u(z)|

≤ µ,
|u(x)− u(y)|

min0≤z≤π |u(z)|
≤ µ

|y − x|
min(|x|, |y|) ,

|u′(x)− u′(y)|
min0≤z≤π |u(z)|

≤ µ
|y− x|(ρ−1)

[min(|x|, |y|)]ρ .

It follows from the discussion in [9] that if Ψ†
aa(ω) is the transfer function

of a stationary and invertible autoregressive moving average process, or of
the short-memory component of a stationary and invertible fractional Gaus-
sian noise with a suitable choice of the moving average representation, then
Ψ†

aa(ω) ∈L∗(µ,ρ) for some µ, with ρ= 2.
We now state an assumption on Ψ†.

Assumption 2. For all a, b ∈ {1, . . . , q}, Ψ†
ab ∈ L∗(µ,ρ) for some µ > 1

and some ρ ∈ (1,2].

Note that this assumption is global in that it pertains to the behavior
of Ψ† at all frequencies. By contrast, our estimation of the daa is based
on frequencies in a shrinking neighborhood around zero. It seems plausible,
then, that a local version of Assumption 2 would suffice for our purposes,
although we do not pursue this here.

The following standard assumption is needed to establish the consistency
of d̂aa:

Assumption 3A. As n→∞,

1

mn
+
mn

n
→ 0.

Theorem 2. Under Assumptions 1, 2 and 3A, for a ∈ {1, . . . , q}, d̂aa p→
daa.

The next assumption is used for establishing the asymptotic normality of

m
1/2
n (d̂aa − daa).

Assumption 3B. Suppose that a ∈Nk.

(i) If k ∈ {1, . . . , s}, then dk−1 − dk > 1/2.



12 W. W. CHEN AND C. M. HURVICH

(ii) If k ∈ {0, . . . , s− 1}, then as n→∞,

1

mn
+
m

1+2(dk−dk+1)
n log2mn

n2(dk−dk+1)
→ 0.

Note that part (i) is vacuous if k = 0 and part (ii) is vacuous if k = s.
Assumption 3B may be compared with the assumptions in Theorems 2 and
4 of Velasco [23] which the author required for residual-based estimators of
the memory parameters of a bivariate fractionally cointegrated system. The
problem here is that a linear combination of series with slightly different
memory parameters will typically have an irregular short-memory compo-
nent in its spectral density.

To present the asymptotic variance of d̂aa, we define

Φp =
Γ(4p− 3)Γ4(p)

Γ4(2p− 1)
.

Theorem 3. Under Assumptions 1, 2 and 3B, for a ∈ {1, . . . , q},

m1/2
n (d̂aa − daa)

D−→N(0,Φp/4).

Note that in Theorem 3, the limiting distribution of m
1/2
n (d̂aa − daa) has

mean zero. This asymptotic unbiasedness is ensured by Assumption 3B,
which places strong restrictions on the separation between the memory pa-
rameters and also places a potentially stringent upper bound on the band-
width mn. A much weaker and, indeed, more standard assumption involving
only mn is the following:

Assumption 3C. As n→∞,

1

mn
+
m1+2ρ

n log2mn

n2ρ
→ 0.

If we account for the asymptotic bias, which can be determined from
Lemma 20, and use Assumption 3C, we obtain the following result:

Corollary 1. Suppose a ∈ Nk, where k ∈ {0, . . . , s}. Under Assump-
tions 1, 2 and 3C, we have

m1/2
n (d̂aa − daa − µn)

D−→N(0,Φp/4),

where µn =Op(m
dk−dk−1
n + ω

dk−dk+1
mn ), the Op(m

dk−dk−1
n ) term is vacuous if

k = 0 and the Op(ω
dk−dk+1
mn ) term is vacuous if k = s.
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Here, we present some results on the vector of GSE-estimated memory
parameters, d̂ = (d̂11, . . . , d̂qq)

′, which is an estimate of d = (d11, . . . , dqq)
′.

Let wt =X′yt be the q× 1 residual vector so that the entries of d̂ are based

on those of wt. Note that by Lemma 15, X
D−→ X̊, where X̊ is a continuous

function of U and V in Lemma 1. We will need the following assumption
for our results:

Assumption 3D. (i) For all k ∈ {0, . . . , s}, αk > 1/2.
(ii) As n→∞,

1

mn
+
m1+2ξ

n log2mn

n2ξ
→ 0,

where ξ =min{mink αk, ρ}.

Corollary 2. Under Assumptions 1, 2 and 3D,

m1/2
n (d̂− d)

D−→N

(
0,

Φp

4
(diagΩ)−1 ◦Ω ◦Ω ◦ (diagΩ)−1

)
,

where

Ω= E(X̊′Af †(0)A′X̊).

Remark 2. Simulation results not shown here reveal that the small-
sample bias is reduced and the variance is stabilized if the GSE estimators
omit the first m + p − 1 frequencies. This does not affect the validity of
Corollary 2. Note that if no frequencies are omitted, then the first m+ p− 1
frequencies are used twice: once for estimating the cointegrating vector and
once for estimating the memory parameter. If the frequencies are omitted,
the finite-sample approximation to the variance in [8] is quite accurate.

Corollary 2 yields the following result on the asymptotic distribution of

m
1/2
n (d̂aa − d̂bb − (daa − dbb)), under conditions that ensure asymptotic un-

biasedness:

Corollary 3. Under the assumptions of Corollary 2, for a, b ∈ {1, . . . , q},
a 6= b,

m1/2
n (d̂aa − d̂bb − (daa − dbb))

D−→N

(
0,

Φp

2

(
1− Ω2

ab

ΩaaΩbb

))
.

Next, we modify Corollary 3 to include a bias term, thereby allowing for
weaker assumptions.
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Corollary 4. If a ∈Nk, b ∈Nh, for k,h ∈ {0, . . . , s}, then under the
assumptions of Corollary 1,

m1/2
n (d̂aa − d̂bb − (daa − dbb)− µ̃n)

D−→N

(
0,

Φp

2

(
1− Ω2

ab

ΩaaΩbb

))
,

where

µ̃n =Op(m
dk−dk−1
n +m

dh−dh−1
n + ω

dk−dk+1
mn + ω

dh−dh+1
mn ).

Given data from model (1), assumed to possess fractional cointegration,
the number s > 0 of cointegrating subspaces and their dimensions a1, . . . , as,
as well as the dimension a0 of the non-cointegrating space, will be unknown
in general. Here, we assume Gaussianity. Let δ∗ > 0 be the minimum sep-
aration between the memory parameters, δ∗ = min(d0 − d1, . . . , ds−1 − ds),

and assume first that δ∗ > 1/2. We can compare the GSE estimators d̂jj and

d̂j+1,j+1 for j = 1, . . . , q using a bandwidth mn satisfying Assumption 3D,
part (ii), with ξ = min{δ∗, ρ}. Fix an ε ∈ (0,1/2) and a C > 0. Then, for
each j ∈ {1, . . . , q − 1}, we declare that djj − dj+1,j+1 6= 0 if and only if

d̂jj − d̂j+1,j+1 >Cm
−1/2+ε
n . This leads to a procedure for consistently iden-

tifying s, a0, . . . , as, which can be justified by Corollary 3. A more compli-
cated identification procedure, justified by Corollary 4, may be constructed
if δ∗ ≤ 1/2. This requires further tuning parameters which depend on δ∗,
owing to the presence of the nonstandard term µ̃n, which increases as the
separation of the relevant memory parameters decreases. Unfortunately, such
procedures are of limited practical value as δ∗ will be unknown in practice.
Nevertheless, we note that lower bounds on δ∗ (assuming s= 1) arise implic-
itly or explicitly in other works on semiparametric fractional cointegration.
(See [20], Assumption D and [23], Theorems 2 and 4.)

7. Testing for fractional cointegration. In model (1), used throughout
the paper thus far, we have assumed that s≥ 1 so that cointegration exists.
Here, we expand model (1) to include the case of no cointegration (s= 0, or
equivalently, r= 0), that is,

yt =A0u
(0)
t ,(14)

where A0 is q × q with linearly independent columns and all entries of u
(0)
t

have memory parameter d0.
In practice, it is of interest to test for the presence of fractional cointegra-

tion. Such a test was proposed by Marinucci and Robinson ([13], pages 236–
237), following on from an idea originally suggested in a different context by
Hausman [6], using a comparison of two estimates of d0, one based on a mul-
tivariate Gaussian semiparametric estimator (see [11]) using {yt}nt=1 with an
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imposed restriction that all entries have the same memory parameter, and
the other estimator based on a univariate Gaussian semiparametric estima-
tor of d0 using (say) the first entry {y1,t} of {yt}. It seems possible to use this
idea, together with differencing and tapering, to yield a test for fractional
integration in the current context, although we do not pursue this here. We
focus instead on residual-based methods in which estimated memory pa-
rameters based on the various cointegrating residual series are compared.
In a bivariate context, Velasco [23] has considered properties of semipara-
metric memory parameter estimates based on cointegrating residuals under
certain assumptions on the rate of convergence of the semiparametric esti-
mator of the cointegrating parameters. However, the author did not present
a test for cointegration since his assumptions ruled out the no-cointegration
case.

For our GSE estimators d̂ based on cointegrating residuals, we have the
following extensions of Corollary 2 and Corollary 3 to the no-cointegration
case (14):

Theorem 4. Under Assumptions 1, 2 and 3C, if there is no cointegra-
tion, then

m1/2
n (d̂− d)

D−→N

(
0,

Φp

4
(diagΩ)−1 ◦Ω ◦Ω ◦ (diagΩ)−1

)
.

Corollary 5. Under Assumptions 1, 2 and 3C, if there is no cointe-
gration, then for a, b ∈ {1, . . . , q},

m1/2
n (d̂aa − d̂bb)

D−→N

(
0,

Φp

2

(
1− Ω2

ab

ΩaaΩbb

))
.

Corollaries 4 and 5 justify a conservative hypothesis test for the null hy-

pothesis of no cointegration based on the test statistic Tn =m
1/2
n (d̂11 − d̂qq)

whereby, for a nominal level α test, the null hypothesis is rejected in favor
of the cointegration alternative hypothesis if and only if Tn > (Φp/2)

1/2zα/2.
Here, a bandwidth mn satisfying Assumption 3C should be used. The test
is conservative since (Φp/2) is an upper bound for the asymptotic variance
of Tn.

8. Proofs.

8.1. Proofs for Section 4.

Proof of Lemma 2. Note that

Φ=B′AIm(zt, zt)A
′B,
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where B′A is an upper triangular block matrix. We first partition Φ into
(s+ 1)× (s+ 1) blocks such that the (k, ℓ) block has dimension (ak × aℓ).

Let z
(k)
t = (u

(k)
t , . . . , u

(s)
t ) and A(k) = [Ak . . . As], k = 0,1, . . . , s. We have

Φkℓ =B′
kA

(k)Im(z
(k)
t , z

(ℓ)
t )A(ℓ)′Bℓ, for k ≤ ℓ, k, ℓ= 0,1, . . . , s,

Φℓk =Φ′
kℓ.

(15)

Fix a value of k ∈ {0, . . . , s}. Note that by Lemma 1, all the elements in the
kth block, Φkk, are Op(n

2dk). Now,

∑

j∈Nk

λj ≤
∑

j∈Nk∪···∪Ns

λj ≤
s∑

v=k

tr{Φvv}=Op(n
2dk).

See, for example, Theorem 14 of Magnus and Neudecker ([12], page 211).
We have λj =Op(n

2dk) for j ∈Nk. �

Proof of Lemma 3. Following from Lemma 1, Q
(k)
n converges in dis-

tribution to a matrix that is positive definite with probability one. Since
an eigenvalue of a matrix is a continuous function of the entries of the ma-

trix, we conclude that λj∗
k
(Q

(k)
n ), the smallest eigenvalue of Q

(k)
n , converges

in distribution to a random variable that has no mass at zero. To prove

n−2dkλj∗
k
≥ ckλj∗

k
(Q

(k)
n ), we construct another, similar, matrix for Im(yt, yt).

Let Cs =M(As) and Ck, k = 0, . . . , s− 1, be the subspaces such that

M⊥(Ak+1, . . . ,As) =M⊥(Ak, . . . ,As)⊕ Ck
and Ck⊥M⊥(Ak, . . . ,As). For k ∈ {0, . . . , s}, let Ck be a q×ak matrix with
orthonormal columns such that M(Ck) = Ck and C=[C0 . . . Cs]. By this
construction, P=C′A is a lower triangular block matrix andPIm(zt, zt)P

′ =

C′Im(yt, yt)C := W is similar to Im(yt, yt). Let P(k), W(k) and d̃
(k)
n , k =

0,1, . . . , s, be the leading j∗k × j∗k principal submatrices of P, W and dn, re-

spectively. Also, let z̃
(k)
t = (u

(0)
t , . . . , u

(k)
t ), k = 0,1, . . . , s. Note that W(k) =

P(k)′Im(z̃
(k)
t , z̃

(k)
t )P(k)′ . By Corollary 2.2.1 of Anderson and Das Gupta [1],

λj∗
k
(W(k))≥ λj∗

k
{Im(z̃

(k)
t , z̃

(k)
t )}λj∗

k
(P(k)′P(k)) = ckλj∗

k
{Im(z̃

(k)
t , z̃

(k)
t )}

and

λj∗
k
{Im(z̃

(k)
t , z̃

(k)
t )}= λj∗

k
{d̃(k)

n Q(k)
n d̃(k)

n } ≥ λj∗
k
(d̃(k)

n )λj∗
k
(Q(k)

n )λj∗
k
(d̃(k)

n )

= n2dkλj∗
k
(Q(k)

n ).

Applying the Sturmian separation theorem ([15], page 64), we have

λj∗
k
= λj∗

k
(W)≥ λj∗

k
(W(k))≥ ckλj∗

k
{Im(z̃

(k)
t , z̃

(k)
t )} ≥ ckn

2dkλj∗
k
(Q(k)

n ). �
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8.2. Proofs for Section 5.

Proof of Lemma 4. SinceX⊥
k (H) = [X0(H) . . . Xk−1(H)Xk+1(H) . . .

Xq(H)], we have

‖ sinΘ{M(Xk(H)),M(Xk)}‖F ≤ ‖(X⊥
k (H))∗Xk‖F ≤

s∑

ℓ=0,ℓ 6=k

‖(Xℓ(H))∗Xk‖F

=Op

(
max
ℓ 6=k

n−|dk−dℓ|
)
=Op(n

−αk),

by Lemma 7. �

Proof of Lemma 5. For k = 1, . . . , s− 1, we have

P (M(Xk(H)) = Bk)

= P

({
MXk(H)∩

⊕

ℓ≤k−1

Bℓ = 0

}
∩
{
MXk(H) ∩

⊕

ℓ≥k+1

Bℓ = 0

})
.

Hence,

P (M(Xk(H)) 6= Bk)

= P

({
MXk(H)∩

⊕

ℓ≤k−1

Bℓ 6= 0

}
∪
{
MXk(H)∩

⊕

ℓ≥k+1

Bℓ 6= 0

})

≤ P

(
MXk(H)∩

⊕

ℓ≤k−1

Bℓ 6= 0

)
+ P

(
MXk(H)∩

⊕

ℓ≥k+1

Bℓ 6= 0

)

=O(n−2dk−1+2dk + n−2dk+2dk+1),

by Lemma 10. Similarly,

P (M(X0(H)) 6= B0) =Op(n
−2d0+2d1)

and

P (M(Xs(H)) 6= Bs) =Op(n
−2ds−1+2ds).

We have thus completed the proof. �

We will need the following lemma for the proof of Lemma 7. First we
write U and V defined in Lemma 1 as

U= [U′
0 . . . U′

s]
′, V= [V′

0 . . . V
′
s]
′,

where Uk and Vk are ak ×m matrices.



18 W. W. CHEN AND C. M. HURVICH

Lemma 6. Let K=diag(B′
0A0, . . . ,B

′
sAs). Then

d−1
n Φd−1

n
D−→K(UU′ +VV′)K′,

where dn is defined as in Lemma 1. Furthermore,

d−1
n ΦDd

−1
n

D−→K(UU′ +VV′)DK
′,

where (UU′+VV′)D = diag(U0U
′
0+V0V

′
0, . . . ,UsU

′
s+VsV

′
s) and K(UU′+

VV′)DK
′ is positive definite and has distinctive eigenvalues with probabil-

ity 1.

Proof. We write Φ=KIm(zt, zt)K+R, where R is a symmetric ma-
trix with its (k, ℓ)th entry given by

Rkℓ =B′
kAkIm(u

(k)
t , z

(ℓ+1)
t )A(ℓ+1)′Bℓ +B′

kA
(k+1)Im(z

(k+1)
t , u

(ℓ)
t )A′

ℓBℓ

+B′
kA

(k+1)Im(z
(k+1)
t , z

(ℓ+1)
t )A(ℓ+1)′Bℓ

for k ≤ ℓ, ℓ= 0,1, . . . , (s− 1), Rks =B′
kA

(k+1)Im(z
(k+1)
t , z

(s)
t )A′

sBs for k < s
and Rss = 0. Thus,

d−1
n Φd−1

n = d−1
n KIm(zt, zt)K

′d−1
n +d−1

n Rd−1
n .

By Lemma 1,

d−1
n KIm(zt, zt)K

′d−1
n

D−→K(UU′ +VV′)K′

and the (k, ℓ)th entry of d−1
n Rd−1

n is

n−dk−dℓRkℓ =Op(n
dℓ+1−dℓ + ndk+1−dk) = op(1) for k ≤ ℓ.

We have proved the first limiting distribution of the lemma. It follows that
the kth diagonal block of Φ has the limiting distribution

n−2dkΦkk
D−→Kkk(UkU

′
k +VkV

′
k)K

′
kk

and Φ̊kk is positive definite, having distinctive eigenvalues with probability 1
by Okamoto [14]. �

Lemma 7. ‖X∗
ℓ (H)Xk‖F =Op(n

−|dk−dℓ|) for all ℓ, k ∈ {0,1, . . . , s} with
ℓ 6= k.

Proof. Since ‖X∗
ℓ (H)Xk‖F = ‖X∗

ℓ (ΦD)B
′BXk(Φ)‖F = ‖X∗

ℓ (ΦD)Xk(Φ)‖F ,
we prove this lemma by showing that

‖X∗
ℓ (ΦD)Xk(Φ)‖F =Op(n

−|dk−dℓ|).

Let Λ = diag{λj , j = 1, . . . , q} and Λ(k) = {λj , j ∈ Nk}. We define Λ(ΦD)

and Λ(k)(ΦD) similarly for ΦD. We will use the bound for the error in
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two subspaces within the nonzero space from Theorem 4.1 of Barlow and
Slapničar [2] (which can be shown to apply in our context with probability
one), that is,

‖X∗
ℓ (ΦD)Xk(Φ)‖F ≤ ‖Λ−1/2(ΦD)X

∗(ΦD)∆ΦX(Φ)Λ−1/2‖F
relgap(Λ(ℓ)(ΦD),Λ(k))

,

where

relgap(Λ(ℓ)(ΦD),Λ
(k)) = min

i∈Nk,j∈Nℓ

∣∣∣∣
λi(Φ)− λj(ΦD)

λ
1/2
i (ΦD)λ

1/2
j (Φ)

∣∣∣∣.

It is sufficient to show that

‖Λ−1/2(ΦD)X
∗(ΦD)∆ΦX(Φ)Λ−1/2‖F =Op(1)(16)

and

1

relgap(Λ(ℓ)(ΦD),Λ(k))
=Op(n

−|dk−dℓ|).(17)

By Lemmas 2, 3 and 6, relgap(Λ(ℓ)(ΦD),Λ
(k)) =Op(n

|dk−dℓ|) and n−|dk−dℓ|

× relgap(Λ(ℓ)(ΦD),Λ
(k)) ≥ ςℓ,k, where ςℓ,k is a random variable that has no

mass at 0. We thus have (17). We next prove (16). Note that by Lemmas 1
and 6,

dnΦ
−1dn

D−→K′−1(UU′ +VV′)−1K−1.

Hence, dnX(Φ)Λ−1/2 =Op(1) since dnΦ
−1dn = dnX(Φ)Λ−1/2Λ−1/2X′(Φ)dn

=Op(1). Similarly, Λ−1/2(ΦD)X
∗(ΦD)dn =Op(1). We have

‖Λ−1/2(ΦD)X
∗(ΦD)∆ΦX(Φ)Λ−1/2‖F

= ‖Λ−1/2(ΦD)X
∗(ΦD)dnd

−1
n ∆Φd−1

n dnX(Φ)Λ−1/2‖F
≤ ‖Λ−1/2(ΦD)X

∗(ΦD)dn‖F‖d−1
n ∆Φd−1

n ‖F ‖dnX(Φ)Λ−1/2‖F
=Op(1),

by Lemma 6. Hence, ‖X∗
ℓ (ΦD)Xk(Φ)‖F =Op(n

−|dk−dℓ|). �

We need the following two lemmas for the proof of Lemma 9:

Lemma 8. Under Assumption 1, there exists a finite constant C not
depending on n such that for all sufficiently large n,

E[λ21(Q
−1
n )]<C.
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Proof. Note that

Qn = (Un,Vn)(Un,Vn)
′,

where Un and Vn are defined in Eq. (10). Let

T (Wn) = λ21(Q
−1
n ),

where Wn= vec(Un,Vn). By Assumption 1, Wn ∼ N(0,Ξn), where Ξn =
cov(Wn) and Ξn → Ξ, the covariance matrix of vec(U,V) in Lemma 1. It
was shown in [4] that Ξ is positive definite. Thus, for all sufficiently large
n, Ξn is invertible and λ1(Ξn)→ λ1(Ξ)> 0.

For all sufficiently large n,

EΞn
[T (Wn)] = (2π)−mq|Ξn|−1/2

∫

R2mq
T (x)e−x′

Ξ
−1
n x/2 dx.

Since x′Ξ−1
n x′ ≥ x′x/λ1(Ξn), we have

e−x′Ξ
−1
n x/2 ≤ e−x′x/2λ1(Ξn).

Since λ1(Ξn) → λ1(Ξ) > 0 and since |Ξn|−1/2 → |Ξ|−1/2 > 0, there exist
constants C1 > 0 and C2 > 0 such that for all sufficiently large n,

EΞn [T (Wn)]≤C1

∫

R2mq
T (x)e−C2x′x/2 dx=C,

a finite constant which does not depend on n. The above integral is the
second moment of the largest eigenvalue of an inverse Wishart matrix and
is hence bounded by a finite constant [21], in view of our assumption that
m> q+ 3. �

Lemma 9. Define Ekℓ to be an event, Ekℓ = {λak (Φkk)> λ1(Φℓℓ)}, 0≤
k < ℓ≤ s. Then under Assumption 1,

P (Ec
kℓ) =O(n−2dk+2dℓ).

Proof. For ℓ > k, ℓ= 1, . . . , s, we have, by Chebyshev’s inequality and
the Cauchy–Schwarz inequality,

P (Ec
kℓ) = P{λak(Φkk)≤ λ1(Φℓℓ)}

= P

{
n−2dk+2dℓ · n

−2dℓλ1(Φℓℓ)

n−dkλak(Φkk)
≥ 1

}

≤ n−2dk+2dℓE
1/2[λ21(n

−2dℓΦℓℓ)]E
1/2[λ21(n

2dkΦ−1
kk )].

Since E[λ21(n
−2dℓΦℓℓ)]≤ E[trace2(n−2dℓΦℓℓ)]<C by Assumption 1 and Lem-

ma 1, the lemma follows if

E[λ21(n
2dkΦ−1

kk )]<C
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for all sufficiently large n. Let J=B′
kA

(k)d
(k)
n , d

(k)
n = diag(ndk , . . . , ndk , . . . , ndus ,

. . . , ndus )′. We write

Φkk = J{(d(k)
n )−1Im(z

(k)
t , z

(k)
t )(d(k)

n )−1}J′.

We will use the inequality of Exercise 19 on page 238 of Magnus and
Neudecker [12]. That is,

Φ−1
kk ≤ (JJ′)−1J{d(k)

n [Im(z
(k)
t , z

(k)
t )]−1

d(k)
n }J′(JJ′)−1.

It follows that

traceΦ−1
kk ≤ λ1{d(k)

n I−1
m (z

(k)
t , z

(k)
t )d(k)

n } trace{(JJ′)−1JJ′(JJ′)−1}

= λ1{d(k)
n I−1

m (z
(k)
t , z

(k)
t )d(k)

n } trace{(JJ′)−1}.

Since there exists a finite constant C such that E[λ21{d
(k)
n I−1

m (z
(k)
t , z

(k)
t )d

(k)
n }]<

C for all sufficiently large n by Lemma 8, we complete the proof by showing
that

trace{(JJ′)−1}=O(n−2dk).

We write

JJ′ = n2dkB′
kAkA

′
kBk +B′

kA
(k+1)d(k+1)

n d(k+1)
n A(k+1)Bk1{k<s}.

Since both matrices on the right-hand side are symmetric and positive def-
inite, λakJJ

′ ≥ λak [n
2dkB′

kAkA
′
kBk], and we have

λ1{(JJ′)−1} ≤ n−2dkλ1{[B′
kAkA

′
kBk]

−1}=O(n−2dk). �

Lemma 10. Under Assumption 1,

P

{
MXk(H)∩

⊕

ℓ≤h1

Bj 6= 0

}
=O(n−2dh1+2dk)(18)

for h1 < k, k = 1, . . . , s and

P

{
MXk(H)∩

⊕

ℓ≥h2

Bj 6= 0

}
=O(n−2dk+2dh2 )(19)

for h2 > k, k = 0, . . . , s− 1.

Proof. Since H=BΦDB
′, we have Xℓ(H) =BXℓ(ΦD). Since ΦD is a

block diagonal matrix,

λi(ΦD) ∈ {λj(Φkk)|k = 0, . . . , s, j = 1, . . . , ak}
and for λi(ΦD) such that λi(ΦD) = λj(Φkk),

χi(ΦD) = (0, . . . ,0, χ′
j(Φkk),0, . . . 0)

′,
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that is, the first j∗k−1 entries are all zero. Define Ehℓ to be an event, Ehℓ =
{λah(Φhh)> λ1(Φℓℓ)}, 0≤ h < ℓ≤ s. We first prove (18).

P

{
MXk(H)∩

⊕

ℓ≤h1

Bℓ 6= 0

}
= P (Xk(ΦD) 6= [0 Y]′),

where the 0 in [0 Y]′ has dimension j∗h1
× ak and Y has full rank. We have

for h1 < k, k = 1, . . . , s,

P (Xk(ΦD) 6= [0 Y]′) = P

( ⋃

ℓ:ℓ≤h1

Ec
ℓk

)
≤

∑

ℓ:ℓ≤h1

P (Ec
ℓk) =O

( ∑

ℓ:ℓ≤h1

n−2d
ℓ
+2dk

)

=O(n−2dh1+2dk),

by Lemma 9. Similarly, for (19),

P

{
MXk(H)∩⊕ℓ≥h2Bℓ 6= 0

}
= P (Xk(ΦD) 6= [Z 0]′),

where the 0 in [Z 0]′ has dimension (q − j∗h2
)× ak, and Z has full rank. We

have for h2 > k, k = 0, . . . , s− 1,

P (Xk(ΦD) 6= [Z 0]′) = P

( ⋃

ℓ:ℓ≥h2

Ec
kℓ

)
≤

∑

ℓ:ℓ≥h2

P (Ec
kℓ) =O

( ∑

ℓ:ℓ≥h2

n−2dk+2dℓ

)

=O(n−2dk+2dh2 ). �

8.3. Proofs for Sections 6 and 7. In this section, we will use the following
decomposition and notation for the proofs. We write

b′AIzz(ωj)A
′b− b′Af(ωj̃)A

′b= b′AR(ωj)A
′b+ b′AS(ωj)A

′b,(20)

where

R(ωj) = Izz(ωj)−Ψ(ωj̃)Iεε(ωj)Ψ
∗(ωj̃)

and

S(ωj) =Ψ(ωj̃)Iεε(ωj)Ψ
∗(ωj̃)− f(ωj̃).

We will also use the following notation:

Lmn(d) =
1

mn

mn∑

j=1

ω2d
j̃
b′AR(ωj)A

′b,

Mmn(d) =
1

mn

mn∑

j=1

ω2d
j̃
b′AS(ωj)A

′b,

Fmn(d) =
1

mn

mn∑

j=1

ω2d
j̃
b′Af(ωj)A

′b.

(21)
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8.3.1. Proof of Theorem 2. Here and in the following subsections, sup-
pose that a ∈Nk, where k ∈ {0, . . . , s}. Write d̂aa = d̂k. Note that daa = dk.
For 1/4 > δ > 0, let Nδ = {d : |d− dk|< δ}. Then for S(d) = R(d)−R(dk),
we have

P (|d̂k − dk| ≥ δ) = P (d̂k ∈Nδ
c ∩Θ)

= P
(

inf
Nδ

c∩Θ
R(d)≤ inf

Nδ∩Θ
R(d)

)
≤ P

(
inf

Nδ
c∩Θ

S(d)≤ 0
)
.

Define Θ1 = {d : ∆≤ d≤∆2}, where ∆=∆1 when dk < 1/2 +∆1 and dk ≥
∆ > dk − 1/2 otherwise. Note that d − dk > −1/2 for all d ∈ Θ1. When
dk ≥ 1/2 + ∆1, define Θ2 = {d : ∆1 ≤ d <∆} and otherwise take Θ2 to be
empty. Hence,

P (|d̂k − dk| ≥ δ)≤ P
(

inf
Nδ

c∩Θ1

S(d)≤ 0
)
+P

(
inf
Θ2

S(d)≤ 0
)
= o(1),

by Lemmas 11 and 12 below. �

Lemma 11. Under the assumptions of Theorem 2, P (infN c
δ
∩Θ1 S(d) ≤

0) = o(1).

Proof. Let

U(d) = 2(d− dk)− log{2(d− dk) + 1}
and

T (d) = log
Ĝ(dk)

G − log
Ĝ(d)

G(d)
− log

{
2(d− dk) + 1

mn

mn∑

j=1

(
j̃

mn

)2(d−dk)
}

+2(d− dk)

{
1

mn

mn∑

j=1

log j̃ − (logmn − 1)

}
,

where G = b′Akf
†(0)A′

kb, as in (31), and

G(d) = G 1

mn

mn∑

j=1

ω
2(d−dk)

j̃
.

Then S(d) = U(d)− T (d). We have

P
(

inf
N c

δ
∩Θ1

S(d)≤ 0
)
≤ P

(
inf

N c
δ
∩Θ1

U(d)≤ sup
Θ1

|T (d)|
)
.

Following the same arguments as those on page 1635 of Robinson [17], it is
sufficient to show that

sup
Θ1

∣∣∣∣
Ĝ(d)−G(d)

G(d)

∣∣∣∣= op(1).
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Note that by Lemma 20, we have

G(d) =CGω2(d−dk)
mn

≥C(1− εk)ω
2(d−dk)
mn

,(22)

where εk =Op(n
−αk). By Lemma 21, for d ∈Θ1,

|Ĝ(d)−G(d)| = Lmn(d) +Mmn(d) +Fmn(d)−G 1

mn

mn∑

j=1

ω
2(d−dk)

j̃

= op(ω
2d−2dk
mn

m−ε
n ),

(23)

where Lmn , Mmn and Fmn are defined in (21). We have thus completed the
proof. �

Lemma 12. Under the assumptions of Theorem 2, P (infΘ2 S(d)≤ 0) =
o(1).

Proof. Following from the proof on pages 1638–1639 of Robinson [17],
we write

S(d) = log{D̂(d)/D̂(dk)},

where

D̂(d) =
1

mn

mn∑

j=1

(
j̃

eν

)2(d−dk)

j̃−2dkIvv(ωj) and ν =
1

mn

mn∑

j=1

log j̃.

Note that eν ∼mn/e. Denote

αj =





(
j̃

eν

)2(∆−dk)

∼
(
ej

mn

)2(∆−dk)

, 1≤ j ≤ eν ,

(
j̃

eν

)2(∆1−dk)

∼
(
ej

mn

)2(∆1−dk)

, eν < j <mn.

(24)

By choosing ∆< dk− 1
2 +

1
4e so that m−1

n

∑mn

j=1(αj −1)≥ 1 for all sufficiently
large mn, we have

P
(
inf
Θ2

S(d)≤ 0
)
≤ P

(
1

mn

mn∑

j=1

(αj − 1)j̃−2dkIvv(ωj)≤ 0

)

= P

(
1

mn

mn∑

j=1

(αj − 1)
Ivv(ωj)

Gω−2dk
j̃

≤ 0

)

≤ P

(∣∣∣∣∣
1

mn

mn∑

j=1

(αj − 1)

(
Ivv(ωj)

Gω−2dk
j̃

− 1

)∣∣∣∣∣≥ 1

)
.
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Now, by (20),

1

mn

mn∑

j=1

(αj − 1)

(
Ivv(ωj)

Gω−2dk
j̃

− 1

)
=

1

mn

mn∑

j=1

(αj − 1)

(
Ivv(ωj)

Gω−2dk
j̃

− Ivv(ωj)

b′Af(ωj̃)A
′b

)

+
1

mn

mn∑

j=1

(αj − 1)
b′AR(ωj)A

′b

b′Af(ωj̃)A
′b

(25)

+
1

mn

mn∑

j=1

(αj − 1)
b′AS(ωj)A

′b

b′Af(ωj̃)A
′b
.

We will show that all three terms in (25) are op(1). For the first term, we
begin by showing that

Ivv(ωj) = b′AR(ωj)A
′b+ b′AS(ωj)A

′b+ b′Af(ωj)A
′b=Op(ω

−2dk
j ).(26)

Let Rhℓ(ωj) denote the (h, ℓ)th block of R(ωj). By Lemmas 16 and 18,

b′AhRhℓ(ωj)A
′
ℓb =





Op(n
2dk−dh−dℓω−dh−dℓ

j j−ρ/2), h, ℓ < k,

Op(ω
−dh−dℓ
j j−ρ/2), h, ℓ≥ k,

Op(n
dk−dhω−dh−dℓ

j j−ρ/2), h < k, ℓ≥ k,

= Op(ω
−2dk
j j−ρ/2).

(27)

Also, by Lemmas 16 and 19,

b′AS(ωj)A
′b

=Op

(
k−1∑

h,ℓ=0

ω−dh−dℓ
j nd2k−dh−dℓ +

s∑

h,ℓ=k

ω−dh−dℓ
j +

∑

h<k,ℓ≥k

ω−dh−dℓ
j ndk−dh

)

=Op(ω
−2dk
j (j2dk−2dk−1 + 1+ jdk−dk−1)).

By (54) in the proof of Lemma 20, b′Af(ωj)A
′b = Op(ω

−2dk
j ). Thus, the

bound in (26) follows. Together with Lemma 20, we have

Ivv(ωj)

Gω−2dk
j̃

=Op(1)

and

1−
Gω−2dk

j̃

b′Af(ωj̃)A
′b

=Op

(
ω−2dk
j̃

(jdk−dk−1 + ω
dk−dk+1

j̃
+ ωρ

j̃
)

ω−2dk
j̃

)
=Op(j

dk−dk−1).
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Thus, the first term of (25) is

1

mn

mn∑

j=1

(αj − 1)

(
1−

Gω−2dk
j̃

b′Af(ωj̃)A
′b

)
Ivv(ωj)

Gω−2dk
j̃

=Op

(
1

mn

mn∑

j=1

(αj +1)jdk−dk−1

)

=Op

(
1

mn

(
mn∑

j=1

α2
j

)1/2

+m
dk−dk−1
n

)
(28)

= op(1)

since
∑mn

j=1α
2
j =O(m

4(dk−∆)
n +m logm), by Equation 3.24 of Robinson [17].

Applying (27) and (26), the second term of (25) is

Op

(
1

mn

mn∑

j=1

(αj + 1)j−ρ/2

)
=Op

(
1

mn

(
mn∑

j=1

α2
j

)1/2

+m−ρ/2
n

)
= op(1),

by the same argument as for (28). The third term of (25) is bounded by

∣∣∣∣∣
1

mn

[ev]∑

j=1

(αj − 1)
b′AS(ωj)A

′b

b′Af(ωj̃)A
′b

∣∣∣∣∣+
∣∣∣∣∣
1

mn

mn∑

j=[ev]+1

(αj − 1)
b′AS(ωj)A

′b

b′Af(ωj̃)A
′b

∣∣∣∣∣.

Following from (24) and the lower bound of b′Af(ωj̃)A
′b in Lemma 20, the

first term of the above equation is

Op

(
ω2(dk−∆)
mn

1

mn

[ev]∑

j=1

ω2∆
j̃
b′AS(ωj)A

′b

)
=Op(ω

2(dk−∆)
mn

Mmn(∆))

= op(ω
2(dk−∆)
mn

ω2(∆−dk)
mn

) = op(1),

by (ii) of Lemma 21, because 0≥∆−dk >−1/2. We will complete the proof
by showing that

1

mn

mn∑

j=[ev]+1

(
j

mn

)2(∆1−dk) b′AS(ωj)A
′b

b′Af(ωj̃)A
′b

= op(1).(29)

Note that eν ∼mn/e. Following the similar computation for (55),

E

∥∥∥∥∥
1

mn

mn∑

j=[ev]+1

(
j

mn

)2(∆1−dk)Shℓ(ωj)

ω−2dk
j

∥∥∥∥∥

2

=O

(
n−4dk+2dh+2dℓm2(2dk−2∆1−1)

n

mn∑

j=δmn

j4∆1−2dh−2dℓ

)

=O(ω4dk−2dh−2dℓ
mn

m−1
n ).
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Hence,
∥∥∥∥∥

1

mn

mn∑

j=[ev]+1

(
j

mn

)2(∆1−dk)Shℓ(ωj)

ω−2dk
j

∥∥∥∥∥=Op(ω
2dk−dh−dℓ
mn

m−1/2
n ).

By Lemma 16, we have

b′Ah

(
1

mn

mn∑

j=[ev]+1

(
j

mn

)2(∆1−dk)Shℓ(ωj)

ω−2dk
j

)
A′

ℓb

=





Op(m
2dk−dh−dℓ−1/2
n ), h, ℓ < k,

Op(ω
2dk−dh−dℓ
mn

m
−1/2
n ), h, ℓ≥ k,

Op(ω
dk−dℓ
mn

m
−1/2+dk−dh
n ), h < k, ℓ≥ k,

= op(1).

Equation (29) follows from the triangle inequality. �

8.3.2. Proof of Theorem 3. By Theorem 2, d̂k satisfies

0 =
∂R(d̂k)

∂d
=
∂R(dk)

∂d
+
∂2R(d̃)

∂d2
(d̂k − dk),(30)

where |d̃− dk| ≤ |d̂k − dk|. Let

Zn = 2m−1/2
n

mn∑

j=1

νj(Iεε(ωj)−Σ), νj = log j̃ − 1

mn

mn∑

j=1

log j̃

and

Zn =
1

G b
′AkΨ

†′
k (0)ZnΨ

†
k(0)A

′
kb,

where

G = b′Akf
†(0)A′

kb= b′AkΨ
†′
k (0)ΣΨ

†
k(0)A

′
kb(31)

and Ψ
†
k(ω) is a q × ak submatrix of Ψ†(ω) = [Ψ†

0(ω) . . . Ψ
†
s(ω)] in (8). We

show in Lemmas 13 and 14 that

∂2R(d̃)

∂d2
p→ 4(32)

and

m1/2
n

∂R(dk)

∂d
= Zn + op(1).(33)
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From Lemmas 0 and 8 of Hurvich and Chen [8], the (u, v)th entry of Zn

satisfies

Zn,uv
D→N(0,4Φpσ

2
uv).

Using a similar computation for the variance above and Eq. (53) in the proof
of Lemma 19, we obtain

E(Zn,u1v1Zn,u2v2)→ 4Φpσu1v2σu2v1 .

Using the Cramer–Wold device, we have vecZn
D→ vecZ∼N(0,4ΦpΣ⊗Σ).

By Lemma 15, b
D→ b̊, thus,

Zn
D→ b̊′AkΨ

†′
k (0)ZΨ

†
k(0)A

′
k b̊

b̊′AkΨ
†′
k (0)ΣΨ

†
k(0)A

′
k b̊

:= Z.(34)

Let ϕ = (ϕ1, . . . , ϕq)
′ = Ψ

†′
k (0)A

′
k b̊. Then Z|̊b is a normal random variable

with mean zero and variance

var(Z|̊b) = 4Φp
ϕ′Σϕϕ′Σϕ

(ϕ′Σϕ)2
= 4Φp.

Thus, Z is independent of b̊ and Z∼N(0,4Φp). Together with (30) and (32)–
(34), we have proved the theorem. �

Lemma 13. Let d̃ be such that |d̃ − dk| ≤ |d̂k − dk|. Then under the
assumptions of Theorem 2,

∂2R(d̃)

∂d2
p→ 4.

Proof. Define

Ĝa(d) =
1

mn

mn∑

j=1

(logωj̃)
aω2d

j̃
Ivv(ωj)

and

F̂a(d) =
1

mn

mn∑

j=1

(log j̃)aω2d
j̃
Ivv(ωj), Êa(d) =

1

mn

mn∑

j=1

(log j̃)aj̃2dIvv(ωj).

Then

∂2R(d)

∂d2
=

4{Ĝ2(d)Ĝ(d)− Ĝ2
1(d)}

Ĝ2(d)
=

4{F̂2(d)F̂0(d)− F̂ 2
1 (d)}

F̂ 2
0 (d)

=
4{Ê2(d)Ê0(d)− Ê2

1(d)}
Ê2

0(d)
.

(35)
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We first show that

F̂a(d̃) = F̂a(dk) + op(1), a= 1,2,3,(36)

by showing that Êa(d̃) = Êa(dk) + op(n
2dk) for a = 0,1,2. Let M = {d :

log3mn × |d − dk| ≤ ε}, where ε > 0 is fixed to be such that 2ε < log2mn

with a proper n. Following the same line of proof as on page 1642 of Robin-
son [17], for η > 0,

P

(
|Êa(d̃)− Êa(dk)|> η

(
2π

n

)−2dk
)

≤ P

(
Ĝ(dk)>

η
2eε(logmn)

2−a

)
+P (log3mn|d̃− dk|> ε).

(37)

The first probability is bounded by

P

(
|Ĝ(dk)−G|> η

4eε
(logmn)

2−a
)
+P

(
G > η

4eε
(logmn)

2−a
)
.

Both probabilities in the above equation tend to 0 for ε sufficiently small
since |Ĝ(dk)−G|= op(1) and G <C, by Lemma 20. To show that the second
probability in (37) tends to 0, we only have to verify that

sup
Θ1∩Nδ

∣∣∣∣
Ĝ(d)−G(d)

G(d)

∣∣∣∣= op(log
−6mn).

From (22) and (23) in the proof of Lemma 11,

sup
Θ1∩Nδ

∣∣∣∣
Ĝ(d)−G(d)

G(d)

∣∣∣∣≤ sup
Θ1

∣∣∣∣
Ĝ(d)−G(d)

G(d)

∣∣∣∣= op(m
−ε
n ).

We have established (36). Combining this with (35), we have

∂2R(d̃)

∂d2
=

4{F̂2(dk)F̂0(dk)− F̂ 2
1 (dk)}

F̂ 2
0 (dk)

+ op(1) as n→∞.

By Lemma 21,
∣∣∣∣∣F̂a(dk)−G 1

mn

mn∑

j=1

loga j̃

∣∣∣∣∣=
∣∣∣∣∣
1

mn

mn∑

j=1

loga j̃

(
Ivv(ωj)

ω−2dk
j̃

−G
)∣∣∣∣∣

≤ logamn|Lmn(dk) +Mmn(dk) +Fmn(dk)−G|
=Op(m

−ε
n logamn).

By the same reasoning as that used in (4.10) of Robinson [17], we obtain

∂2R(d̃)

∂d2
= 4

{
1

mn

mn∑

j=1

log2 j̃−
(

1

mn

mn∑

j=1

log j̃

)2}
(1+op(1))+op(1)

p→ 4. �
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Lemma 14. Under the assumptions of Theorem 3,

m1/2
n

∂R(dk)

∂d
− 1

G b
′AkΨ

†∗
k (0)ZnΨ

†
k(0)A

′
kb= op(1),

where

Zn = 2m−1/2
n

mn∑

j=1

νj(Iεε(ωj)−Σ) and νj = log j̃ − 1

mn

mn∑

j=1

log j̃.

Proof. Note that

∂R(d)

∂d
=

2

mn

mn∑

j=1

vjIvv(ωj)

ω−2d
j̃

Ĝ(d)
.

Since Ĝ(dk)−G = op(1), by (23), and
∑mn

j=1 νj = 0, we have

m1/2
n

∂R(dk)

∂d
= 2m−1/2

n

mn∑

j=1

νj

(
Ivv(ωj)

Gω−2dk
j̃

− 1

)
(1 + op(1))

and

m1/2
n

∂R(dk)

∂d
− 1

G b
′AkΨ

†∗
k (0)ZnΨ

†
k(0)A

′
kb

= 2m−1/2
n

{
mn∑

j=1

νj

(
Ivv(ωj)

Gω−2dk
j̃

− 1

)
−

mn∑

j=1

νj

Gω−2dk
j̃

b′AkSkk(ωj)A
′
kb

}

(38)

+ 2m−1/2
n

{
mn∑

j=1

νj
G (ω2dk

j̃
b′AkSkk(ωj)A

′
kb)− b′AkΨ

†∗
k (0)ZnΨ

†
k(0)A

′
kb

}

+ op(1),

where Shℓ(ωj) is the (h, ℓ)th block of S(ωj) defined in (20). Let

M(h,ℓ)
mn

(d) =
1

mn

mn∑

j=1

ω2d
j̃
b′AhShℓ(ωj)A

′
ℓb.

The first term of (38) is then
∣∣∣∣∣2m

−1/2
n

mn∑

j=1

νj

Gω−2dk
j̃

{
Ivv(ωj)−Gω−2dk

j̃
+

q∑

u,v=0
v 6=k

b′AhShℓ(ωj)A
′
ℓb

}∣∣∣∣∣

≤ 2m
1/2
n logmn

G

∣∣∣∣∣Lmn(dk) +Fmn(dk)−G+
q∑

u,v=0
v 6=k

M(h,ℓ)
mn

(dk)

∣∣∣∣∣

= op(1),
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by (20), (21), Lemma 22 and Assumption 3B. Since

Skk(ωj) = |1− eiωj |−2dkΨ
†∗
k (ωj)[I(ωj)−Σ]Ψ†

k(ωj)

= ω−2dk
j̃

Ψ
†∗
k (0)[I(ωj)−Σ]Ψ†

k(0) +Op(ω
−2dk+ρ

j̃
),

the second term in (38) is

Op

(
m−1/2

n

mn∑

j=1

νjω
ρ

j̃

)
=Op

(
m

ρ+1/2
n logm

nρ

)
= op(1),

by Lemma 16 and Assumption 3B. We have shown that both terms on the
right-hand side of (38) are op(1) and, hence, have completed the proof. �

Lemma 15. Under Assumption 1, the matrix X=X{Im(yt, yt)} satis-
fies

X
D→ X̊=B′X{K(UU′ +VV′)DK

′},
where X{K(UU′ +VV′)DK

′} is the matrix of normalized eigenvectors of
K(UU′ + VV′)DK

′ in Lemma 6 and U,V are defined as in Lemma 1.

Thus, X̊ is a continuous function with respect to vec(U,V).

Proof. It suffices to show that

‖Xk(H)−Xk‖F =Op(n
−αk)(39)

and that the eigenvectors of H satisfy

χj(H)
D−→ ξ̊j(vec(U,V)), j = 1, . . . , q,(40)

where ξ̊j are continuous functions of vec(U,V).
We first show (39). Note that since both H and Im are symmetric, we can

assume that χ′
jχj(H)≥ 0. We have

‖Xk(H)−Xk‖2F ≤ ak max
j∈Nk

‖χj(H)− χj‖2 ≤Cmax
j∈Nk

sin2 θ(χj, χj(H))

≤C‖ sinΘ{M(Xk(H)),M(Xk)}‖2F ,
by the definition of the sinΘ bound. Equation (39) follows from Lemma 4.

Next, we derive (40). Since χj(H) = B′χj(ΦD), it is sufficient to show
that

χj(ΦD)
D−→ ς̊j(vec(U,V)), j = 1, . . . , q,

where ς̊j are continuous functions of vec(U,V). Let Φ̃D = d−1
n ΦDd

−1
n . Then

Φ̃D =X′(Φ̃D)Λ(Φ̃D)X(Φ̃D).
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First, note that the eigenvalues of Φ̃D are distinct, with probability 1, by
Okamoto [14]. Since both Φ̃D and ΦD are block diagonal matrices, we have

ΦD = d−1
n X′(Φ̃D)Λ(Φ̃D)X(Φ̃D)d

−1
n =X′(Φ̃D)d

−1
n Λ(Φ̃D)d

−1
n X(Φ̃D).

This implies that

X′(ΦD) =X′(Φ̃D) and Λ(ΦD) = d−1
n Λ(Φ̃D)d

−1
n .

We now let K be defined as in Lemma 6 and rewrite Un and Vn in (10) as

Un = [U′
n,0 . . . U

′
n,s]

′, Vn = [V′
n,0 . . . V

′
n,s]

′,

where Un,k and Vn,k are ak ×m matrices. Since K is a block diagonal
matrix, we have

Φ̃D =K′ diag(Un,0U
′
n,0 +Un,0U

′
n,0, . . . ,Un,sU

′
n,s +Un,sU

′
n,s)K.

It follows that

χj(ΦD) = χj(Φ̃D) := ς̊j(vec(Un,Vn))
D−→ ς̊j(vec(U,V)),

where ς̊j(·) is a continuous function because the eigenvalues of Φ̃D are dis-
tinct with probability 1 and

χj(H) =B′χj(ΦD)
D−→B′ς̊j(vec(U,V)) = ξ̊j(vec(U,V)). �

Remark 3. Let X̊ = [X̊0 . . . X̊s]. Since X{K(UU′ +VV′)DK
′} is a

block diagonal matrix, X̊k =B′Xk{K(UU′ +VV′)DK
′} ∈ Bk.

8.3.3. Proof of Theorem 4. In case of no cointegration, we have

C1 = λ1(AA′)≥ ‖b′A‖2 = (b′AA′b)≥ λq(AA′)≥C2

and

C̃1 = λ1(AA′)λ1(f
†(0))≥G = b′Af †(0)A′b≥ λq(AA′)λq(f

†(0)) = C̃1,

where C1, C2, C̃1 and C̃2 are positive constants. Furthermore, by Assump-
tion 2,

b′Af(ωj)A
′b− ω−2d0

j G =Op(ω
−2d0+ρ
j ),

for 1≤ j ≤mn. Following along the lines of the proofs of Theorems 2 and 3,

we have m
1/2
n (d̂aa− daa) D→N(0,Φp/4) for a= 1, . . . , q. The theorem follows.

�
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9. Technical lemmas. We will need the following two lemmas:

Lemma 16. If b= χa, where a ∈Nk, then, under Assumption 1,

b′Ah =Op(n
−dh+dk)

for h < k, k = 1, . . . , s and

b′Ak =Op(1),

for k = 0, . . . , s.

Lemma 17. If b= χa, where a ∈Nk, then, under Assumption 1,

‖b′Ak‖ ≥C(1− εk),

where C > 0 and εk =Op(n
−αk), k = 0, . . . , s.

Proof of Lemma 16. SinceX(H) is an orthogonal matrix andMX(H) =
R
q, we have

b=
s∑

ℓ=0

Xℓ(H)cℓ,(41)

where

cℓ =X′
ℓ(H)b=Op(n

−|dk−dℓ|),

by Lemma 7. Furthermore, for ℓ > h,

E[‖X′
ℓ(H)Ah‖] = E[‖X′

ℓ(H)Ah‖1{MXℓ(H)⊂⊕j>hBj}]

+E[‖X′
ℓ(H)Ah‖1{MXℓ(H)∩⊕j≤hBj 6=0}]

≤ 0 + E[‖X′
ℓ(H)Ah‖1{MXℓ(H)∩⊕j≤hBj 6=0}]

= E[trace1/2(A′
hXℓ(H)X′

ℓ(H)Ah)1{MXℓ(H)∩⊕j≤hBj 6=0}]
(42)

≤ E[trace1/2(A′
hAh) trace

1/2(Xℓ(H)X′
ℓ(H))1{MXℓ(H)∩⊕j≤hBj 6=0}]

= a
1/2
ℓ ‖Ah‖

∣∣∣∣P
{
MXℓ(H)∩

⊕

j≤h

Bj 6= 0

}∣∣∣∣
1/2

=O(n−dh+dℓ),

by Lemma 10. For ℓ≤ h,

E[‖X′
ℓ(H)Ah‖] =O(1).(43)
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We have, for h < k,

b′Ah =
s∑

ℓ=0

c′ℓX
′
ℓ(H)Ah

=
∑

ℓ:ℓ≤h

c′ℓX
′
ℓ(H)Ah +

∑

ℓ:ℓ>h

c′ℓX
′
ℓ(H)Ah

=Op

(∑

ℓ:ℓ≤h

n−dℓ+dk +
∑

ℓ:h<ℓ≤k

n−dh+dℓ−dℓ+dk +
∑

ℓ:ℓ>k

n−dh+dℓ−dk+dℓ

)

=Op(n
−dh+dk).

For h= k, the above equation is of Op(1) since ck =Op(1) and E[‖X′
k(H)Ak‖] =

O(1). �

Proof of Lemma 17. Note that

‖b′Ak‖2 =

∥∥∥∥∥c
′
kX

′
k(H)Ak +

s∑

ℓ=0,ℓ 6=k

c′ℓX
′
ℓ(H)Ak

∥∥∥∥∥

≥
∣∣∣∣∣‖c

′
kX

′
k(H)Ak‖ −

∥∥∥∥∥

s∑

ℓ=0,ℓ 6=k

c′ℓX
′
ℓ(H)Ak

∥∥∥∥∥

∣∣∣∣∣.
(44)

Using (41), we have

1 = ‖b‖2 =
s∑

ℓ=0

‖Xℓ(H)cℓ‖2 =
s∑

ℓ=0

‖cℓ‖2 = ‖ck‖2 +
s∑

ℓ=0,ℓ 6=k

‖cℓ‖2

and
s∑

ℓ=0,ℓ 6=k

‖cℓ‖2 =Op(n
−2αk),(45)

by Lemma 4. Thus,

‖ck‖2 = 1−Op(n
−2αk).(46)

By (45), (42) and (43),
∥∥∥∥∥

s∑

ℓ=0,ℓ 6=k

c′ℓX
′
ℓ(H)Ak

∥∥∥∥∥ ≤
(

s∑

ℓ=0,ℓ 6=k

‖cℓ‖2
s∑

ℓ=0,ℓ 6=k

‖X′
ℓ(H)Ak‖2

)1/2

= Op(n
−αk).

(47)

Furthermore, if MXk(H) = Bk, then there exists an ak × ak orthogonal
matrix D such that

Xk(H) =BkD
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since both Xk(H) and Bk are matrices with orthonormal columns. We have

‖ck‖2 = trace{c′kDB′
kAk(B

′
kAk)

−1(A′
kBk)

−1A′
kBkD

′ck}
≤ ‖(B′

kAk)
−1‖2‖c′kDB′

kAk‖2

= ‖(B′
kAk)

−1‖2‖c′kX′
k(H)Ak‖2.

It follows that

‖c′kX′
k(H)Ak‖2 ≥ ‖(B′

kAk)
−1‖−2‖ck‖2 =C(1− δk),

where δk =Op(n
−2αk), by (46). By (44), (47) and the above equation, ‖b′Ak‖ ≥

C(1− δk− ε̃k), where ε̃k =Op(n
−αk). We have thus completed the proof. �

Lemma 18. Let Rab(ωj) be the (a, b)th entry of R(ωj),

E|Rab(ωj)| ≤ C|1− e−iω
j̃ |−(daa+dbb)j−ρ/2,

a, b= 1, . . . , q and 1≤ j ≤ [n/2]

under Assumption 2.

Proof. Let Jza(ωj) be the jth element of Jz(ωj), the discrete Fourier
transform of zt. By (4),

Jza(ωj) =
q∑

b=1

Jzab (ωj),(48)

where

Jzab (ωj) =
1√

2π
∑ |hp−1

t |2

n∑

t=1

hp−1
t

(
∞∑

k=∞

ψk,abεt−k,b

)
eiωjt.

Hence,

Rab(ωj) = Jza(ωj)Jzb(ωj)−
q∑

u=1

Ψau(ωj̃)Jεu(ωj)
q∑

v=1

Ψbv(ωj̃)Jεv(ωj)

=
q∑

u,v=1

(Ψau(ωj̃)Ψbv(ωj̃)(Aau,jAbv,j −Bu,jBv,j)),

(49)

where

Aau,j =
Jzau (ωj)

Ψau(ωj̃)
and Bu,j = Jεu(ωj).(50)

From Lemmas 9 and 10 of Hurvich et al. [9],

E|Aau,j −Bu,j|2ℓ ≤ C

(∫ π

−π

∣∣∣∣
Ψau(ω)

Ψau(ωj̃)
− 1

∣∣∣∣
2

|Dp,n(ωj − ω)|2 dω
)ℓ

≤ Cj−ℓρ.

(51)
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By the Cauchy–Schwarz inequality,

E|Aau,jAbv,j −Bu,jBv,j |2 = E|(Aau,j −Bu,j)(Abv,j −Bv,j)

+Bu,j(Abv,j −Bv,j) +Bv,j(Aau,j −Bu,j)|2

≤ 3(E|Aau,j −Bu,j|4E|Abv,j −Bv,j |4)1/2
(52)

+ (E|Bu,j|4E|Abv,j −Bv,j |4)1/2

+ (E|Bv,j |4E|Aau,j −Bu,j|4)1/2

≤ C[(j−2ρj−2ρ)1/2 + (j−2ρ)1/2] =Cj−ρ.

We have, from (49) and Assumption 2,

E|Rab| ≤
q∑

u,v=1

Ψau(ωj̃)Ψbv(ωj̃)(E|Aau,jAbv,j −Bu,jBv,j |2)1/2

≤ C
q∑

u,v=1

|1− e−iω
j̃ |−(dau+dbv)τau(ωj)τav(ωj)j

−ρ/2

≤ C|1− e−iω
j̃ |−(daa+dbb)j−ρ/2,

where the constant C does not depend on n. �

Lemma 19. Let Sab(ω) be the (a, b)th entry of S(ωj). Then for 1≤ j, k ≤
[n/2],

E|Sab(ωj)Sab(ωk)| ≤
{
C|(1− e−iω

j̃ )(1− e−iω
k̃)|−(daa+dbb), |j − k|< p,

C/n, otherwise,

under Assumptions 1 and 2.

Proof. Note that EIεε(ωj) =Σ and Sab(ωj) =
∑q

u,v=1Ψau(ωj̃)Ψbv(ωj̃)

× (Iεε,uv(ωj)− σuv). Now,

E|Sab(ωj)Sab(ωk)|=
q∑

u1,u2,v1,v2=1

Ψau1(ωk̃)Ψau2(ω̃k)Ψbv1(ωj̃)Ψbv2(ωk̃)

×E[(Iεε,u1v1(ωj)− σu1v1)(Iεε,u2v2(ωk)− σu2v2)].

Note that E(Jεu(ωj)Jεv (ωk)) = 0, 1≤ j, k ≤ n/2, and E(Jεu(ωj)Jεv(ωk)) = 0
if |j − k| ≥ p and

E(Jεu(ωj)Jεv(ωk)) =
σuv
cp

(−1)j−k
(

2p− 2
p− 1 + j − k

)
1{|j−k|<p},(53)
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where

cp =

(
2p− 2
p− 1

)
;

see [9]. Hence,

E[(Iεε,u1v1(ωj)− σu1v1)(Iεε,u2v2(ωk)− σu2v2)]

= E[Iεε,u1v1(ωj)Iεε,u2v2(ωk)]− σu1v1σu2v2

= cum(Jεu1 (ωj), Jεu2 (ωk), Jεv1
(ωj), Jεv2

(ωk))

+ E(Jεu1 (ωj)Jεv2
(ωk))E(Jεu2 (ωj)Jεv1

(ωk))

=C1{|j−k|<p}

because (53) and the cumulant is 0 under Assumption 1. We have, by (5),

E|Sab(ωj)Sab(ωk)|

≤C
q∑

u1,u2,v1,v2=1

(|Ψau1(ωj̃)||Ψau2(ωk̃)||Ψbv1(ωj̃)||Ψbv2(ωk̃)|)1{|j−k|<p}

≤C|1− e−iω
j̃ |−(daa+dbb)|1− e−iω

k̃ |−(daa+dbb)1{|j−k|<p}. �

Lemma 20. Under Assumptions 1 and 2,

b′Af(ωj)A
′b− b′Akfkk(ωj)A

′
kb=Op(ω

−2dk
j (jdk−dk−1 + ω

dk−dk+1

j ))

and

b′Akfkk(ωj)A
′
kb−Gω−2dk

j =Op(ω
−2dk+ρ
j )

for 1≤ j ≤mn. Furthermore, there exists a constant C such that

b′Af(ωj)A
′b≥Cω−2dk

j (1− εk)

for 1≤ j ≤mn and two constants, C1 and C2, such that

C1 > G ≥C2(1− εk),

where εk =Op(n
−αk).

Proof. Since, by Lemma 16,

b′Ahfhℓ(ωj)A
′
ℓb=





Op(ω
−2dk
j j2dk−dh−dℓ), h < k, ℓ≤ k,

Op(ω
−dh−dℓ
j ), h, ℓ > k,

Op(ω
−dk−dℓ
j jdk−dh), h≤ k, ℓ > k,

(54)
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we have

b′Af(ωj)A
′b= b′Akfkk(ωj)A

′
kb+

s∑

h=0

s∑

ℓ=0
ℓ 6=k

b′Ahfhℓ(ωj)A
′
ℓb

= b′Akfkk(ωj)A
′
kb+Op(ω

−2dk
j jdk−dk−1 + ω

−2dk+1

j + ω
−dk−dk+1

j )

= b′Akfkk(ωj)A
′
kb+Op(ω

−2dk
j (jdk−dk−1 + ω

dk−dk+1

j )).

Since (7) and Assumption 2 imply that fkk(ω) = f
†
kk(0)ω

−2dk +O(ω−2dk+ρ)
as ω→ 0, we have, by Lemma 16,

b′Afkk(ωj)Akb
′ = b′Akf

†
kk(0)A

′
kbω

−2dk
j +Op(‖b′Ak‖2ω−2dk+ρ

j )

= Gω−2dk
j +Op(ω

−2dk+ρ
j ).

We have shown the first two equations of the lemma. For the third equation,
we have, by (54),

b′Af(ωj)A
′b= b′

(
k∑

h,ℓ=0

Ahfhℓ(ωj)A
′
ℓ

)
b+Op(ω

−dk−dk+1

j ).

By Assumption 2 and Lemmas 16 and 17,

b′
(

k∑

h,ℓ=0

Ahfhℓ(ωj)A
′
ℓ

)
b= b′

(
k∑

h,ℓ=0

ω−dh−dℓ
j Ahf

†
hℓ(0)A

′
ℓ

)
b

+Op

(
ω−dh+dℓ+ρ
j

k∑

h,ℓ=0

b′AhA
′
ℓb

)

≥ ω−2dk
j λmin{f †(0)}

k∑

h,ℓ=0

b′AhA
′
ℓbAh +Op(ω

ρ
j )

≥Cω−2dk
j (1− εk) +Op(ω

ρ
j ).

For the last inequality,

G = b′Akf
†
kk(0)A

′
kbω

−2dk
j ≥ ω−2dk

j λmin(f
†
kk(0))‖b′Ak‖2 ≥Cω−2dk

j (1− εk),

by Lemma 17. The upper bound for G is due to the fact that

G ≤λmax(f
†
kk(0))‖Ak‖‖b‖= λmax(f

†
kk(0))‖Ak‖. �

Lemma 21. Let Lmn(d), Mmn(d) and Fmn(d) be defined as in (21).
Then if d− dk >−1

2 , there exists an ε > 0 such that

Lmn(d) = op(ω
2d−2dk
mn

m−ε
n ),(i)
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Mmn(d) = op(ω
2d−2dk
mn

m−ε
n ),(ii)

Fmn(d)−Gω2d−2dk
mn

= op(ω
2d−2dk
mn

m−ε
n ),(iii)

under Assumptions 1 and 2.

Proof. We will only prove (ii); (i) and (iii) can be shown in a similar
fashion using Lemmas 16, 18 and 20. Let Shℓ(d) be the (h, ℓ)th block matrix
of S(d). By Lemma 19,

E

∥∥∥∥∥
1

mn

mn∑

j=1

ω2d
j̃
Shℓ(ωj)

∥∥∥∥∥

2

=O

(
1

m2
n

mn∑

j=1

p+j∑

k=j

ω2d−dh−dℓ
j̃

ω2d−dh−dℓ
k̃

)

=O

(
1

m2
n

mn∑

j=1

p+j∑

k=j

ω4d−2dh−2dℓ
j̃

)

=

{
O(n2dh+2dℓ−4dm−2

n logmn), 4d− 2dh − 2dℓ ≤−1,
O(ω4d−2dh−2dℓ

mn
m−1

n ), 4d− 2dh − 2dℓ >−1.

Hence, we have
∥∥∥∥∥

1

mn

mn∑

j=1

ω2d
j̃
Shℓ(ωj)

∥∥∥∥∥

=




Op(n

dh+dℓ−2dm−1
n log1/2mn), 2d− dh − dℓ ≤−1/2,

Op(ω
2d−dh−dℓ
mn

m
−1/2
n ), 2d− dh − dℓ >−1/2.

(55)

Let

M(h,ℓ)
mn

(d) = b′Ah

(
1

mn

mn∑

j=1

ω2d
j̃
Shℓ(ωj)

)
A′

ℓb.

By Lemma 19 and (55), we have, for h, ℓ < k,

M(h,ℓ)
mn (d)

=




Op(ω

2d−2dk
mn

m−1−2d+2dk
n log1/2mn), 2d− dh − dℓ ≤−1/2,

op(ω
2d−2dk
mn

m
−1/2+ε
n ), 2d− dh − dℓ >−1/2,

(56)
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where ε > 0. By the same lemma and (55), we have, for h, ℓ≥ k,

M(h,ℓ)
mn

(d) =Op(ω
2d−dh−dℓ
mn

m−1/2
n ) =Op(ω

2d−2dk
mn

ω2dk−dh−dℓ
mn

m−1/2
n )(57)

and for h < k, ℓ≥ k,

M(h,ℓ)
mn (d)

=




op(ω

2d−2dk
mn

m−1−2d+2dk
n log1/2mn), 2d− dh − dℓ ≤−1/2,

op(ω
2d−2dk
mn

ωdk−dℓ
mn

m
−1/2+dk−dh
n ), 2d− dh − dℓ >−1/2.

(58)

Hence,

Mmn(d) =
s∑

h=0

s∑

ℓ=0

M(h,ℓ)
mn

(d) = op(ω
2d−2dk
mn

m−ε
n ),

since 2dk − dh − dℓ > 0 in (57) and −1− 2d+ 2dk < 0 in (56) and (58). �

Lemma 22. Under the assumptions of Theorem 2, if d− dk >−1
4 , then

Lmn(d) = op(ω
2d−2dk
mn

m−1/2−ε
n )

and

M(h,ℓ)
mn

(d) =




Op(ω

2d−2dk
mn

m
−1/2
n ), h= ℓ= k,

op(ω
2d−2dk
mn

m
−1/2−ε
n ), otherwise,

Furthermore, under the assumptions of Theorem 2,

Fmn(dk)−G =Op(m
dk−dk−1
n + ω

dk−dk+1
mn ),

where the Op(m
dk−dk−1
n ) term is vacuous if k = 0 and the Op(ω

dk−dk+1
mn ) term

is vacuous if k = s.

Proof. This lemma is a corollary of Lemma 21. �
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