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We derive an asymptotic theory of nonparametric estimation for
a time series regression model Zt = f(Xt)+Wt, where {Xt} and {Zt}
are observed nonstationary processes and {Wt} is an unobserved sta-
tionary process. In econometrics, this can be interpreted as a nonlin-
ear cointegration type relationship, but we believe that our results
are of wider interest. The class of nonstationary processes allowed
for {Xt} is a subclass of the class of null recurrent Markov chains.
This subclass contains random walk, unit root processes and nonlin-
ear processes. We derive the asymptotics of a nonparametric estimate
of f(x) under the assumption that {Wt} is a Markov chain satisfy-

ing some mixing conditions. The finite-sample properties of f̂(x) are
studied by means of simulation experiments.

1. Introduction. Two time series {Xt} and {Zt} are said to be linearly

cointegrated if they are both nonstationary and of unit root type and if there
exists a linear combination aXt+bZt =Wt such that {Wt} is stationary. This
means that the series {Xt,Zt} move together when considered over a long
period of time. The concept of cointegration was introduced by Granger [10]
and further developed by Engle and Granger [6]. Since its introduction, there
have been numerous papers in econometrics exploring its various aspects.
Some of the main results are given in Johansen [19].

The long term relationships between two economic time series may not
necessarily be linear, however, and the processes {Xt} and {Zt} may not
be linearly generated unit root processes. This has led to a search for non-
linear cointegration type relationships such as Zt = f(Xt) +Wt, for some
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nonlinear function f and some possibly nonlinearly generated input process
{Xt}. Indeed, functional relationships of this type have been fitted to eco-
nomic data (see, e.g., [8, 12]), but to our knowledge, the properties of the
resulting nonparametric estimates have not been established (see [27] for a
consistency property in a simplified situation, though). A brief discussion of
the relationship between our work and recent contributions to the theory of
nonlinear cointegration occurs in Section 6.

There are at least two difficulties (cf. [11] and others): which class of
processes should be chosen as a basic class of nonstationary processes and
how should an estimation theory for an estimate of f be constructed? The
main goal of this paper is to try to answer these questions, that is, we wish
to establish a nonparametric estimation theory of the kernel estimator

f̂(x) =

∑n
t=0ZtKx,h(Xt)∑n
t=0Kx,h(Xt)

(1.1)

for the function f in the nonlinear regression model

Zt = f(Xt) +Wt,(1.2)

where K is a kernel function whose definition and properties are given in
Section 2.1, h is the bandwidth, {Wt} is an unobserved stationary process
and {Xt} and {Zt} are observed processes which are nonstationary in a
sense to be made precise later. At first, {Xt} and {Wt} will be assumed
to be independent processes, which is quite a natural assumption in a non-
linear regression context. However, in a cointegration framework, this inde-
pendence assumption is rather restrictive and is generally not fulfilled for
linear cointegration models. In Section 4, dependence is the main subject. It
turns out that dependence between {Xt} and {Wt} for fixed t may disappear
asymptotically. The reason for this phenomenon is related to restrictions on
the type of dependence which is possible between a stationary and a nonsta-
tionary process. A stationary process cannot follow a nonstationary process
too closely as this will violate the stationarity.

Although the connection between (1.2) and the nonlinear cointegration
problem is obvious, we would like to point out that the estimation of the
function f in the general context we are considering should also be of in-
terest in other areas of application. In a traditional time series regression
problem, some sort of mixing condition is often assumed for {Xt} in order

to obtain a central limit theorem for f̂(x). However, mixing assumptions on
{Xt} are ruled out in the general situation we consider. A minimal condi-

tion for undertaking asymptotic analysis on f̂(x) is that as the number of
observations on {Xt} increases, there must be infinitely many observations
in any neighborhood of x. This means that {Xt} must return to a neigh-
borhood of x infinitely often, which, in turn, implies that the framework
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of a recurrent Markov chain is especially convenient. Since {Xt} may be
nonstationary, null recurrent processes have to be included. It should be
noted that the class of null recurrent processes contains unit root processes
(cf. [23]). Unlike the parametric situation, where a unit root speeds up the
convergence of (global) estimates due to the large spread of the observa-
tions, in the nonparametric case, which is concerned with local estimates,
the nonstationarity slows down the convergence because the time until the
process returns to the local neighborhood around x increases, the expected
time being infinite in the null recurrent case.

In [21, 22] (hereafter, the Karlsen and Tjøstheim paper [22] is referred
to as KT), an asymptotic theory was developed for nonparametric estima-
tion for a nonstationary univariate nonlinear model in the framework of
so-called β-null recurrent processes. The latter constitute a subclass of the
null recurrent processes which contains the random walk. For an alterna-
tive theoretical approach in the random walk case, we refer to [26]. For a
relationship between the two approaches, see [2].

We will rely on central parts of the theory of KT in our derivations in
this paper. But, a host of new problems emerges in the regression case, as
will be made clear in the following.

2. Notation and some basic conditions. We will follow the notation of
KT since our proofs and results will be closely based on that paper. Thus, we
denote by {Xt, t≥ 0} a φ-irreducible Markov chain on a general state space
(E,E) with transition probability P . This means that there exists a nontriv-
ial measure φ on E such that each φ-positive set A is communicating with the
whole state space, that is,

∑
nP

n(x,A)> 0 for all x ∈E whenever φ(A)> 0,
A ∈ E . In this paper, we take E ⊆R and we denote the class of nonnegative
measurable functions with φ-positive support by E+. For a set A ∈ E , we
write A ∈ E+ if the indicator function 1A ∈ E+. The process {Xt, t≥ 0} will
be assumed to be Harris recurrent. This implies that given a neighborhood
Nx of x with φ(Nx)> 0, {Xt} will return to Nx with probability one, this
being what makes asymptotics for a nonparametric estimation possible. The
chain is positive recurrent if there exists an invariant probability measure
such that {Xt, t≥ 0} is strictly stationary and is null recurrent otherwise.
In this paper, we are primarily interested in the null recurrent situation, in
which case there exists a (unique up to a constant, nonprobability) invariant
measure, which will be denoted by π.

If η is a nonnegative measurable function and λ is a measure, then the
kernel η⊗ λ is defined by

η⊗ λ(x,A) = η(x)λ(A), (x,A) ∈ (E,E).
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If H is a general kernel, the function Hη, the measure λH and the number
λHη are defined, respectively, by

Hη(x) =

∫
H(x,dy)η(y), λH(A) =

∫
λ(dx)H(x,A),

λHη =

∫
λH(dy)η(y).

The convolution of two kernels, H1 and H2, gives another kernel, defined by

H1H2(x,A) =

∫
H1(x,dy)H2(y,A).

Due to associative laws, the number λH1H2η is uniquely defined. If A ∈ E
and 1A is the corresponding indicator variable, then H1A(x) =H(x,A). The
kernel Ig is defined by Ig(x,A) = g(x)1A(x) and the special case g = 1C is
denoted IC .

We define η ∈ E+ to be small if there exist a measure λ, a positive constant
b and an integer m≥ 1 such that

Pm ≥ bη⊗ λ.(2.1)

A set A is said to be small if 1A is small. Under quite broad conditions (cf.
[9]), a compact set will be small. In this case, it follows from (2.1) that a
φ-positive subset of a compact set will be small. If λ satisfies (2.1) for some
η, b and m, then λ is a small measure.

A fundamental fact for φ-irreducible Markov chains is the existence of a
minorization inequality ([24], Theorem 2.1 and Proposition 2.6, pages 16–19):
there exist a small function s, a probability measure ν and an integer m0 ≥ 1
such that

Pm0 ≥ s⊗ ν.

Some technical difficulties arise if m0 > 1 because this necessitates the m0-
step chain; it is not a severe restriction to assume that m0 = 1. Therefore,
unless otherwise stated, in the sequel we will assume that the minorization
inequality

P ≥ s⊗ ν(2.2)

holds, where s and ν are small and ν(E) = 1. In particular, this implies that
0 ≤ s(x) ≤ 1, x ∈ E. If (2.2) holds, then the pair (s, ν) is called an atom

(for P ). A wide class of nonlinear AR(1) processes satisfying (2.2) is given
in KT.
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From (2.2), we obtain the identity

P (x,A) = (1− s(x))

{(
P (x,A)− s(x)ν(A)

1− s(x)

)
1(s(x)< 1)

+1A(x)1(s(x) = 1)

}
+ s(x)ν(A)(2.3)

def
= (1− s(x))Q(x,A) + s(x)ν(A),

so that the transition probability P can be thought of as a mixture of the
transition probability Q and the small measure ν. Since ν is independent
of x, this means that the chain regenerates each time ν is chosen. This occurs
with probability s(x). The reasoning can be formalized by introducing the
split chain {(Xt, Yt)}, where the auxiliary chain {Yt} can only take values
0 and 1. Given that Xt = x and Yt−1 = yt−1, Yt takes the value 1 with
probability s(x) so that α=E×{1} is a proper atom (cf. [24], page 51) for
the split chain. We denote by

Sα =min{t≥ 1 :Yt = 1}
the corresponding recurrence time. We will also make use of the consecutive
sequence of recurrence times starting at time t= 0,

τk =min{t > τk−1 :Yt = 1}, τ−1
def
= −1 for k ≥ 0, τ = τα = τ0,(2.8)

and the number of regenerations in the time interval [0, n], that is,

T (n) = max
k

{k : τk ≤ n} ∨ 0.

An invariant measure πs can be defined in terms of the atom (s, ν) of
(2.2). In fact (KT, Section 3.2),

πs
def
= νGs,ν , Gs,ν

def
=

∞∑

ℓ=0

(P − s⊗ ν)ℓ.(2.9)

If the measure πs is absolutely continuous with respect to Lebesgue mea-
sure, we denote by ps the corresponding density so that ps(x)dx= πs (dx).
Similarly, for C ∈ E+, we define the density pC(x) = ps(x)/πs1C . For a πs-
integrable function g on R, we use the notation πsg for

πsg = πs(g) =

∫
g(x)πs(dx).

Corresponding to T (n), for a set C ∈ E+, the number of times {Xt} visits
C up to time n is denoted by

TC(n) =
n∑

t=0

1C(Xt).
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From KT (Remark 3.5) we have that TC(n)/T (n)
a.s.−→ πs1C .

The kernel Gs,ν of (2.9) plays an important role in Section 3 and it easily
follows from the above that for a πs-integrable g defined on E, with Ex being
the expectation conditional on X(0) = x,

Ex

τ∑

t=0

g(Xt) =Gs,νg(x).(2.10)

The minorization condition and the accompanying split chain permit the
decomposition of the chain into separate and identical parts defined by the
regeneration points. We have, for a function g,

Sn(g)
def
=

n∑

t=0

g(Xt) =U0 +

T (n)∑

k=1

Uk +U(n),(2.11)

where

Uk =





τk∑

t=τk−1+1

g(Xt), when k ≥ 0,

n∑

t=τT (n)+1

g(Xt), when k = (n).

The sequence {(Uk, (τk − τk−1)), k ≥ 1} consists of independent identically
distributed (i.i.d.) random variables. This partition of the chain is of basic
importance for the subsequent asymptotic analysis. In the following, we will
sometimes use the symbol U = U(g) to denote a random variable represent-
ing the common marginal distribution of {Uk, k ≥ 1}.

We must introduce a restriction on the way the process regenerates: the
chain {Xt} is β-null recurrent if there exist a small nonnegative function f ,
an initial measure λ, a constant β ∈ (0,1) and a slowly varying function Lf

such that

Eλ

n∑

t=0

f(Xt)∼
1

Γ(1 + β)
nβLf (n)(2.12)

as n→∞. This condition is equivalent to (cf. KT, Theorem 3.1) a restriction
on the tail distribution of the recurrence time Sα, in that

Pα(Sα > n) =
1

Γ(1− β)nβLs(n)
(1 + O(1)),(2.13)

where Ls is a slowly varying function depending on s and where Pα means
that the initial distribution is equal to δα(x, y), that is, Y0 = 1, X0 = x
arbitrary. In the sequel, (2.13) will be referred to as the tail condition.

A random walk process is β-null recurrent with β = 1/2.
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2.1. Basic conditions. We denote by h= hn the bandwidth used in the
nonparametric estimation. It is assumed to satisfy hn → 0 and, with no loss
of generality, we also assume that hn ≤ 1. Let K :R→R be a kernel function
and for a fixed x, let Kx,h(y) = h−1K((y− x)/h), Nx(h) = {y :Kx,h(y) 6= 0}
and Nx =Nx(1). In our context, a locally bounded function will be taken to
mean a function bounded in a neighborhood of x and a locally continuous
function is a function continuous at the point x. Without loss of generality,
we may assume that this neighborhood equals Nx and that local continuity
implies local boundedness. This follows since Nx(h) = x⊕ hN0.

We will consider the problem of evaluating the properties of the kernel
estimator (1.1) of the function f of (1.2) under the assumption that {Wt}
is Markov. In Section 3, {Xt} and {Wt} are assumed to be independent.
The independence assumption is removed in Section 4, and the compound
process {(Xt,Wt)} is assumed to be Markov.

The following set of conditions is always assumed:

B0 (i) the kernel K is nonnegative,
∫
K(u)du <∞ and

‖K‖22 =
∫
K2(u)du <∞;

(ii) the {Xt} process is a Harris recurrent Markov chain;
(iii) the transfer function f is continuous at the point x.

We will also make heavy use of the following conditions B1–B4 of KT. For
ease of reference, these conditions are restated here:

B1 (i)
∫
K(u)du= 1;

(ii)
∫
uK(u)du= 0;

B2 (i) the support N0 of the kernel is contained in a compact set;
(ii) the kernel is bounded and Nx is a small set;

B3 the invariant measure πs has a locally continuous density ps which is
locally strictly positive, that is, ps(x)> 0;

B4 for all {Ah} ∈ E such that Ah ↓∅, limh↓0 limy→xP (y,Ah) = 0.

In all of the proofs, we use c1, c2, . . . as a sequence of generic constants
and if {an} and {bn} are two real-valued strictly positive sequences, then we
write an ≪ bn if an = O(bn). The associated σ-algebra, FX

t , for a stochastic
process {Xt, t ≥ 0} is defined in the usual way: FX

t = σ{Xj , j ≤ t} and
FX =

∨
tFX

t .

3. Nonparametric estimation of f . At the outset, we assume that {Wt}
is a φ-irreducible ergodic Markov chain which satisfies (2.2). Additional as-
sumptions will be introduced as needed. Actually, we also allow a slight
generalization of (1.2), in that we include an instantaneous transformation
of Wt, resulting in

Zt = f(Xt) + gW (Wt).(3.1)
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This is an extension of (1.2) since even if {Wt} is Markov, {W ′
t}= {gW (Wt)}

does not have to be Markov. We assume that EgW (W0) = 0. Because we do
not generally restrict gW to be a small function (consider, e.g., gW (w)≡w),
Lemma 5.1 and Lemma 5.2 of KT cannot be used, which complicates matters
considerably.

Throughout this section, we make the assumption that {Xt} and {Wt}
are independent and, using this assumption, we are able to obtain results
which are of interest in the general context of nonparametric estimation of
nonstationary processes. In Section 4, we allow for dependence, but put re-
strictions on gW , and some parts of the results obtained in this section are
extended. Moreover, our findings in Section 4 highlight the fact that the
actual dependence occurring in cointegration models disappears asymptot-
ically. In this way, results in this section are also relevant to cointegration
models. Furthermore, they may serve as a starting point for deriving asymp-
totic results for the dependent case without the restrictions on gW which
are imposed in Section 4. We believe that lettingW ′

t = gW (Xt, . . . ,Xt−p,Wt)
for some fixed p, where {Wt} is a Markov process, independent of {Xt} and
such that {W ′

t} is stationary, may be a possible way to proceed.

We start by expressing f̂(x)− f(x) in the Sn-notation of (2.11), and this

is done by rewriting the numerator of f̂(x) of (1.1) as

Zt = gW (Wt) + (f(Xt)− f(x)) + f(x),

ZtKx,h(Xt) = gh(Xt,Wt) +ψx(Xt)Kx,h(Xt) + f(x)Kx,h(Xt),

where gh(z,u) = gW (u) ·Kx,h(z) and ψx(y) = f(y)− f(x). By the definition

of f̂(x), this gives

f̂(x)− f(x) = S−1
n (Kx,h){Sn(gh) + Sn(ψx ·Kx,h)}.

The last term on the right-hand side represents the bias. It is a stochastic
quantity and we want to replace it by a deterministic bias term. Let

ah
def
=
πsIKx,h

ψx

πsIKx,h
1
, bh

def
= IKx,h

(ψx − ah).

Then

f̂(x)− f(x)− ah = S−1
n (Kx,h){Sn(gh) + Sn(ψx ·Kx,h)− ahSn(Kx,h)}

= S−1
n (Kx,h){Sn(gh) + Sn(bh)}.

It follows that

h1/2S1/2
n (Kx,h){f̂(x)− f(x)− ah}=∆1

n,h +∆2
n,h,(3.2)
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where

∆1
n,h = S−1/2

n (Kx,h)h
1/2Sn(gh),

∆2
n,h = {p̂C(x)}−1/2T

−1/2
C (n)h1/2Sn(bh),

p̂C(x) = T−1
C (n)Sn(Kx,h)

and where C is a purely auxiliary small set. Replacing Pξ with f in the
proof of Theorem 5.4 in KT, then using B1–B3 and condition (2.13), we
have ∆2

n,hn
= OP (1) and by KT (the second part of Theorem 5.3 and also

the proof of Theorem 5.4), p̂C(x) = pC(x) + OP (1) since πsbh = 0.

By (3.2), the above arguments show that a central limit theorem for f̂(x)
follows from a central limit theorem for ∆1

n,hn
. We continue the proof of the

asymptotic properties of f̂ by formulating a general nonparametric CLT.

3.1. A nonparametric CLT for null recurrent processes. Assume that
{Xt} is a general Markov chain [e.g., it could be identified with the com-
pound chain {(Xt,Wt)} or with just one of the components] which satisfies
the minorization condition (2.2) and the tail condition (2.13). Let (assuming
first- and second-order moments exist)

U0 = U0(gh) =
τ0∑

t=0

gh(Xt), µ(gh) = EU(gh),

σ2(gh) = EU2(gh)− µ2(gh),

where gh is a real-valued function defined on E for all h > 0 and τ = τ0
is defined as in (2.8). Note that with the function gh used in this paper,
the random variables U1(gh), U2(gh), . . . in the decomposition (2.11) are
independent so that in the notation of equation (4.4) of KT, σ2(gh) = σ2(gh).
Consider the following conditions, where −∞ < µ,µ′ <∞, 0 < σ,σ′ <∞,
v ∈ [0,1], m≥ 2, ǫ > 0, 0< dm, d

′
m <∞, β is defined in (2.13), λ is an initial

measure and h ↓ 0.
C1: µ(gh) = µ+ O(1), µ(|gh|) = µ′ + O(1).
C2: hσ2(gh) = σ2 + O(1).
C3: hσ2(|gh|) = σ′2 + O(1).
C4: E|U(gh)− µ(gh)|2m ≤ dmh

−2m+v .
C5: E|U(|gh|)− µ(|gh|)|2m ≤ d′mh

−2m+v .
C6: h−1

n ≪ nβδm−ǫ, δm = m−1
m−v .

C7: ∃g0 :h|gh| ≤ g0 and Pλ(U0(g0)<∞) = 1.

The following theorem is essentially a translation of a CLT result in KT.
It will be used to prove the main CLT results of the present paper.
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Theorem 3.1. Let C be a small set. Assume that the tail condition

(2.13) and C1–C6 hold with µ = 0 for an m≥ 2 and a v ∈ [0,1]. Then for

any initial measure λ for X0 such that C7 holds,

h1/2n T
−1/2
C (n){Sn(ghn)− TC(n)π

−1
s (C)µ(ghn)}

d−→
n

N (0, σ2π−1
s (C)).

Proof. The proof is essentially based on KT (Theorem 4.2). Since gh is
a function of one variable, the conditions in that theorem simplify. Clearly,
conditions A0–A2 of Theorem 4.2 of KT follow directly from C1–C3. In
conditions C4 and C5 the quantity v is allowed to vary everywhere in [0,1],
whereas in conditions A3 and A4 of KT, v can only take the values 0 and 1.
However, this extension is allowed by a trivial modification of the first part of
the proof of Theorem 4.1 of KT. Condition A5 of Theorem 4.2 of KT follows
straightforwardly from C7 by reasoning as in the proof of Theorems 5.1
and 5.3 of KT. �

Before we can employ Theorem 3.1, we need to analyze the regeneration
structure of {(Xt,Wt)} more carefully. This is done in a series of lemmas in
Sections 3.2–3.8. We believe that these results are of independent interest
and that they are potentially useful in other situations. Our main result is
stated in Section 3.9.

3.2. Decomposition of Sn(g). We assume that the compound chain
{(Xt,Wt)} satisfies (2.2) so that it can be extended by the split chain
method, with {(Xt,Wt, Yt)} being a split chain. Note that if {Xt} and {Wt}
separately satisfy the minorization inequality (2.2), it is not obvious that
the compound chain {(Xt,Wt)} will. However, if {Xt} and {Wt} are inde-
pendent, then it is trivial to verify (2.2), as is shown at the beginning of
Section 3.3. Let

τk = inf{t > τk−1 :Yt = 1}, k ≥ 0, τ−1 =−1.

Then the sequence {τk} represents the regeneration times for the compound
process. The basic decomposition, (2.11), with g = gh defined at the begin-
ning of this section, gives

Sn(g) = U0(g) +

T (n)∑

k=1

Uk(g) +U(n)(g), T (n) = sup{k : τk ≤ n} ∨ 0,(3.3)

where

Uk(g) =





τk∑

t=τk−1+1

g(Xt,Wt), for k ≥ 0,

n∑

t=τT (n)+1

g(Xt,Wt), for k = (n).
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According to the general theory, the variables {(Uk(g), (τk−τk−1)), k ≥ 1}
are i.i.d. We denote by U = U(g) a random variable having the common
marginal distribution of the Uk’s and write µ(g) = EU = EνU0(g), σ

2(g) =
Var(U) = Varν(U0(g)) = EνU

2
0 (g)− µ2(g), where ν refers to the compound

chain {(Xt,Wt)}.
Our first problem is to find conditions which ensure that µ(|g|) and σ2(g)

are finite. Again, by reference to the general theory [cf. Appendix A, (A.11)
and (A.12)], we have that, with s referring to the compound chain,

µ(g) = πsg, σ2(g) = πsg
2 +2πsIgH Gs,νg− π2sg,(3.4)

where H = P − s⊗ ν and Gs,ν is defined as in (2.9).
The conditions ensuring σ2(g)<∞ are not evident from (3.4) if we want

to avoid the relatively strong restriction that gW is a small function. If
gW (w)≡w, then requiring gW to be small is roughly equivalent to φ-mixing,
which is not satisfied for, say, an autoregressive process. The problem is
linked to the term Gs,ν . In fact, we also need to demonstrate the existence
of higher moments and to verify conditions connected to the bandwidth as
seen in C1–C7.

3.3. β-null recurrence for the compound process. Let P denote the tran-
sition probability for the Markov process {(Xt,Wt)}. We label quantities
associated with {Xt} by 1 and with {Wt} by 2. The transition probability
P satisfies (2.2) when P1 and P2 do since

P = P1 ⊗P2 ≥ (s1 ⊗ s2)⊗ (ν1 ⊗ ν2) = s⊗ ν.(3.5)

Condition (3.5) will be assumed to hold in the following.

Lemma 3.1. Assume that {Xt} and {Wt} are independent, that the tail

condition (2.13) holds for {Xt} and that {Wt} is ergodic. Then the compound
process {(Xt,Wt)} is β-null recurrent, that is, the tail condition holds for

the compound process.

Proof. Let C1 and C2 be small sets and let ν = ν1 ⊗ ν2. Then

Eν

{
n∑

t=0

1C1(Xt)1C2(Wt)

}
=

n∑

t=0

(ν1P
t
11C1)(ν2P

t
21C2)

= (π21C2)
n∑

t=0

ν1P
t
11C1 +

n∑

t=0

(ν1P
t
11C1)bt,

(3.6)

where bt = ν2P
t
21C2−π21C2 and where π2 is the stationary measure for {Wt}.

Since {Wt} is ergodic, bt = O(1). Since {Xt} is β-null [cf. KT, Lemma 3.1
and formulas (3.12) and (3.13)], we have that

n∑

t=0

ν1P
t
11C1 = (πs11C1)ψ1(n)(1 + an), ψ1(n) = nβLs1(n), an = O(1).
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By (2.12), the conclusion of the lemma follows if we can show that the second
term of (3.6) is O(ψ1(n)). Let ψM = supt≤M ψ1(t), A= supt |at|, c1 = πs11C1 ,

B = supt |bt| and B(M) = supt>M |bt|. Then for all M > 0,
∑n

t=0(ν1P
t
11C1)|bt|

ψ1(n)
≤ c1

{
B
ψM (1 +A)

ψ1(n)
+B(M)(1 + |an|)

}
.(3.7)

Letting n tend to infinity and then letting M tend to infinity, we find that
the left-hand side of (3.7) is O(1) with respect to n. �

3.4. Refinement of the decomposition structure. We extend both chains
with the split chain method and write {(Xt, Y

1
t )} and {(Wt, Y

2
t )}. Due to

independence, {(Xt,Wt, Yt)} is the split chain for the compound process
{(Xt,Wt)}, where Yt = Y 1

t Y
2
t (cf. [24], (4.17), page 62). Thus,

τk = inf{t > τk−1 :Y
1
t = Y 2

t = 1}, k ≥ 0, τ−1 =−1.(3.8)

We shall now look more closely at the decomposition structure and try, to
some extent, to reduce it to the marginal decomposition of the {Xt}-process,
that is, the regenerations defined by {τ1k},

τ1k = inf{t > τ1k−1 :Y
1
t = 1}, k ≥ 0, τ1−1 =−1,(3.9)

which defines the X-partition. Let

Vj = Vj(g) =

τ1j∑

t=τ1j−1+1

g(Xt,Wt), s≥ 0.(3.10)

Although the Vj ’s are neither unconditionally nor conditionally independent,
they will be useful. By (3.8), we see that the regeneration times for the
compound chain are also regeneration times for {Xt}. Hence, following the
regeneration times (3.9) for the X-process, we recover all of the simultaneous
regeneration times given by (3.8). The gaps between successive simultaneous
regeneration times define a subdivision of each Uk into Vj ’s and this refines
the decomposition given by (3.3). Let

Tk = inf{j > Tk−1 :Y
2
τ1j

= 1} for k ≥ 0,T−1 =−1,T def
= T0.

Then τk = τ1Tk , which gives

Uk =

τ1
Tk∑

t=τ1
Tk−1+1

g(Xt,Wt) =
Tk∑

j=Tk−1+1

τ1j∑

t=τ1j−1+1

g(Xt,Wt) =
Tk∑

j=Tk−1+1

Vj

and in particular for k = 0,

U0 =
T∑

j=0

Vj.(3.11)
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The number of subblocks inside a large block is distributed as the re-
currence time for the ergodic process {Wτ1

k
}. Comparing this distribution

with τ and τ1, it is evident that a block which is quite large is partitioned
into relatively few sub-blocks. The advantage of this construction is that the
subblocks are defined by the regeneration times for the X-process and the
X-part of gh is marginally a small function.

3.5. The embedded process. The following lemma proves that embedding
the {Xt}-regeneration times into {Wt} and extending to a split chain are
essentially commutative operations.

Lemma 3.2. The process {Wτ1
k
, k ≥ 0} is a Markov process with tran-

sition probability P
∼

= P2Φν1 , where Φν1 =
∑∞

ℓ=0{ν1(P1 − s1 ⊗ ν1)
ℓs1}P ℓ

2 .

Moreover,

P
∼

≥ s
∼
⊗ ν

∼
,(3.12)

with (s
∼
, ν
∼
) = (s2, ν2Φν1). Let λ= λ1⊗λ2 be the initial measure for {(Xt,Wt)}.

Let {Ŵ∼ k
}= {(W∼ k

, Y
∼k

)} be the split chain generated by P
∼

and (s
∼
, ν
∼
) and let

{Ŵτ1
k
}= {(Wτ1

k
, Y 2

τ1
k
)}. Then

{Ŵτ1
k
} d
= {Ŵ∼ k

}(3.13)

when the initial measure for W∼ 0
is λ

∼
= λ̃

def
= λ2Φλ1 . In particular, let T

∼
de-

note the first regeneration time for {Ŵ∼ k
}. Then the occupation time formula

is given by

Eλ

T∑

k=0

1A(Wτ1
k
) = E

λ̃

T
∼∑

k=0

1A(W∼ k
) =





λ̃G
∼s

∼

,ν∼
1A, in general,

π2G
∼s

∼

,ν∼
1A, if λ2 = π2,

πs21A, if λ= ν,

(3.14)

where G
∼s
∼
, ν
∼

=
∑∞

ℓ=0(P∼ − s
∼
⊗ ν

∼
)ℓ.

The proof is given in Appendix B.
Intuitively, changing the time parameter from {k} to {τ1k} in the ergodic

process {Wt} should decrease the amount of dependence, and this is the
content of our next result. More specifically, we obtain that the rate of
convergence of the transition probability toward the stationary measure is
at least as good for the {W∼ k

}-process as for the {Wt}-process.

Lemma 3.3. Suppose that {Wt} is geometric ergodic. Then this is also

true for {W∼ k
}. If {Wt} is strongly mixing with mixing rate defined by α=
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{αj}, then {W∼ k
} is strongly mixing with mixing rate α

∼
, which is equal to or

faster than α. In particular, for an integer p≥ 0,

∞∑

ℓ=1

ℓpαℓ <∞ =⇒ Eπ2T∼ p+1 <∞.(3.15)

The proof is given in Appendix B.

3.6. Moment bounds. Our nonparametric CLT requires bounds for the
moments of U(g) given by C4 and C5. We first need to find upper bounds for
moments of U(g) corresponding to (3.11) and related quantities. We assume
that

g(x,w) = (gX ⊗ gW )(x,w) = gX(x)gW (w).(3.16)

Our method is to use a representation of U(g) as a partial sum of V ’s, these
variables being defined by the regeneration of {Xt}.

In the following, Hj = Pj−sj⊗νj for j = 1,2 and as before, H = P −s⊗ν.
Also, recall that Ig is defined by Ig(x,A) = g(x)1A(x).

Theorem 3.2. Let m≥ 1 and Vj be defined by (3.10) and (3.16). Then

Eν

T∑

j=0

|Vj|m ≤ πs2 |gW |mEUm(|gX |).(3.17)

For all p > 0 and δ ∈ (0,∞),

E|U(g)|p ≤ E
1/(1+δ)
ν

{ T∑

j=0

|Vj |p(1+δ)

}
E
δ/(1+δ)
ν |T + 1|p(1+δ−1).(3.18)

The proof will be based on two lemmas. We use the notation δj = τ1j −τ1j−1

for j ≥ 0 and Hj =FX
τ1j

∨FY 1

τ1j
∨FW ∨FY 2

. Then Vj is measurable Hj , and

{T0 ≥ j}= {T ≥ j} ∈Hj−1. By (3.11), U0 =
∑∞

j=0 Vj1(T ≥ j) and for m≥ 1,

Eλ{V m
j 1(T ≥ j)}= Eλ{1(T ≥ j)Eλ[V

m
j | Hj−1]}.

The following technical result, which is the first step in the proof of The-
orem 3.2, uses the independence of {Xt} and {Wt}, together with the re-
generation property of {Xt}.

Lemma 3.4 [Decoupling]. Let λ = λ1 ⊗ λ2. Let j ≥ 0 be fixed and let

{X ′
t} be an independent copy of {Xt} so that {X ′

t} is independent of both
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{Xt} and {Wt}. Let ξW be a real-valued function defined on R×{0,1} and

for fixed j, let

ajℓ = ξW (Wτ1j−1+ℓ+1, Y
2
τ1j−1

), ℓ≥ 0, Y 2
τ1−1

= y

and let Vξ,j be an extension of (3.10), given by

Vξ,j =

τ1j∑

t=τ1j−1+1

gX(Xt)ξW (Wt, Y
2
τ1j−1

), j ≥ 0.(3.19)

Then for m≥ 1,

Eλ{V m
ξ,j | Hj−1}=

{
Eλ1U

m
0 (a, gX), for j = 0,

Eν1U
m
0 (a, gX), for j ≥ 1,

where U0(a, gX) =
∑τ10

ℓ=0 gX(X ′
ℓ)aℓ and a= {aℓ}= {a1ℓ}.

Proof. Let j ≥ 1. By (3.19),

Vξ,j =

τ1j∑

t=τ1j−1+1

gX(Xt)ξW (Wt, Y
2
τ1j−1

) =

τ1j −τ1j−1∑

ℓ=1

gX(Xτ1j−1+ℓ)ξW (Wτ1j−1+ℓ, Y
2
τ1j−1

),

so that with S1
α =min{t≥ 1 :Y 1

k = 1},

Eλ{V m
ξ,j | Hj−1}= Eλ

{[ δj∑

ℓ=1

gX(Xτ1j−1+ℓ)ξW (Wτ1j−1+ℓ, Y
2
τ1j−1

)

]m∣∣∣Hj−1

}

= Eα

{ S1
α∑

ℓ=1

gX(X ′
ℓ)aℓ−1

}m

= Eν1

{ τ10∑

ℓ=0

gX(X ′
ℓ)aℓ

}m

= Eν1U
m
0 (a, gX),

where we have used the fact that

Lλ1{Xτ1j−1+ℓ, 1≤ ℓ≤ δj}= Lα{X ′
ℓ, 1≤ ℓ≤ S1

α}=Lν1{X ′
ℓ, 0≤ ℓ≤ τ10 },

with Lλ denoting the simultaneous distribution with initial measure λ.
If j = 0, then

Eλ{V m
ξ,j | Hj−1}= Eλ

{[ τ10∑

t=0

gX(Xt)ξW (Wt, y)

]m∣∣∣FW ∨FY 2

}

= Eλ1U
m
0 (a, gX).



16 H. A. KARLSEN, T. MYKLEBUST AND D. TJØSTHEIM

�

Using the previous lemma, the factorization of g given by (3.16) and a
general moment formula given in Corollary A.1 in Appendix A, we obtain
a useful exact formula. The notation is in accordance with Theorem A.1 in
Appendix A. We use the index set ∆m

r = {α ∈N r
+ :
∑r

j=1αj =m}, where N r
+

is the r-Cartesian product of all strictly positive integers, the multinomial
coefficient

(m
α

)
= m!

α1!···αr !
, N r

0,+ =N ×N r−1
+ and j(2) = (j2, . . . , jr) ∈N r−1

+ .

Lemma 3.5. Let Vk be defined by (3.10). Let m≥ 1. Then

Eν

T∑

k=0

V m
k =

m∑

r=1

∑

α∈∆m
r

(
m
α

) ∑

j(2)∈N r−1
+

{πs1 f̂ X
j(2),α

}{πs2 f̂W
j(2),α

},(3.20)

where

f̂ X
j(2),α

= Igα1
X
Hj2

1 Igα2
X

· · ·Hjr
1 Igαr

X
1,

f̂W
j(2),α

= Igα1
W
P j2
2 Igα2

W
· · ·P jr

2 Igαr
W
1.

More generally, we have for λ= λ1⊗λ2, with f
X
j,α =Hj1

1 f̂
X
j(2),α

and fWj,α =

P j1
2 f̂

W
j(2),α

,

Eλ

T∑

k=0

V m
k =

m∑

r=1

∑

α∈∆m
r

(
m
α

) ∑

j∈N r
0,+

(λ− ν)(fXj,α ⊗ fWj,α)

+ {ν1fXj,α}{λ̃G
∼s

∼

,ν∼
P2f

W
j,α}.

(3.21)

Remark 3.1. If λ= ν, then

λ̃G
∼s
∼
, ν
∼

P2f
W
j,α = ν

∼
G
∼s
∼
, ν
∼

P2P
j1
2 f̂

W
j(2),α

= πs2P
j1+1
2 f̂W

j(2),α
= πs2 f̂

W
j(2),α

,

∞∑

j1=0

ν1f
X
j,α = ν1

∞∑

j1=0

Hj1
1 f̂

X
j(2),α

= πs1 f̂
X
j(2),α

.

Thus, (3.21) reduces to (3.20) when λ= ν.

Proof of Lemma 3.5. We rewrite the first term on the left-hand side
of (3.20) using the fact that 1(T ≥ k) = 1(T ≥ k− 1)1(Y 2

τ1
k−1

= 0), so that

Eν

T∑

k=0

V m
k = Eν(V

m
0 ) +

∞∑

k=1

Eν{1(T ≥ k− 1)Eν(V
m
k 1(Y 2

τ1
k−1

= 0) | Hk−1)}.
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Let Vξ,k be defined by (3.19), where ξW (w,y) = gW (w)(1−y). By Lemma 3.4
and its proof, it is seen that the conditional mean given Hk−1 only involves
the regeneration of {Xt} and we can therefore use Appendix A (and more
specifically Corollary A.1) to obtain for k ≥ 1,

Eν [V
m
k 1(Y 2

τ1
k−1

= 0) | Hk−1]

= Eν[V
m
ξ,k | Hk−1]

=
m∑

r=1

∑

α∈∆m
r

(
m
α

) ∑

j∈N r
0,+

{ν1fXj,α}
[

r∏

i=1

gαi
W (Wτk−1+ti+1)

]
1(Y 2

τ1
k−1

= 0),

where ti = j1 + · · ·+ ji. Let Gk = FX
τ1
k
∨ FY 1

τ1
k

∨FW
τ1
k
∨FY 2

τ1
k−1

. Then by condi-

tioning with respect to Gk−1, we find that

Eν

{
1(T ≥ k− 1)

[
r∏

i=1

gαi
W (Wτ1

k−1
+ti+1)

]
1(Y 2

τ1
k−1

= 0)

}

= Eν{1(T ≥ k− 1)H2f
W
j,α(Wτ1

k−1
)}.

Hence,

Eν

T∑

k=1

V m
k =

∞∑

k=1

Eν{1(T ≥ k− 1)Eν [V
m
k 1(Y 2

τ1
k−1

= 0) | Hk−1]}

=
m∑

r=1

∑

α∈∆m
r

(
m
α

) ∑

j∈N r
0,+

{ν1fXj,α}Eν

{ ∞∑

k=1

1(T ≥ k− 1)H2f
W
j,α(Wτ1

k−1
)

}
(3.22)

=
m∑

r=1

∑

α∈∆m
r

(
m
α

) ∑

j∈N r
0,+

{ν1fXj,α}{πs2H2f
W
j,α}.

Similarly, we find that

EνV
m
0 =

m∑

r=1

∑

α∈∆m
r

(
m
α

) ∑

j∈N r
0,+

{ν1fXj,α}{ν2fWj,α}(3.23)

and by combining (3.22) and (3.23) and using πs2H2 = πs2 − ν2, we get

Eν

T∑

k=0

V m
k =

m∑

r=1

∑

α∈∆m
r

(
m
α

) ∑

j∈N r
0,+

{ν1fXj,α}{πs2fWj,α}.

Now, πs2f
W
j,α = πs2 f̂

W
j(2),α

and

∞∑

j1=0

ν1f
X
j,α =

∞∑

j1=0

ν1H
j1
1 Igα1

X
Hj2

1 Igα2
X

· · ·Hjr
1 Igαr

X
1 = πs1 f̂

X
j(2),α
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and thus (3.20) is proved.
The proof of (3.21) is similar. Instead of (3.22), we obtain

Eλ

T∑

k=1

V m
k =

m∑

r=1

∑

α∈∆m
r

(
m
α

) ∑

j∈N r
0,+

{ν1fXj,α}Eλ

T∑

k=0

H2f
W
j,α(Wτ1

k
)

=
m∑

r=1

∑

α∈∆m
r

(
m
α

) ∑

j∈N r
0,+

{ν1fXj,α}{λ̃G
∼s
∼
, ν
∼

H2f
W
j,α}

(3.24)

and (3.23) is changed to

EλV
m
0 =

m∑

r=1

∑

α∈∆m
r

(
m
α

) ∑

j∈N r
0,+

{λ1fXj,α}{λ2fWj,α}.(3.25)

Combining (3.24) and (3.25) and using λ̃G
∼s
∼
, ν
∼

H2 = λ̃G
∼s
∼
, ν
∼

P2− ν2, we obtain
(3.21). �

Remark 3.2. If m = 1, then by (3.20), µ(g) = Eν
∑T

j=0 Vj = {πs1gX}
{πs2gW }, which, using (3.11), is consistent with (3.4).

Remark 3.3. If m= 2, then

Eν

T∑

j=0

V 2
j = {πs1g2X}{πs2g2W }+ 2

∞∑

ℓ=1

{πs1IgXHℓ
1IgX1}{πs2IgWP ℓIgW 1}.

Remark 3.4. By (3.11) and (3.21), we find that for general λ= λ1⊗λ2,
g = gX ⊗ gW , we have

EλU0(g) =
∞∑

j=0

(λ− ν)(P j
1 gX ⊗P j

2 gW ) +
∞∑

j=0

{ν1Hj
1gX}{λ̃G

∼s
∼
, ν
∼

P j+1
2 gW }.

If gX is small, λ2 = π2 and supj π2G
∼s
∼
, ν
∼

P j+1
2 |gW |<∞, then EλU0(g) is fi-

nite. More generally, taking p = 1 + δ, f = P j+1
2 |gW | and λ = λ2 = π2 in

Lemma A.2, we have that

π2G
∼s
∼

,ν
∼

(1+δ)/(1+ηδ)P j+1
2 |gW | ≤ c2E

1/(1+ηδ)
π2

T
∼

1+2δ{πηδ/(1+ηδ)
2 |gW |(1+δ)/(ηδ)},

with η ∈ (0,1) and δ > 0 arbitrary. The result can now be combined with
Lemma 3.3, which ensures the existence of moments of T

∼
under appropriate

mixing conditions.
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Proof of Theorem 3.2. We first prove (3.17). Assume that gX ≥ 0.
By Cauchy–Schwarz, recalling that

∑r
j=1αj =m, we have

|π2f̂W
j(2),α

|= |π2Igα1
W
P j1
2 Igα2

W
· · ·P jr−1

2 Igαr
W
1|

≤
m∏

r=1

π
[αr/m]
2 |gW |[m/αr ]αr ≤ π2|gW |m.

(3.26)

Inserting (3.26) into (3.20), we obtain

Eν

T∑

k=0

V m
k ≤ πs2 |gW |m

m∑

r=1

∑

α∈∆m
r

(
m
α

) ∑

j(2)∈N r−1
+

πs1Igα1
X
Hj2

1 Igα2
X

· · ·Hjr
1 Igαr

X
1

= πs2 |gW |mEUm(gX),

from which (3.17) follows trivially.
To prove (3.18), let r = 1 + δ and q = 1 + δ−1. Then Eν |U0(g)|p =

Eν |
∑T

j=0Vj |p and

Eν

∣∣∣∣∣
T∑

j=0

Vj

∣∣∣∣∣

p

≤ Eν max
0≤j≤T

|Vj |p|T +1|p ≤ E
1/r
ν max

0≤j≤T
|Vj |prE1/q

ν |T +1|pq

≤ E
1/r
ν

T∑

j=0

|Vj |prE1/q
ν |T + 1|pq. �

3.7. Moment bounds of U(gh) expressed in terms of bandwidth. The fol-
lowing results describe how higher-order moments of U behave as functions
of the bandwidth. This is what is needed to apply C4 and C5 in Theorem 3.1.

Theorem 3.3. Let gX = gX,h = Kx,h and assume that conditions B2,

B3 and (3.16) hold. Then for all integers k,m≥ 1,

E|U(gh)|2m ≤ dm,kh
−2m+1/(k+1),(3.27)

where

dm,k
def
= {π1/(k+1)

s2 g
2m(k+1)
W }Ek/(k+1)

ν |T + 1|2m(k+1/k){d′1/(k+1)
2m }

and the sequence of constants {d′m} is only dependent on Nx and supuK(u).

Proof. By (3.18), with p= 2m and δ = k, we have

EU2m(gh)≤ E
1/(k+1)
ν

∣∣∣∣∣
T∑

j=0

|Vj |2m(k+1)

∣∣∣∣∣E
k/(k+1)
ν |T +1|2m((k+1)/k).(3.28)
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From (3.17), we have

Eν

T∑

j=0

V
2m(k+1)
j ≤ πs2 |gW |2m(k+1)

EU2m(k+1)(|gX,h|),(3.29)

and by KT [Lemma 5.2 with ξ0 ≡ 1 and G2 replaced by G1 = {f : (E,E) 7→
(R,B(R))}, where B(R) is the class of all Borel sets on R],

EU2m(k+1)(|gX,h|)≤ d′2mh
−2m(k+1)+1.(3.30)

In the proof of that lemma, it is also shown that the sequence of constants
{d′m} is only dependent on Nx and supuK(u).

Inserting (3.29) and (3.30) into (3.28), we get (3.27). �

3.8. Asymptotic variance. Exact information about the first order prop-
erties of the asymptotic variance is important (cf. C2 and C3). Such infor-
mation is contained in the next result, which is the analogue of Lemma 5.1
of KT. Our method of proof uses a truncation technique based on the notion
of a generalized autocovariance function. We believe the latter concept to
be of some independent interest.

Theorem 3.4. Assume that the process {Wt} is an irreducible, ergodic,

strongly α-mixing process which satisfies (2.2) and has mixing rate satisfying∑
ℓ ℓ

[2/k]∨1αℓ <∞, π2gW = 0 and π2|gW |2(k+1) <∞ for some integer k ≥ 1.
Assume, in addition, that gX,h = Kx,h and that conditions B2–B4 hold.

Then if µ(gW ) = 0, we have, as h ↓ 0,
(i) hσ2(gX,h ⊗ gW ) = ps1(x)‖K‖22πs2g2W + O(1),
(ii) hσ2(|gX,h ⊗ gW |) = hσ2(gX,h ⊗ gW ) + O(1).

In the proof of Theorem 3.4, we need some results of a more general nature
concerning generalized autocovariances. These are formulated in Lemmas 3.6
and 3.7 below, for a general φ-irreducible, aperiodic, Harris recurrent Markov
chain {Xt} with transition function P satisfying (2.2) and with the Sn(g)-
decomposition, as in (2.11). The next step is Lemma 3.8, where we apply
Lemmas 3.6 and 3.7 to our Markov chain {(Xt,Wt)} [with a slight conflict
of notation, taking Xt = (Xt,Wt)].

We begin by extending the notion of a cross-covariance function, as de-
fined for ergodic processes.

Definition 3.1. Let g, f ∈L1(πs)∩L2(πs). The generalized covariance
and cross-covariance function is defined by

γg,f (ℓ) =




πsIg0f0 + µgµf (1− πss

2), when ℓ= 0,
ϕgP

ℓ−1f0, when ℓ≥ 1,
γf,g(−ℓ), when ℓ < 0,

(3.31)
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where ϕg
def
= πsIgP − µgν and γg

def
= γg,g. Mean centering a function f with

sµf produces a function denoted by f0, that is, f0
def
= f − sµf .

Note that when µg = µf = 0, the generalized cross-covariance function is
equal to the ordinary one, apart from the constant cπ = πs, that is, γg,f =
c−1
π γg,f , where γg,f denotes the stationary covariance function.

Lemma 3.6. Assume that |g| is small. Then σ2(g) =
∑∞

ℓ=−∞ γg(ℓ).

Proof. We have, by (A.12) in Appendix A and by (3.4), that

σ2(g) = γg(0) + 2ϕgGs,νg0.

Iterating Gs,ν = I+(P −s⊗ν)Gs,ν, we get Gs,ν =G(n)+PnGs,ν−G(n)s⊗πs
with G(n) =

∑n−1
ℓ=0 P

ℓ. Pre- and post-multiplying this equation by ϕg and g0,

respectively, gives ϕgGs,νg0 =
∑n

ℓ=1 γg(ℓ) + ϕgP
nψ, where ψ

def
= Gs,νg0. By

Nummelin ([24], Theorem 6.7, page 109), and since ‖ϕg‖ ≤ 2µ|g|, |g0| is small
and ψ is bounded, we find that ϕgP

nψ = O(1), from which the result follows.
�

Remark 3.5. The formula in Lemma 3.6 can be viewed as a general-
ization of the formula Var(n−1/2∑n

j=0Xj) =
∑∞

ℓ=−∞Cov(Xt,Xt−ℓ) + O(1)
in the case where {Xt} is a stationary process with an absolutely summable
covariance function.

It is necessary to weaken the assumption of smallness in Lemma 3.6.

Lemma 3.7. Assume that

(i) g ∈L1(πs)∩L2(πs), πsI|g|PGs,ν |g|<∞.

If there is an approximating sequence {gn}, in the sense that |gn| is a small

function, |gn| ≤ |g| and gn−→
n
g a.s. [πs], then for each ℓ,

(ii) γgn(ℓ)−→n γg(ℓ);

(iii) σ2(g) = limn
∑∞

ℓ=−∞ γgn(ℓ).

Suppose that

(iv) γgn(ℓ) = ηnbℓ + dn,ℓ,

where
∑∞

ℓ=1 supn |dn,ℓ|<∞, ηn = η+ O(1) and
∑∞

ℓ=1 bℓ <∞. Then

(v) σ2(g) =
∑∞

ℓ=−∞ γg(ℓ), and if η = 0, the convergence is absolute.
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Proof. Let {gn} be an approximating sequence which satisfies the con-
ditions in the lemma. First, we prove that

lim
n
πsIgnPGs,νgn = πsIgPGs,νg.(3.32)

Let ξn = PGs,νgn, ξ = PGs,νg and ξ0 = PGs,ν|g| so that |ξn| ≤ ξ0. We must
show that ξn−→

n
ξ = PGs,νg a.s. [πs]. Let D be the set of points where

gn fails to converge toward g. Then πs{G1D > 0} = 0 with G =
∑∞

ℓ=0P
ℓ

since πs is a maximal irreducible measure. Hence, πs{PGs,ν1D > 0}= 0. The
rest of the proof of (3.32) follows directly from the dominated convergence
theorem since πsIgnPGs,νgn = πsIgnξn = πs(gnξn), where |gn · ξn| ≤ {|g| · ξ}
and (gn · ξ)−→

n
(g · ξ) a.s. [πs].

By Lemma 3.6 and (3.32), statement (iii) holds. It is obvious that (ii)
holds and if (iv) is true, then

∑∞
ℓ=1 γgn(ℓ)−→n

∑∞
ℓ=1 γg(ℓ), by the dominated

convergence theorem. Together with (iii), we can conclude that (v) is true.
�

In the next lemma, we return to the Markov chain {(Xt,Wt)} and let it
play the role of the general Markov chain in Lemmas 3.6 and 3.7.

Lemma 3.8. Assume that g(x,w) = g1(x)g2(w), g1 is small and that

{Wt} satisfies the conditions stated in Theorem 3.4. Then σ2(g) =∑∞
ℓ=−∞ γX,W

g (ℓ).

Proof. Our proof is based on Lemma 3.7. We must show that Lemma 3.7(i)
and Lemma 3.7(iv) are satisfied. We do not assume that µg2 = 0.

By (3.28), (3.29) with m= 1 and the smallness of g1, we have

πs(g
2) + 2πsIgPGs,νg ≤ EU2(|g|)

(3.33)
≤ c0π

1/(k+1)
2 |g2|2(k+1)

E
k/(k+1)
ν T (2k+2)/k.

The quantity π2|g2|2(k+1) is finite by assumption. We have that EνT (2k+2)/k =

Eν∼
T
∼

(2k+2)/k , thus the right-hand side of (3.33) is finite if Eπ2T∼ (k+2)/k <∞
(cf. [4, 5]). By Lemma 3.3, this is true if

∑∞
ℓ=1 ℓ

[2/k]∨1α
∼ℓ <∞ and is thus

satisfied by the mixing assumption on {Wt}. Hence, Lemma 3.7(i) holds.
We begin the next step by establishing an approximating sequence for

g = g1 ⊗ g2. By Nummelin ([24], Corollary 2.1, page 24), there exists an
increasing sequence of small sets C ′

n such that
⋃∞

n=1C
′
n = E2, where E =

E1 ×E2. Define Cn = (|g2|< n)∩C ′
n. Let

gn = g1 ⊗ gn2 , gn2 = g21Cn .(3.34)

Then |gn| is small for all n and |gn| ↑ |g| a.s. [πs].
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We express γg1⊗gn2
in terms of g1 and gn2 using Definition 3.1. At the same

time, we insert ∆ℓ
2 = (ν2P

ℓ
2 − π2), cπ = π2s, γg2 = cπγg2 and µg2 = cπµg2 .

This gives, for ℓ > 0,

γgn(ℓ) = {πs1Ig1P ℓ
1g1}{πs2Ig2P ℓ

2g
n
20}+ µgn2 {ϕg1P

ℓ−1
1 g1}{∆ℓ−1

2 gn20}

+ µgn2 {πs1Ig1P
ℓ
1g10}{γgn2 (ℓ)− µgn2 ∆

ℓ−1
2 s2}

+ µ2gn2 γg1(ℓ){∆
ℓ−1
2 s2 + π2s2}.

(3.35)

By the mixing property of {Wt}, we find that γg2 is absolutely summable
(cf. [14], Corollary A.2, page 278). Moreover, since the recurrence time for
{Wt} has a finite second-order moment, {Wt} is ergodic of degree 3 as a
Markov chain (cf. [24], page 84) and that implies the finiteness of

∑∞
ℓ=1 ℓ‖∆ℓ

2‖
(cf. [24], Theorem 6.13, page 118). By Lemma 3.6, γg1 is summable. It is now
easy to verify that each of the four terms of γgn(ℓ) given by (3.35) satisfies
Lemma 3.7(iv). Hence, by Lemma 3.7(v), the proof is finished. �

Proof of Theorem 3.4. By Lemma 3.8 and Definition 3.1, since
µgW = 0, we have

σ2(gX,h ⊗ gW ) =
∑

ℓ

{πs1IKx,h
P ℓ
1Kx,h}γgW (ℓ).

For ℓ > 0, hπs1IKx,h
P ℓ
1Kx,h = O(1), by B4 [cf. KT, proof of part (b) of

Lemma 5.1]. Since

|πs1IKx,h
P ℓ
1Kx,h| ≤

∫
ps(x+ hu)K(u)P ℓ(x+ hu,Nx(h))du≤ c0

and
∑ |γgW (ℓ)| is finite, we can apply the dominated convergence theorem,

that is,

lim
h↓0

hσ2(gX,h ⊗ gW ) =
∑

ℓ

lim
h↓0

{h πs1IKx,h
P ℓ
1Kx,h}γgW (ℓ)

= lim
h↓0

{h πs1K2
x,h}γgW (0) = ps1(x)‖K‖22πs2g2W .

(3.36)

The proof of Theorem 3.4(ii) follows in a similar way, using Lemma 3.8
and (3.35) with gn2 = gW . For ℓ= 0, Definition 3.1 must be used. �

3.9. Main result.

Theorem 3.5. Assume that {Xt} and {Wt} are independent, recurrent

Markov chains in (3.1) and that {Wt} is an irreducible, ergodic, strongly α-
mixing process which satisfies (2.2) and has a mixing rate satisfying∑

ℓ ℓ
[2/k]∨1αℓ <∞, π2gW = 0 and π2|gW |2m(k+1) <∞ for some integers k ≥ 1



24 H. A. KARLSEN, T. MYKLEBUST AND D. TJØSTHEIM

and m≥ 2, π2 being the invariant probability measure of {Wt}. Moreover,

assume that B1–B4 hold and that (2.2) and the tail condition (2.13) hold for

{Xt}.
Finally, assume that for some ǫ > 0,

h−1
n ≪ nβδm−ǫ, δm =

m− 1

m− 1/(k + 1)
.

Then for all λ= λ1 ⊗ π2, we have
{
hn

n∑

t=0

Kx,hn(Xt)

}1/2{
f̂(x)− f(x)− πsIKx,hn

ψx

πsKx,hn

}
d−→
n

N (0, σ2W ‖K‖22).

If the density ps and the function f possess continuous derivatives of sec-

ond order, then the bias term πsIKx,hn
ψx/πsKx,hn is negligible when h−1

n ≫
nβ/5+ǫ.

Proof. We use Theorem 3.1 on the compound chain {(Xt,Wt)}. As
noted at the beginning of Section 3, it is enough to prove that

∆n,hn = S−1/2
n (Kx,hn)h

1/2
n Sn(Kx,hn ⊗ gW )

d−→
n

N (0,‖K‖22π2g2W ).

Recall that for C =C1 ×C2, Ci ∈ Ei, i= 1,2,

TC(n) =
n∑

t=0

1C1(Xt)1C2(Wt)

represents the number of visits of {(Xt,Wt)} to C up to time n. We choose
C1 and C2 so that both sets are small. Then by KT (the second part of
Theorem 5.3), using B2–B4 and the tail condition (2.13), we have

p̂C1(x)
def
=

Sn(Kx,hn)

TC1×E2(n)
= pC1(x) + OP (1),

with E =E1 ×E2 and where pC1(x) = ps1(x)/πs11C1 . By KT (Remark 3.5),

TC(n)

TC1×E2(n)
=

πs1C
πs1C1×E2

+ O(1) = π2(C2) + O(1) a.s.

We can write

∆n,h = p̂
−1/2
C1

(x)

{
TC(n)

TC1×E2(n)

}1/2

{T−1/2
C (n)h1/2Sn(gh)}

=A
1/2
n,h∆

0
n,h,

say, where gh(z,w) = Kx,h(z)gW (w) and An,hn = {p−1
C1

(x)π21C2} + OP (1).
Hence, it is enough to prove that

∆0
n,hn

d−→
n

N
(
0, pC1(x)‖K‖22

π2g
2
W

π21C2

)
.(3.37)
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By B3 and Bochner’s theorem, C1 is satisfied. From Theorem 3.3 and
Theorem 3.4, conditions C2–C5 are satisfied with v = 1/(k + 1).

It only remains to verify C7. Let g0 = c01Nx |gW |, where c0 is an appro-
priate constant. Then |hgh| ≤ g0. We must prove that Pλ(U0(g0)<∞) = 1,
with [cf. (3.11)] U(g0) =

∑T
j=0Vj(g0). But, this is satisfied if EλU0(g0)<∞.

By Remark 3.4, this is true if

Eπ2 |T∼ 1+2δ|π2|gW |(1+δ)/(ηδ) <∞(3.38)

for some δ > 0 and η ∈ (0,1). Let k ≥ 1 be fixed and π2|gW |2(k+1) <∞. By
Lemma 3.3, (3.38) is satisfied if

1 + δ

ηδ
≤ 2(k+ 1), 1 + 2δ ≤ 2 +

2

k
.

This is true if

1

2k+ 1
< δ < 1 +

1

k
,

1 + δ

δ(2k +1)
≤ η < 1.

Thus, (3.38) holds.

Hence, by Theorem 3.1, ∆0
n,hn

d−→
n

N (0, σ2C) and by Theorem 3.4,

σ2C = {πs11C1}−1{πs21C2}−1ps1(x)‖K‖22πs2g2W .
It follows that (3.37) holds. �

Remark 3.6. If k = 1, then we require that the residual {Wt}-process
have a finite eighth-order moment, together with a mixing rate which satis-
fies

∑
ℓ ℓ

2αℓ <∞. If, on the other hand, all moments of the residual process
are finite, then it is enough for there to exist a δ > 0 such that

∑

ℓ

α1−δ
ℓ <∞.

4. Some extensions to the dependent case. In linear cointegration the-
ory, the stationary process {Wt} resulting from a linear cointegration rela-
tionship Wt = Zt−aXt, say, will generally be dependent on {Xt}. From this
point of view, it is of interest to extend the theory of Section 3. We will do
this by assuming that {(Xt,Wt)} is a Markov chain in (3.1) and specifying a
dependence relation between them for which the asymptotic theory holds. In
this situation, we will prove that the compound process {(Xt,Wt)} is β-null
recurrent, as was done in the previous section. But, unlike Section 3, we es-
sentially assume that the function (u,w) 7→Kx,h(u)gW (u,w) is small. In this
way, it is guaranteed that the necessary moment requirements are satisfied.
In addition, we need existence and smoothness of an invariant measure for
the compound chain, together with additional conditions which control the
bias.
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4.1. Conditional expectation. The restriction on the type of dependence
allowed between {Xt} and {Wt} will be formulated in terms of the condi-
tional expectation of Wt with respect to Xt. Let {(Xt,Wt)} be Harris null
recurrent with state space (E,E) = (E1 ×E2,E1 ⊗E2), invariant measure πs
and maximal irreducibility measure φ. Assume that

πs1C1×E2 <∞ for some C1 ∈ E1
and let

Q
def
=
πsIC1×E2

πs1C1×E2

,(4.1)

so that Q is a probability measure on (E′,E ′) = (E′
1×E2,E ′

1⊗E2) with E′
1 =

C1 and E ′
1 = E1∩C1. Here, IC1×E2 is defined as in Section 2. A generic point

in E′ is denoted by (y,w). In this setting, we specialize further, assuming
that

E =E1 ×E2 ⊆R×R and E ⊆ B(R2)(4.2)

and that Q is a bivariate distribution on B(R2) which can be identified by a
stochastic vector (X,W ). The generalized conditional expectation µW |X [g]
is the conditional expectation of g(X,W ) given X = y, that is,

µW |X [g]
def
= EQ[g(X,W ) |X = y], g ∈L1(E′,E ′,Q).(4.3)

The following definition of a generalized conditional variance is an imme-
diate consequence of (4.3):

σ2g(y)
def
= µW |X [g2](y)− µ2W |X [g](y).(4.4)

From (4.1), it follows that Q is independent of the specific normalization
which identifies a particular πs as a function of s. Hence, µW |X is indepen-
dent of a specific atom and also of the assumption that m0 = 1, which is
important in applications to real data. Suppose that C ′

1 is an alternative to
C1 and let µ′W |X be the alternative conditional expectation. Then

µW |X [g]1C1∩C′
1
= µ′W |X [g]1C1∩C′

1
.

If πs is absolutely continuous with respect to two-dimensional Lebesgue
measure and has density ps, then with

pXs (y)
def
=

∫
ps(y,w) dw

and

pW |X(w | y) def
=
ps(y,w)

pXs (y)
1(pXs (y)> 0), (y,w) ∈C1 ×E2,
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we have

µW |X [g](y) =

∫
g(y,w)pW |X(w | y)dw.

In the remainder of this section, we assume that the state space is given
as in (4.2). By x, we denote a fixed point in E1 and by C0, the support

of gW . Let Mx(h)
def
= Nx(h) × C0, 0 ≤ h ≤ 1, M def

= M0(1), Mx
def
= Mx(1)

and M{x} def
= Mx(0), Nx being defined at the beginning of Section 2.1. If

λ is the initial measure for the compound chain, then λW |X(· | x0) is the
conditional distribution of W0, conditional on X0 = x0, and λX = λ( · ×E2)
is the marginal initial measure for X0.

4.2. Conditions and dependence. In order to extend our asymptotic re-
sult to the dependent case, we will apply the conditions stated below.

The first set of conditions is related to the Markovian structure of the
compound chain. Basically, we assume that the {Xt}-process also determines
the β-null structure for the compound process. This holds in the independent
case (cf. Lemma 3.1).

D1 (i) The process {(Xt,Wt)} is a φ-irreducible, Harris recurrent Markov
chain with state space given by (4.2) and transition probability func-
tion P .

(ii) The minorization inequality (2.2) with (s, ν) is satisfied with a cor-
responding invariant measure πs.

D2 (i) The marginal process {Xt} is a φ1-irreducible, Harris recurrent
Markov chain on (E1,E1) with transition probability function P1.

(ii) The minorization inequality (2.2) is satisfied with (s1, ν1).
(iii) The Markov chain {Xt} is β-null recurrent.

(iv) There exists a set C1 ∈ E+
1 such that ξ

def
= 1C1×E2 ∈ E+ is πs-integrable.

D3 (i) The invariant measure πs has a density, ps, with respect to the
two-dimensional Lebesgue measure.

(ii)
∫
ps(x,w)dw > 0.

(iii) limδ↓0
∫ |ps(x+ δ,w)− ps(x,w)|dw = 0.

(iv) The marginal transition probability function P1 is independent of
any initial distribution λ.

D4 (i) gW is bounded and 0<
∫ |gW (w)|dw <∞.

(ii) The set Nx ⊗C0 is small.
(iii) µW |X [gW ](x) = 0.

D5 ∀{Ah} ∈ E∞ : limh↓0Ah ↓∅ : limh↓0 limy→x
∫
P ((y,w),Ah)|gW |(w)dw = 0.

Conditions D1–D3 and D5 are essentially rephrased versions of the con-
ditions used in Theorem 3.5. Condition D4 introduces stronger restrictions
on gW . In Section 3, the boundedness and smallness were avoided by means
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of a truncation technique which fit that situation. It is not obvious how
to find a similar truncation procedure in the dependent situation. Possibly,
the concept of asymptotic independence (to be introduced in Definition 4.1)
could be of use. In a simulation experiment in Section 5 with an unbounded
gW having noncompact support, we obtain results indicative of the asymp-
totics being valid under the more general conditions on gW used in Section 3.

Condition D4(iii), which contains the restriction on the dependence re-
lationship between {Xt} and {Wt}, at first sight seems very stringent, but
it will now be shown that it is, in fact, a natural extension of the type of
dependence that is used in standard linear cointegration theory. Since this
is important in an econometric interpretation of our results, we will consider
it in some detail.

We begin by defining the concept of asymptotic independence in this
context.

Definition 4.1. Suppose that {(Xt,Wt)} is a null recurrent Markov
chain. The two marginal processes {Xt} and {Wt} are asymptotically inde-

pendent if the invariant measure πs factors into a product of two measures
which correspond to the X-component and the W -component.

If {Xt} and {Wt} are asymptotically independent, then the conditional
expectation given by (4.3) reduces to a constant whenever g(y,w) = g(w)
and D4(iii) follows if this constant is zero.

It may seem that asymptotic independence is tantamount to requiring in-
dependence, but this is not the case because having {Xt} nonstationary (and
null recurrent) and {Wt} stationary is a special situation, where, intuitively,
the “small” process {Wt} has little influence on the “big” process {Xt} in
the long term, but allows for dependence for fixed t, as is the case for lin-
ear cointegration models. This phenomenon is handled more formally in the
following example, which extends well-known results in linear cointegration
theory (see, e.g., [15], pages 586–589).

Example 4.1 (Asymptotic independence). In this example, we prove
asymptotic independence between a random walk and a stationary autore-
gressive process, despite the fact that they are linked for each t. Moreover,
we prove that conditions D1–D5 are satisfied. This means that the common
invariant measure for these two processes factors as if the processes were
independent. The processes are given by

Xt =Xt−1 + et,

Wt = aWt−1 + bet + ut, |a|< 1,
(4.5)

where {et} and {ut} are independent i.i.d. processes with finite third order
moments and distribution functions Fe and Fu, respectively. Moreover, we
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assume that these distribution functions have densities fe and fu, respec-
tively, with respect to the Lebesgue measure in R1. In addition, we assume
that both densities are bounded away from zero on some interval [−c, c]
with c > 0. Let πW denote the stationary measure for {Wt} and pW the
corresponding density. Likewise, let πX(dy) = dy.

First, we find the density of the transition probability function for (4.5):

FX,W (x,w | x0,w0)
def
= P (X1 ≤ x,W1 ≤w |X0 = x0,W0 =w0)

= P (x0 + e1 ≤ x,aw0 + be1 + u1 ≤w)

=

∫
P (x0 + e1 ≤ x,aw0 + be+ u1 ≤w | e1 = e)Fe(de)

=

∫
1(e≤ x− x0)Fu(w− aw0 − be)Fe(de)

and

fX,W (x,w | x0,w0) =
∂

∂x

∂

∂w
FX,W (x,w | x0,w0)

= fe(x− x0)fu(w− aw0 − b(x− x0)).

The function fX,W (x,w | x0,w0) is the density of the compound transition
probability and from the assumption on fe and fu, it follows that

inf
(x,w,x0,w0)∈C4

fX,W (x,w | x0,w0)> 0(4.6)

for some Lebesgue-positive compact set C in R. By (4.6), we can choose an
atom s ⊗ ν which is equal to a constant times 1C ⊗ ℓIC , where ℓIC is the
restriction of the Lebesgue measure to the set C. In a similar way, we use
the definitions of {Xt} and {Wt} to get marginal minorization inequalities,
Pi ≥ si ⊗ νi, where P1 corresponds to the X-process and P2 corresponds to
the W -process.

If ps is an invariant density, then ps satisfies

ps(x,w) =

∫
ps(x0,w0)fX,W (x,w | x0,w0)dx0 dw0.(4.7)

On the other hand, if we can find a function ps which satisfies (4.7) such that

πs
def
=
∫
ps is an invariant measure with πss = 1, then this ps is the unique

invariant density satisfying πss= 1. We will show that

ps(x,w)
def
= c−1ps2(w), c=

∫
s(y,w)ps2(w)dy dw(4.8)

satisfies (4.7), where the constant c is defined so that πs(s) = 1. The measure
defined by (4.8) satisfies (4.7) iff ps = p′s, where

p′s(x,w)
def
=

∫∫
cp2(w0)fX,W (x,w | x0,w0)dx0 dw0.(4.9)
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From (4.9), we get

p′s(x,w) =
∫
cps2(w0)

{∫
fX,W (x,w | x0,w0)dx0

}
dw0

=

∫
cps2(w0)

{∫
fe(x− x0)fu(w− aw0 − b(x− x0))dx0

}
dw0

=

∫
cps2(w0)

{∫
fe(ξ)fu(w− aw0 − bξ)dξ

}
dw0

=

∫
cps2(w0)fW,W0(w |w0)dw0

= cps2(w)

= ps(x,w),

where we have used the fact that the transition probability density function
for {Wt} is given by

fW,W0(w |w0) =

∫
fu(w− aw0 − be)fe(e)de.

Since ps1 is constant, this means that ps(x,w) = c1ps1(x)ps2(w), where c1 is a
constant, hence the two marginal processes are asymptotically independent.

Let gW be any bounded, real, measurable function defined on R with
compact support. By definition of the model, we have that D1 is satisfied.
Since {Xt} is a random walk with a smooth noise process possessing a finite
third order moment, the random walk is β-null recurrent. Since we have
established asymptotic independence, condition D2(iv) becomes trivial and,
likewise, condition D3. From (4.6), and since gW is assumed to be small,
we infer that D4 holds. The last condition, D5, holds since the transition
probability function is smooth. Thus, conditions D1–D5 are satisfied.

Remark 4.1. The assumption on the {Wt}-process can be relaxed in
this example. It is sufficient that {Wt} is a stationary, nonlinear, autoregres-
sive process. In (4.5), we may also replace the constant b with a measurable
function ψ, with Eψ4(e) and supψ1[−c,c] finite. On the other hand, the calcu-
lations made in the example are based on the linearity of the {Xt}-process,
with one interesting exception. Let {Xt} be given by (4.5). Suppose that

X ′
t =Φ(Xt),

where Φ is a bijective measurable map between E1 and E′
1. Then the pro-

cesses {X ′
t} and {Wt}are asymptotically independent.

Suppose that e′t
def
= bet+ut is bounded. Then {Wt} is uniformly recurrent

(cf. [24], Example 5.6, page 93) and we can use the fact that gW (w) = w.
Imposing appropriate conditions, the uniform recurrence still holds in the
nonlinear case.
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The specialization in the next example makes the connection to linear
cointegration even more explicit.

Example 4.2. If the residuals in (4.5) are Gaussian, then we can cal-
culate the conditional expectation for fixed t, and the rate at which we
approach asymptotic independence and the fulfillment of D4(iii) for Exam-
ple 4.1.

E(Wt |Xt) =
E(WtXt)

E(X2
t )

Xt

and

θt
def
= E(WtXt) = bσ2e

1− at+1

1− a
=

bσ2e
1− a

+ O(1).

Hence,

E(Wt |Xt) = [θt][t
−1Xt] = O(1) a.s.

by the strong law of large numbers. Likewise, it follows that the instanta-
neous correlation between Xt and Wt decreases toward zero,

corr(Xt,Wt) =O(t−1/2).

However, {(Xt,W
′
t)} is not Gaussian, where W ′

t = gW (Wt).

4.3. Asymptotic results. After clarifying the relationship between vari-
ous π-measures in Lemma 4.1, the main result is stated in Theorem 4.1. We
denote by πs1 the invariant measure for {Xt} implicitly defined by D2 and
we write πXs for the X-marginal invariant measure of the compound chain
defined by D3.

Lemma 4.1. Assume that D1 and D2 are satisfied. Then the compound

process is β-null recurrent and

πs11C1 =
πs1C1×E2

πXs s1
.

Proof. Let 1C1×E2 be πs-integrable according to D2(iv). Let C2 ⊆ C1

such that C2 is a small set for the {Xt} -chain and ξ = 1C2×E2 ∈ E+. Since
ν is a small measure and ξ is πs-integrable, the conditions in the ratio limit
theorem (cf. [24], page 130) are satisfied and we get

∑n
t=0 νP

tξ∑n
t=0 νP

ts
=
πsξ

πss
+ O(1) = πsξ + O(1).
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By D2(i), we have that

νXP
t
1(dx) = Pν(Xt ∈ dx,Wt ∈E2) = νP t(dx×E2)

so that

νP tξ = νXP
t
11C2 .

Then
∑n

t=0 νXP
t
11C2∑n

t=0 νP
ts

=
πsξ

πss
+ O(1) = πsξ + O(1).(4.10)

On the other hand, since C2 is small for the {Xt}-chain, we have
∑n

t=0 νXP
t
11C2∑n

t=0 ν1P
t
1s1

=
πs11C2

πs1s1
+ O(1) = πs11C2 + O(1).

Combining these two asymptotic relations gives
∑n

t=0 ν1P
t
1s1∑n

t=0 νP
ts

=
πs1C2×E2

πs11C2

+ O(1).

Since the left-hand side does not depend on the actual C2, it follows that

πs11C = c−1
0 πs1C×E2 , C ∈ E1

for a fixed constant c0. The constant can be expressed as c0 = πXs s1. The
denominator of the fraction on the left-hand side of (4.10) has exactly the
same asymptotic rate as the numerator. Hence, the compound chain is β-null
recurrent since {Xt} is β-null recurrent (cf. KT). �

The following result is a modification of Theorem 3.5, which allows de-
pendence between processes {Wt} and {Xt} in (3.1).

Theorem 4.1. Assume D1–D5. Moreover, assume that the kernel K
satisfies B1–B2 and that for some ǫ > 0, the bandwidth satisfies h−1

n ≪ nβ−ǫ.

Then for all initial measures λ,

h1/2n S1/2
n (Kx,hn)

{
f̂(x)− f(x)− µ(ghn)

Sn(s)

Sn(Kx,hn)
− πXs IKx,hn

ψx

πXs Kx,hn

}

d−→
n

N (0, σ2gW (x)‖K‖22),
(4.11)

where σ2gW (x) is given by (4.4).

If the density pXs and the function f possess continuous derivatives of sec-

ond order, then the second bias term πXs IKx,hn
ψx/π

X
s Kx,hn is negligible when

h−1
n ≫ nβ/5+ǫ. If p

(2,0)
s = ∂2ps

dx2 exists and satisfies
∫
limy→x |p(2,0)s (y,w)| ×

|gW |(w)dw <∞, then the first bias term is negligible when h−1
n ≫ nβ/5+ǫ.
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Proof. The proof of this result can be seen as a modification of the
proof of Theorem 3.5. That proof was built on Theorem 3.1, which, in turn,
was based on C1–C7. By D1 and Lemma 4.1, the {(Xt,Wt)} -process is
β-null recurrent.

Let gh =Kx,h ⊗ gW , g0h = µ(gh)s, θh =Kx,h · [ψx], θ
0
h =Kx,h · [ψx − ah],

ψx = f − f(x) and ah = πXs IKx,h
ψx/π

X
s Kx,h. Then

f̂(x) = f(x) +
Sn(gh − g0h)

Sn(Kx,h)
+

Sn(g
0
h)

Sn(Kx,h)
+

Sn(θ
0
h)

Sn(Kx,h)
+ ah.

In this notation, the left-hand side of (4.11) equals

{hSn(Kx,h)}1/2
{
Sn(gh − g0h)

Sn(Kx,h)
+

Sn(θ
0
h)

Sn(Kx,h)

}
.(4.12)

As noted in the proof of Theorem 3.5, it is enough to prove that

S−1/2
n (Kx,hn)h

1/2
n Sn(ghn − g0hn

)
d−→
n

N (0, σ2gW (x)‖K‖22),

since the second term of (4.12) is OP (1).
By D4(i)–(ii), |gh| is a small function and

µ(gh) = πsgh

= πs(Kx,h ⊗ gW )

=

∫∫
ps(x+ hu,w)K(u)gW (w)dwdu(4.13)

=

∫
pXs (x+ hu)K(u)µW |X [gW ](x+ hu)du

= O(1),

where we have used the fact that D3 implies both pXs and µW |X [gW ] are
continuous at the point x and D4(iii), which ensures that the generalized
conditional expectation is zero at x.

We also find that

µ(|gh|) = pXs (x)µW |X [|gW |](x) + O(1).

Let g′h = gh − g0h. Then since µ(g′h) = 0,

σ2(g′h) = πsg
′2
h +2h−1∆⋆(g′h, hg

′
h), ∆⋆(gh, fh)

def
= πsIghPGs,νfh,(4.14)

using (A.12). By (4.13) and (4.14),

hπsg
′2
h +2∆⋆(g′h, hg

′
h) = hπsg

2
h +2∆⋆(gh, hgh) + O(1).

Hence, an asymptotic variance, σ2
def
= limh↓0 hσ2(g′h), if it exists, is given by

σ2 = lim
h↓0

{hπsg2h +2∆⋆(gh, hgh)}.(4.15)
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In order to verify (4.15), we begin by showing that the first term on the
right-hand side of (4.15) satisfies

hπs(g
2
h) = ‖K‖22σ2gW (x)pXs (x) + O(1),

where the conditional variance is given by (4.4).
Indeed, by the definition of gh, we find that

πs(g
2
h) = πs(K

2
x,h ⊗ g2W )

=

∫
ps(y,w)K

2
x,h(y)g

2
W (w)dy dw

= h−1
∫
ps(x+ hu,w)K2(u)g2W (w)dudw

= h−1
[
‖K‖22

∫
ps(x,w)g

2
W (w)dw+ O(1)

]

= h−1pXs (x)[‖K‖22σ2gW (x) +O(1)].

The next task is to show that ∆⋆(gh, hgh) is asymptotically negligible.
Let

fh(y,w)
def
= [hKx,h(y)− 1{x}(y)K(0)]gW (w)

= [1{x}c · hKx,h ⊗ gW ](y,w)

so that

hgh = fh +K(0)[1{x} ⊗ gW ] = fh + δh,

say.
By D3(i), we find that πs|δh|= 0 and thus πsPGs,νδh = 0. Hence,

∆⋆(gh, hgh) = ∆⋆(gh, fh)

=

∫∫
ps(x+ hu,w)K(u)gW (w)PGs,νfh(x+ hu,w)dudw,

where we have inserted the invariant density and made a standard substi-
tution.

Let

ηh = ‖K‖∞Gs,ν{1{x}c · Nx(h)} ⊗ |gW |
so that

|∆⋆(gh, fh)|

≤
∫∫

ps(x+ hu,w)K(u)|gW (w)|Pηh(x+ hu,w)dudw.
(4.16)

By D4(i)–(ii) and Nummelin ([24], Proposition 5.13, page 80), the function
ηh is bounded. Since {1{x}c · Nx(h)}⊗|gW | ↓ 0 pointwise, limh↓0 ηh(y,w) ↓ 0.
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Let ǫ > 0 and Ah
def
= {ηh > ǫ}. Then {Ah} satisfies D5. Inserting ηh =

IAc
h
ηh + IAh

ηh into (4.16), we get

|∆⋆(gh, fh)| ≤ ǫ

∫∫
ps(x+ hu,w)K(u)|gW (w)|dudw

+ ‖ηh‖∞
∫∫

ps(x+ hu,w)K(u)|gW (w)|

× P ((x+ hu,w),Ah)dudw.

The main part of the last term of the above expression is bounded by
∫
ps(x+ hu,w)K(u)

{
sup

|x−y|<ǫh

∫
P ((y,w),Ah)|gW (w)|dw

}
du(4.17)

for all ǫh = h sup{|u| :u ∈N0} and limh↓0 ǫh ↓ 0.
Using D4, it follows that (4.17) is O(1) with respect to h. Putting all of

this together, it is clear that

lim
ǫ↓0

lim
h↓0

|∆⋆(gh, fh)|= 0.

Thus, we have so far proved that

hσ2(gh) = hπs(g
2
h) + O(1) = ‖K‖22σ2gW (x)pXs (x) + O(1).

We must also check hσ2(|g′h|). This quantity is given by

hσ2(|g′h|) = hπs|g′h|2 +2∆⋆(|g′h|, h|g′h|)− hπ2s |g′h| − 2hπs|g′h| πs(s · |g′h|),
by (A.12) of Appendix A. Since πs|g′h| ≤ πs|gh|+ |µgh |= πs|gh|+ O(1) and
πs|gh|= O(1), we have

hσ2(|g′h|) = hπs|g′h|2 +2∆⋆(|gh|, h|gh|) + O(1).

By the same arguments as those given above, we find that

hσ2(|g′h|) = hπs|g′h|2 + O(1)

= hπs|gh|2 + O(1).

Since gh is small, we easily find that (cf. Theorem A.1 in Appendix A)

E‖U(gh)− µ(gh)‖2m ≤ dmh
−2m+1, m≥ 1

and

E‖U(|gh| − µ(|gh|)‖2m ≤ d′mh
−2m+1, m≥ 1.

Moreover, we have h|gh| ≤ g0, g0
def
= c01Mx and Pλ(U0(g0)<∞) = 1.

Thus, the assumptions in Theorem 3.1 are satisfied and (4.11) holds. It is
straightforward to verify that the bias terms are negligible under the given
conditions (cf. KT). �
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Remark 4.2. If
∫
ps(y,w)gW (w)dw ≡ 0, then µ(gh) ≡ 0, by D3(iii). If

this assumption holds, then the stochastic bias correcting term in (4.11) is
zero. If D4(iii) is strengthened so as to also require asymptotic independence,
then σW (x)≡ σ2W = Eg2W (Wt).

5. Simulations and finite sample behavior. Estimates similar to that in
(1.1) have appeared in the cointegration literature. Our contribution, which
we believe to be new, is that we have singled out classes of processes and
assumptions for which an asymptotic theory of these estimates can be con-
structed, such that it should be possible to work out confidence intervals and
bands (and possibly rigorous tests of nonlinear cointegration, in the sense
discussed in this paper).

The purpose of this section is to illustrate the small-sample properties of
the estimator f̂(x) defined by (1.1), using simulations,

A problem not encountered in the stationary case is that the simulated
realizations may cover very different x-regions. Hence, for a fixed x = x′,
close to the starting value X0 = 0, say, of each realization, some realizations
may have many observations in the neighborhood of x′, whereas other re-
alizations may have none in the vicinity of x′ for the sample size we are
considering. This kind of behavior does not occur in the stationary case,
where the expected time until the process reaches x′ is always finite and,
in practice, small when |x′| is small. This means that in a finite-sample ap-
proximation of the asymptotics, we can either keep x fixed and wait until
we have sufficiently many observations close to x or we can choose a central
realization-dependent value of x (e.g., the modal value of the sample) for
studying the normalized ratio (3.2) of Theorems 3.5 and 4.1. We have chosen
to adopt both procedures, although, clearly, we introduce some extraneous
stochastics into the problem in the latter case.

A difficult and largely unresolved problem is that of choosing a proper
bandwidth. Theorem 3.5 and Theorem 4.4 of KT only give the allowable
rate as n tends to infinity. It should be noted that these rates are different
from those in the stationary case, n effectively being replaced by nβ . In
practice, we have found it useful to use cross-validation and to let the band-
width h depend on x. In fact, we have typically let hn be proportional to
{TC(n)p̂C(x)}−1/5, where p̂C(x) could be thought of as the locally estimated
density and where it is known from KT (Lemma 3.4) that TC(n) essentially
behaves as nβ.

The approximation to normality as a function of sample size, for the
quantity

[
hn
∑
Kx,hn∫

K2(u)du

]1/2
[f̂(x)− x](5.1)
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(a) (b)

Fig. 1. (a) Thick line: The standard normal pdf. Thin lines: The estimated pdfs for

the quantity (hn

∑
Kx,hn

/
∫
K2(u)du)1/2[f̂(x)− f(x)], at the point x= 7.5, derived from

the cointegrated system (Xt,Zt; t ≥ 1), where Xt = Xt−1 + et, Zt = f(Xt) + εt, et and

εt are independent i.i.d. N (0,1) variables and f(x) = x for all real x. The quantity is

estimated by 1000 realizations and a particular realization is admitted into the evaluation

as, respectively, 100, 200, 300, 500 and 800 observations are accumulated in the interval

(5,10). (b) Thick line: The standard normal pdf. Thin lines: The estimated pdfs for the

same quantity as in (a), but where a particular realization is admitted into the evaluation

at the modal value. The length of the time series is 500, 1000 and 3000, respectively.

derived from the simple cointegrated system

Xt =Xt−1 + et, Zt =Xt +Wt, et and Wt independent∼N (0,1)

at the point x= 7.5, is shown in Figure 1(a). 1000 realizations have been used
and a particular realization is admitted into the evaluation as, respectively,
100, 200, 300, 500 and 800 observations are accumulated in the interval
(5,10). For Figure 1(b), on the other hand, a fixed point x has not been
used; rather, x has been taken to be the modal value and is thus varying
from one realization to another. In this case, the length of the time series is
500, 1000 and 3000, respectively.

In Figures 2(a) and 2(b), we have considered (5.1) for the system

Xt =Xt−1 + et, Zt =Xt +Wt, Wt =
√
0.5et +

√
0.5εt,

εt and et independent ∼N (0,1)
(5.2)

to test the asymptotics in the case of dependence between {Xt} and {Wt},
as described in Section 4. As in Figure 1(b), x is taken to be the modal
value in Figure 2(b). For both Figure 1 and Figure 2, it is seen that the
finite sample distribution gets reasonably close to the asymptotic normal
distribution.
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(a) (b)

Fig. 2. (a) Thick line: The true transfer function f(x) = x − 5. Dots are zt plot-

ted against xt, t ≥ 1. We have 500 observations. Thin line: Estimated transfer func-

tion f̂ , built on 500 observations from the cointegrated system (Xt,Zt; t ≥ 1), where

Xt = Xt−1 + et and Zt = f(Xt) + Wt, where Wt =
√
0.5et +

√
0.5εt for t ≥ 1. (et, εt)

are i.i.d. N (0, I) vectors for t≥ 1 and I is the identity matrix. Finally, f(x) = x− 5 for

x real. (b) Thick line: The standard normal pdf. Thin lines: The estimated pdfs for the

quantity (hn

∑
Kx,hn

/
∫
K2(u)du)1/2[f̂(x)− f(x)], derived from the cointegrated system

(Xt,Zt; t≥ 1), where Xt −Xt−1 + et and Zt = f(Xt) +Wt, where Wt =
√
0.5et +

√
0.5εt

for t≥ 1. (et, εt) are i.i.d. N (0, I) vectors for t≥ 1 and I is the identity matrix. Finally,

f(x) = x− 5 for x real. The quantity is estimated by 1000 realizations and a particular

realization is admitted into the evaluation at the modal value. The length of the time series

is 500, 1000 and 3000, respectively.

Note that {Xt} and {Wt}in (5.2) are asymptotically independent with
µW |X [gW ](x) = 0 and σgW (x) = 1. Actually, in (5.2), gW (Wt) =Wt and the
assumptions D4(i) and D4(ii) are not satisfied, this being something we
wanted to test by means of this simulation experiment. On the other hand,
with the exception of the independence assumption, the other assumptions
in Theorem 3.5 are satisfied. We also carried out an experiment with

Wt =
1√
3
et +

1√
3
et−1 +

1√
3
εt−1.

In this case, {(Xt,Wt)} is not Markov. On the other hand, {(Xt,Wt, et)}
is Markov and {Xt} is asymptotically independent of the Markov process
{(Wt, et)}. The distributional results were similar to those of Figure 2(b).
More simulation experiments and a real data example are given in [20].

6. Some final remarks on nonlinear cointegration. This paper can be
looked at in two ways: (i) it is an attempt to establish a statistical theory for
nonparametric regression with a nonstationary regressor and (ii) in addition,



NONLINEAR COINTEGRATION 39

it is seeking to relate this framework to the problem of nonlinear cointegra-
tion. There are a host of open problems for both. For (ii), it is of particular
interest to weaken conditions D4(ii) and D4(iii) on gW , alternatively, letting
W ′

t = gW (Xt, . . . ,Xt−p,Wt), as indicated in the second paragraph of Section
3. But, there are also conceptual issues involved concerning the function f .
In a nonparametric approach like ours, f is determined by the data and
if {Zt} and {Xt} are close to being linearly cointegrated, one expects the

nonparametric estimate f̂ to be close to a linear function and might think
that the difference between f̂ and a linear function could be used to test for
linearity of the cointegration. One could also test for appropriate parametric
functions for f . For the estimation of nonlinear parametric regression func-
tions using local time arguments, see [25]. Clearly, not every parametric f
makes sense from a cointegration framework. As an extreme case, consider
f(x) = constant. Then {Zt} will be stationary and unrelated to {Xt}. In
a cointegration framework, {Zt} should be nonstationary and the question
arises as to whether it is possible to construct nontrivial functions f such
that {Zt} is stationary, even though {Xt} is nonstationary. Another question
is whether all such functions f (e.g., the sine function) will be economically
meaningful.

One of the referees has pointed out that the function f may include a
constant term. But, a deterministic term depending on the time parameter
(e.g., a linear trend) is not included in the model. An extension of the model
in this direction introduces challenging problems concerning properties of
estimates for both f and the trend. It seems to be quite clear that additional
assumptions on {Xt} are required since null recurrence itself is not related
to the growth rate of a linear trend. The situation is much more specific in
the random walk case, where the variance of {Xt} increases linearly and f
is linear.

Still another issue is whether f should be required to be one-to-one for it
to be meaningful in a cointegration framework. Requiring f to be one-to-one
has the advantage of allowing the possibility of expressing {Xt} in terms of
{Zt}, making for a more symmetric relationship. To estimate such an inverse
relationship would be nontrivial since it would require an extension of the
theory to the case where the regressor is a function of a Markov chain.

In the linear cointegration case, the concept of cointegration is intimately
connected with the so-called error correction representation (cf. [18]). Non-
linear extensions have centered on both nonlinear error correction and non-
linear cointegration (see, e.g., [7, 8, 13, 17]). It remains to explore possible
connections between these models and the approach presented in this paper.

Nonlinear cointegration extensions are more demanding and are at the
core of the present paper. Only a few attempts of such an extension can
be found in the literature. Specific nonlinear cointegration relationships in



40 H. A. KARLSEN, T. MYKLEBUST AND D. TJØSTHEIM

terms of threshold models have been studied by Hansen and Seo [16] and
Bec and Rahbek [3]. Escribano and Mira [8] suggest definitions of I(0) and
I(1) which are useful in a parametric nonlinear context and study several
large- and small-sample properties of nonlinear least squares estimation.
Related work in nonlinear parametric regression theory has appeared in Park
and Phillips [25]. Nonparametric estimates of nonlinear cointegration have
been computed from data by Granger and Hallman [12] and Aparicio and
Escribano [1]. However, no attempt has been made to study the asymptotic
properties of nonparametric estimators either for nonlinear error correction
or cointegration models.

APPENDIX A

In this appendix, we assume that {Xt} is an aperiodic, φ-irreducible
Markov chain with state space (E,E), where E is countably generated.
We also assume that the transition probability P satisfies the minoriza-
tion inequality, (2.2), that is, P ≥ s⊗ ν, and that {Xt} is Harris recurrent.
Recall the taboo transition probability H = P − s ⊗ ν, the taboo kernel
Gs,ν =

∑∞
j=0H

j , the index set ∆m
r = {α ∈N r

+ :
∑r

j=1αj =m}, the multino-

mial coefficient

(
m
α

)
= m!

α1!···αr !
and the moment function

ψr,α =
∑

j∈N r
0,+

Hj1Igα1
j1

· · ·HjrIgαr
j1+···+jr

1.(A.1)

The r-Cartesian product of the set of integers where all but the first coor-
dinate are strictly positive is denoted by N r

0,+.

A.1. Higher-order moments. An expression for the moments of a U -
block is derived from a moment formula for a real sequence (cf. [21]):

Lemma A.1. Let {at} be a real sequence and m≥ 1 an integer. Then
{

n∑

k=0

ak

}m

=
m∑

r=1

∑

α∈∆m
r

(
m
α

) ∑

j∈N r
0,+

1(sr ≤ n)aα1
s1 · · ·aαr

sr ,

where sℓ = j1 + · · ·+ jℓ, ℓ= 1, . . . , r.

Theorem A.1. Let g = {gt} be a sequence of real-valued measurable

functions defined on E. Let U0 =U0(g)
def
=
∑τ

k=0 gk(Xk). Then

ExU
m
0 =

m∑

r=1

∑

α∈∆m
r

(
m
α

)
ψr,α(x).
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Remark A.1. If gk ≡ g, then

ψr,α =
∑

j∈N r

Hj1Igα1 · · ·Hjr+1Igαr 1 = [Gs,νIgα1H] · · · [Gs,νIgαr−1H]Gs,νIgαr 1.

Proof of Theorem A.1. The main ingredient in this proof is the
lemma formulated above, together with the Markov property.

Let Bs =FX
s ∨FY

s−1, As = (1−Ys), B0,s = {τ ≥ s}=∏s−1
k=0Ak and Bt,t+h =∏t+h−1

k=t Ak. From Lemma A.1, the definition of ∆m
r and ak = g(Xk)1(τ ≥ k)

with n=∞, we get

Um
0 =

m∑

r=1

∑

α∈∆m
r

(
m
α

)
Jr,α, Jr,α =

∑

j∈N r
0,+

Zj,α,

with

Zj,α
def
= gα1

s1 (Xs1) · · ·gαr
sr (Xsr)B0,sr .(A.2)

Let r and α be fixed and fk(x)
def
= gαk

k (x) for k = 1, . . . , r. Then

Jr = Jr,α =
∑

j∈N r
0,+

Zj, Zj = fs1(Xs1) · · ·fsr(Xsr)B0,sr .

It is enough to prove that

ExJr =
∑

j∈N r
0,+

Hj1Ifj1 · · ·H
jrIfj1+···+jr

1(x)(A.3)

for arbitrary r and {fk}. We will prove this by induction on r. When r = 1,

J1 =
∞∑

j1=0

fj1(Xj1)B0,j1 =
∞∑

j1=0

fj1(Xj1)1(τ ≥ j1)

and

ExJ1 =
∞∑

j1=0

Exfj1(Xj1)1(τ ≥ j1) =
∞∑

j1=0

Hj1Ifj11(x),

which shows that (A.3) is true for r= 1.
Assume that (A.3) is true for r− 1. Corresponding to the induction hy-

pothesis, let ̂= (j1, . . . , jr−1) and s= sr−1. Then

Zj = fs1(Xs1) · · ·fsr(Xsr)B0,sr = ẐAsfs+jr(Xs+jr)Bs+1,s+jr ,(A.4)
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where ẐAs is measurable Bs+1. Taking conditional expectation with respect

to Bs+1 in the last part of (A.4) gives

E{fs+jr(Xs+jr)Bs+1,s+jr | Bs+1}= E{fs+jr(Xs+jr)Bs+1,s+jr | Bs+1}
= EXs+1{fs+jr(Xjr−1)B0,jr−1}

=Hjr−1fs+jr(Xs+1),

so that

φ0s(Xs+1)
def
=

∞∑

jr=1

E{fs+jr(Xs+jr)Bs+1,s+jr | Bs+1}

=

{ ∞∑

jr=1

Hjr−1fs+jr

}
(Xs+1).

(A.5)

Combining (A.4)–(A.5), we obtain

ExJr = Ex

∑

̂∈N r−1
0,+

ẐAsφ
0
s(Xs+1)

= Ex

∑

̂∈N r−1
0,+

ẐE[Asφ
0
s(Xs+1) | Bs]

= Ex

∑

̂∈N r−1
0,+

Ẑφs(Xs),

(A.6)

where

φs(Xs)
def
= E{Asφ

0
s(Xs+1) | Bs}= EXs{φ0s(X1)(1− Y0)}=Hφ0s(Xs).

The conditional step above reduces the dimension of j and it remains to
verify that (A.3) is correct when we apply the induction hypothesis. We
look at fs(x) = fsr−1 defined in (A.4). Let f0s (x) = fs(x)Hφ

0
s(x). Then

If0
s
1(x) = f0s (x) = Ifs

[ ∞∑

jr=1

Hjrfs+jr

]
(x).(A.7)

By (A.6), the product (A.2) is reduced from r to r− 1 since, using the fact
that s= sr−1, we have

ExJr = Ex

∑

̂∈N r−1
0,+

fs1(Xs1) · · ·fsr−2(Xsr−2)f
0
sr−1

(Xsr−1).(A.8)

Hence, by (A.8), we can evaluate the expectation of Jr by the induction
hypothesis, which, together with (A.7), gives (A.3). �
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Corollary A.1. Let U0(a, g) =
∑τ

k=0 akg(Xk). Then

ExU
m
0 (a, g) =

m∑

r=1

∑

α∈∆m
r

(
m
α

)
ψr,α(x),

ψr,α =
∑

j∈N r
0,+

dj,α(x){aα1
j1
aα2
j1+j2

· · ·aαr
j1+···+jr

},
(A.9)

where dj,α =Hj1Igα1 · · ·HjrIgαr 1. In particular, for m= 1,2, we have that

ExU0(a, g) =
∞∑

j=0

dj(x)aj , dj =HjIg1,

ExU
2
0 (a, g) =

∞∑

j=0

dj,0(x)a
2
j + 2

∞∑

j=0

∞∑

ℓ=1

dj,ℓ(x){ajaj+ℓ},

dj,ℓ =HjIgH
ℓIg1.

(A.10)

Proof. We obtain (A.9) from (A.1) with gj = ajg. With m= 2, we have

ExU
2
0 (a, g) =

∑

α∈∆2
1

(
2
α

)
ψr,α(x) +

∑

α∈∆2
2

(
2
α

)
ψr,α(x)

= ψ1,2(x) + 2ψ2,(1,1)(x)

=

[ ∞∑

j1=0

Hj1Ig2j1

]
1(x) + 2

[ ∞∑

j1=0

Hj1Igj1

][ ∞∑

j2=1

Hj2Igj1+j2

]
1(x)

=
∞∑

j=0

Hjg2j (x) + 2
∞∑

j=0

∞∑

s=1

HjIgjH
sgj+s(x).

Hence,

EνU
2
0 (a, g) =

∞∑

j=0

a2j{νHjg2}+2
∞∑

j=0

∞∑

s=1

ajaj+s{νHjIgH
sg}. �

Remark A.2. In particular, if aj ≡ 1, we write

U0 = U0(g) =
τ∑

k=0

g(Xk)

and (A.10) gives the formulas EνU0(g) = πsg and

EνU
2
0 (g) = πsg

2 +2πsIgHGs,νg

= πsg
2 +2πsIgPGs,νg − 2πsIsgπsg.

(A.11)
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Let µ(g) = EνU0(g) and σ
2(g) = Var(U(g)). Then

µ(g) = πsg, σ2(g) = πsg
2 − π2sg+ 2πsIgPGs,νg− 2πsIsgπsg.(A.12)

A.2. Moment inequality.

Lemma A.2. Assume that (2.2) holds. Let p > 1 and η ∈ (0,1) and let f
be a real-valued measurable function defined on E. Then for any probability

measure λ,

λGt
s,ν |f | ≤ c2E

t/p
λ {τ1+2(p−1)} sup

j≥0
λt/qP j |f |q,

t= p/(1 + η(p− 1)), q = p/η(p− 1),

where c2 is a universal constant dependent only on p and η.

Proof. Let q′ = p/(p − 1), r = q′/(1 − η), w = 1/q′, v = 1/q′ and u =
2/q′. Then u = v + w, p−1 + q−1 + r−1 = 1, 1/t = 1/p + 1/q, pu= 2(p− 1)
and qv = η−1.

From the right-hand side of (2.10) and by the Hölder inequality, we obtain

Gt
s,ν |f |(x) =

[∑

j

Ex{1(τ ≥ j)|f |(Xj)}
]t

≤
[∑

j

P
1/p
x (τ ≥ j)E1/q

x {|f |q(Xj)}
]t

≤
[∑

j

P
1/p
x (τ ≥ j){P j |f |q(x)}1/q

]t

=

[∑

j

(juP1/p
x (τ ≥ j))(j−v{P j|f |q(x)}1/q)(j−w)

]t

≤
(∑

j

jupPx(τ ≥ j)

)t/p(∑

j

j−vqP j|f |q(x)
)t/q(∑

j

j−wr

)t/r

= c1V
t/pZt/q,

say. We apply the Hölder inequality again with p1 = p/t and q1 = q/t. This
gives

λGt
s,ν |f | ≤ c1λV

t/pZt/q

≤ c1[λ
t/pV ][λt/qZ]
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= c1

[ ∞∑

j=0

jupPλ(τ ≥ j)

]t/p[ ∞∑

j=0

j−vqλP j |f |q
]t/q

= c1

[ ∞∑

j=0

j2(p−1)
Pλ(τ ≥ j)

]t/p[ ∞∑

j=0

j−η−1
λP j |f |q

]t/q

≤ c2

[ ∞∑

j=0

j2(p−1)
Pλ(τ ≥ j)

]t/p
sup
j≥0

λt/qP j|f |q

≤ c2E
t/p
λ τ1+2(p−1) sup

j≥0
λt/q(P j |f |q)

and

c2 =

[ ∞∑

j=0

j−wr

]t/r[ ∞∑

j=0

j−η−1

]t/q
. �

APPENDIX B

Proof of Lemma 3.2. Let Hj = Pj − sj ⊗ νj for j = 1,2. We begin by
showing that

{Wτ1
k
} d
= {W∼ k

} when λ
∼
= λ̃,(B.1)

where

λ̃= λ2Φλ1 , Φλ1 =
∞∑

ℓ=0

{λ1Hℓ
1s1}P ℓ

2 , P
∼

= P2Φν1 .(B.2)

In order to prove (B.1), it is enough to show that for all integers r ≥ 0 and
for all Ai ∈ E+

2 ,

Pλ(Wτ10
∈A0, . . . ,Wτ1r

∈Ar) = P
λ̃
(W

∼0
∈A0, . . . ,W∼ r

∈Ar).(B.3)

Let k0 = j0 and kℓ = j0 + j1 + · · ·+ jℓ for ℓ= 0, . . . , r. We have

Pλ(Wτ10
∈A0 · · ·Wτ1r

∈Ar)

=
∞∑

j0=0

∞∑

j1=1

· · ·
∞∑

jr=1

Pλ2(Wk0 ∈A0 · · ·Wkr ∈Ar)Pλ1(τ
1
0 = j0, . . . , τ

1
r = jr)

=
∞∑

j0=0

∞∑

j1=1

· · ·
∞∑

jr=1

{λ2P j0
2 IA0 · · ·P jr

2 IAr1}{{λ1Hj0
1 s1}bj1 · · · bjr}

= λ̃IA0P∼ IA1 · · ·P∼ IAr1,
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where bℓ = ν1H
ℓ−1
1 s1, ℓ≥ 0. Hence, (B.3) holds.

From

P
∼

≥ (s2 ⊗ ν2)Φν1 = s2 ⊗ ν2Φν1 ,

we obtain the minorization inequality (3.12). Let H∼ = P
∼

− s
∼
⊗ ν

∼
. Then

H∼ = P2Φν1 − s2 ⊗ ν2Φν1 = (P2 − s2 ⊗ ν2)Φν1 =H2Φν1 , Q
∼
=Q2Φν1 ,

where Q2 (in terms of H2, s2) and Q∼
(in terms of H∼ , s∼) are defined by (2.3).

The next task is to prove (3.13), that is,

{Ŵτ1
k
} d
= {Ŵ∼ k

} when λ
∼
= λ̃,

where {Ŵ∼ k
} denotes the split chain generated by P

∼
and (s

∼
, ν
∼
). Let P̂

∼
denote

the transition probability function for this split chain and let P̂
∼

′ denote the

transition probability for {Ŵτ1
k
}. We must prove that

P̂
∼

′ = P̂
∼
.

First, we recall the structure of a split chain. Suppose that P is a transition
probability which satisfies P ≥ s⊗ν. Then the corresponding split chain has
transition probability P̂ , which satisfies, for n≥ 1,

P̂n(x0 × y0, dx× y) = y0νP
n−1(dx){ys(x) + (1− y)(1− s(x))}

+ (1− y0)QP
n−1(x0, dx){ys(x) + (1− y)(1− s(x))}.

In our case, this gives, for n= 1,

P̂
∼
(w0 × y0, dw× y) = y0ν∼ (dw){ys∼ (w) + (1− y)(1− s

∼
(w))}

+ (1− y0)Q∼
(w0, dw)

×{ys
∼
(w) + (1− y)(1− s

∼
(w))}.

(B.4)

We more carefully consider P̂
∼

′, which by (B.2) satisfies

P̂
∼

′ =
∞∑

ℓ=1

bℓP̂
ℓ
2 .

We replace P̂ ℓ
2 by the right-hand side of the expression

P̂ ℓ
2 (w0 × y0, dw× y) = y0ν2P

ℓ−1
2 (dw){ys2(w) + (1− y)(1− s2(w))}

+ (1− y0)Q2P
ℓ−1
2 (w0, dw)

×{ys2(w) + (1− y)(1− s2(w))},
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where
∞∑

ℓ=1

bℓν2P
ℓ−1
2 = ν2Φν1 = ν

∼
,

∞∑

ℓ=1

bℓQ2P
ℓ−1
2 =Q2Φν1 =Q

∼
.(B.5)

We then obtain (3.13) from (B.4)–(B.5). The first equality in (3.14) fol-
lows from (3.13) and the second is the occupation formula given by (2.10).
Actually, when λ= λ1 × π2, we get

λ̃= π2Φλ1 =
∞∑

ℓ=0

{λ1Hℓ
1s1}π2P ℓ = π2{λ1Gs1,ν1s1}= π2.

Finally, if λ= ν = ν1 × ν2, then λ̃= ν
∼
and ν

∼
G
∼s

∼

, ν∼
= π2 since π

∼ s
∼

= πs2 . �

Proof of Lemma 3.3. The waiting times {δj , j ≥ 0} are given by
δj = τ1j − τ1j−1. Let bn,k = P (δ1 + · · ·+ δn = k) for k ≥ n and b1,k = bk. Then

bn,k =

{
ν1H

k−1
1 s1, for n= 1 and k ≥ 1,

b⋆nk , for n≥ 1 and k ≥ 1,

where “⋆n” denotes n-times convolution. The n-step transition probability
P
∼n

is given by

P
∼n

=
∞∑

j=0

bn,n+jP
n+j
2 , n≥ 1.(B.6)

Since {Wt} is geometric ergodic ([24], Theorem 6.14, page 120), there exist
a nonnegative function M such that π2(M) <∞ and a constant ρ ∈ (0,1)
such that

‖Pn
2 (x, ·)− π2‖ ≤M(x)ρn, x ∈E, n≥ 0.

Thus, by (B.6),

‖P
∼n

(x, ·)− π‖ ≤
∞∑

j=0

bn,n+j‖Pn+j
2 (x, ·)− π‖

≤
∞∑

j=0

bn,n+jM(x)ρn+j

≤M(x)ρn
∞∑

j=0

bn,n+jρ
j

≤M(x)ρn.

(B.7)

Hence, by (B.7), {W∼ k
} is geometric ergodic.
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For the ergodic {Wt}, we have

αℓ = sup
A,B∈E

θℓ(A,B), θℓ(A,B) = π2IAP
ℓ
2IB1− π21Aπ21B .

Here,

θ
∼ℓ(A,B) = π2IAP∼ℓ

IB1− π21Aπ21B =
∞∑

j=ℓ

bℓ,j{IAP j
2 IB − π21Aπ21B}

=
∞∑

j=ℓ

bℓ,jθj(A,B).

That is,

α
∼ℓ ≤

∞∑

j=ℓ

bℓ,j sup
A,B∈E

θj(A,B) =
∞∑

j=ℓ

bℓ,jαj ≤ αℓ.(B.8)

By [5], in general,

∞∑

ℓ=1

ℓkαℓ <∞ =⇒ Eπ2τ
k+1
0 <∞.

By (B.8) it follows that

∞∑

ℓ=1

ℓkαℓ <∞ =⇒
∞∑

ℓ=1

ℓkα
∼ℓ <∞.

Hence, (3.15) is true. �

Remark B.1. We see that α
∼ℓ ≤ E[α(δ1+ · · ·+ δℓ)]. A sharper inequality

would be α
∼ℓ ≤ αℓ1/β + O(1), and if this inequality is correct, then

∞∑

ℓ=1

ℓβkαℓ <∞ =⇒
∞∑

ℓ=1

ℓkα
∼ℓ <∞.
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