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STEP-UP SIMULTANEOUS TESTS FOR IDENTIFYING ACTIVE

EFFECTS IN ORTHOGONAL SATURATED DESIGNS

By Samuel S. Wu and Weizhen Wang1

University of Florida and Wright State University

A sequence of null hypotheses regarding the number of negligible
effects (zero effects) in orthogonal saturated designs is formulated.
Two step-up simultaneous testing procedures are proposed to iden-
tify active effects (nonzero effects) under the commonly used assump-
tion of effect sparsity. It is shown that each procedure controls the
experimentwise error rate at a given α level in the strong sense.

1. Introduction. Assume a linear model

Yi = µ+ β1xi1 + · · ·+ βkxik + εi, for i= 1, . . . ,M,(1)

where εi ∼ i.i.d. N(0, σ2). The unknown parameters βi are of interest and µ
and σ are two unknown nuisance parameters. The design is called orthogo-
nal if the least squares estimators β̂i (1≤ i≤ k) are uncorrelated (equivalent
to independent), which occurs, for example, in two-level fractional factorial
designs. The design is said to be saturated if there are just enough observa-
tions to estimate the model parameters βi and µ (i.e., M = k + 1), leaving
no degrees of freedom to estimate the error variance σ2. In order to make
inferences on βi, one must typically use the assumption of effect sparsity,
that is, that most of the βi’s are equal to zero. Then we can use the cor-
responding β̂i’s to estimate σ2. However, we do not know how many and
which of the βi’s are zero. An initial guess would be at least ν of the βi’s
equal zero, say one-half of the effects. Therefore, the smallest ν of the β̂2

i ’s

should be used to estimate σ2. Any other β̂j whose square is substantially
larger is likely to have a nonzero mean and corresponds to an active effect.

For a fixed sequence of β = (β1, . . . , βk), let

N = the number of βi’s which equal zero.(2)
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Thus, the number of nonzero βi’s is equal to k−N and the entire parameter
space without nuisance parameters is H = {β = (β1, . . . , βk) : N ≥ ν}. For
each integer m ∈ [ν + 1, k], consider the testing problem

H0,m :N ≥m vs. HA,m :N ≤m− 1 (i.e., k−N ≥ k−m+ 1)(3)

and define a parameter configuration in each H0,m,

β
m
=: (0, . . . ,0,+∞, . . . ,+∞),(4)

where the first m components are zero. Let

B = {H0,m : ν +1≤m≤ k},(5)

which contains all null hypotheses of interest in this paper. Because H0,i is a
subset of H0,j for any i > j, if H0,j is incorrect, then so is H0,i. This implies
that a testing process should be terminated as soon as a rejection occurs
for some null hypothesis. Starting from m= ν+1, we test these hypotheses
one at a time as m goes up to k. If H0,ν+1 is rejected, we then conclude
that there are k− ν active effects (i.e., H ∩HA,ν+1) and no longer test any
other hypotheses; otherwise, we test the next hypothesis H0,ν+2. In general,
if H0,m0 is the first hypothesis being rejected for some m0 ≤ k, we stop and
conclude that there are k −m0 + 1 nonzero effects (i.e., H0,m0−1 ∩HA,m0);
otherwise, all hypotheses in B are accepted and we conclude that there is
no active effect. Clearly, this is a step-up testing procedure.

Many inference procedures have been proposed to identify active effects.
The data analysis of orthogonal saturated designs was initially considered
by Birnbaum [1] and Daniel [2]. The half-normal plot introduced by Daniel
[2] is still being used in the preliminary analysis. Lenth [8] proposed the
first adaptive method to let the data determine which and how many of
the β̂i’s should be used to estimate σ2. Whether Lenth’s interval is of level
1 − α still remains a question. Besides using the data adaptively, another
fundamentally desirable property is the ability to control the error rate in
the strong sense (i.e., under all parameter configurations), which is espoused
by Hochberg and Tamhane [5]. For orthogonal saturated designs, the first
adaptive confidence interval known to provide strong control of error rates
and more general results can be found in [15] and [16], respectively. Hamada
and Balakrishnan [4] provided a thorough review of the analysis methods
available for saturated designs.

Since we do not know which and how many effects are active, it is rea-
sonable to search for active effects using simultaneous tests. Here are two
possibilities:

(a) Starting from the largest β̂2
i , test whether the corresponding effect is

active. If it is not active, then conclude no active effect and stop; oth-
erwise, test for the second largest β̂2

i (go down), and so on, until a zero
effect is found—the step-down tests.
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(b) Starting from the (ν+1)th smallest β̂2
i , test whether the corresponding

effect is active. If it is active, then conclude k−ν active effects and stop;
otherwise, test for the (ν+2)th smallest β̂2

i (go up), and so on, until an
active effect is found—the step-up tests.

Voss [12] proposed nonadaptive step-down tests for a set of hypotheses
different from B and controlled the experimentwise error rates at the given
level α in the strong sense. Recently, Voss and Wang [14] derived adaptive
step-down tests with the experimentwise error rates controlled in the same
setting as Voss [12]. As pointed out by several researchers [3, 7, 11], the
step-up tests typically have a greater power to detect active effects than
the step-down tests. For example, Venter and Steel [11] proposed one step-
up and one step-down procedure for the orthogonal saturated designs with
cutoff points determined at β

m
. However, they were unable to prove that

the experimentwise error rates of their procedures are controlled at a given
level α in the strong sense.

The rest of this article is organized as follows. In Section 2, we provide
the motivation for two desirable tests for H0,m and establish a probability
inequality for noncentral χ2 distributions which asserts that the maximal
type I error of any test in a general class is always achieved at β

m
. Based

on this inequality, two level-α tests are proposed in Section 3 for testing
each single hypothesis H0,m. Two sequential step-up procedures for testing
all hypotheses in B, which control the experimentwise error rates at α in the
strong sense, are derived in Section 4. Section 5 presents a simulation study
and Section 6 concludes with some discussion.

2. Motivation and a general probability inequality. In this section, we
provide motivation for the new procedures testing H0,m and a general class
[see Am in (11)] of the rejection regions of level-α. The maximal type I error
of each rejection region in this class is always achieved at β

m
, as stated in

Theorem 1.
Assume the factorial effect estimators β̂i are independently distributed

as N(βi, a
2
i σ

2) for known constants ai. We may assume that each ai = 1

without loss of generality. Let X1, . . . ,Xk be the order statistics of the β̂2
i

for i≤ k. Intuitively, it is more likely that the small order statistics Xi will
correspond to estimators β̂j with βj = 0. If we believe a priori that at least
ν of the βi’s are zero, then those βi’s corresponding to X1, . . . ,Xν are likely
to be the negligible ones. To test H0,m, one needs to compare Xm with
X1, . . . ,Xν . For any integer n ∈ [ν,m], let Sn =

∑n
i=1Xi and X̄n = Sn/n and

define a test statistic for H0,m as follows:

Wn,m =
nXm
∑n

i=1Xi

=
nXm

Sn

=
Xm

X̄n

.(6)
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Intuitively, a large value of Wn,m is in favor of HA,m. Therefore, the rejection
region should be Wn,m > dn,m for a constant dn,m which satisfies

sup
β∈H0,m

Pβ(Wn,m > dn,m) = α.(7)

In this section, we will show that Wn,m is stochastically largest at β
m

for
β ∈H0,m.

Definition 1. A random variable X is said to be stochastically smaller
than Y , denoted by X ≺ Y , if P (X ≤ d)≥ P (Y ≤ d) for all d.

Let Y1,m, . . . , Ym,m be the order statistics of the β̂2
i ’s for i≤m when β1 =

· · ·= βm = 0 and let

Zn,m =
nYm,m
∑n

i=1 Yi,m

.(8)

Langsrud and Næs [7] also studied Zn,m, called Ψm,0,n,m-distribution in their
notation. Clearly, the distribution of Zn,m does not depend on any param-
eter and can be sampled based on the order statistics of m independent χ2

1

random variables. It is easy to see that Wn,m = Zn,m at β
m

and we want to
show that Wn,m ≺ Zn,m on H0,m. If this is true, then (7) reduces to

P (Zn,m > dn,m) = α(9)

and dn,m is the 100(1−α) percentile of Zn,m.

Definition 2. A function h : Rd → R will be called nondecreasing (to
the coordinatewise ordering) if xi ≤ yi, i= 1, . . . , d, implies that h(x)≤ h(y).

Now we prove a general theorem that includes (9) as a special case.

Theorem 1. Suppose that X1, . . . ,Xk are the order statistics of inde-
pendent random variables with noncentral chi-squared distributions χ2

1(β
2
i ),

1≤ i≤ k. Then

sup
β∈H0,m

Pβ(R) = Pβ
m
(R)(10)

for any rejection region R of H0,m that belongs to the class

Am = {TL(X1, . . . ,Xs−1)<TR(Xs), for some integer 1< s≤m},(11)

where TL and TR satisfy the following two properties:

(i) (monotone) TL(x1, . . . , xs−1) and TR(xs) are nondecreasing functions;
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(ii) (invariant) TL/TR is invariant to scale transformation, that is, for
any a > 0,

TL(ax1, . . . , axs−1)

TR(axs)
=

TL(x1, . . . , xs−1)

TR(xs)
.(12)

Corollary 1. For any 0< α < 1 and dn,m given in (9), the rejection
region

Rn,m = {Wn,m > dn,m}(13)

defines a level-α test for (3).

Proof. Let s=m, TL(x1, . . . , xm−1) =
∑n

i=1 xi/n and TR(xm) = xm/dn,m.
The claim follows from Theorem 1. �

To prove Theorem 1, we need the facts below (Corollary 2 and Corol-
lary 3).

Lemma 1. For a nonnegative random variable X and a positive number
y, let Xy =X/y, given that X ≤ y. Let U ∼ χ2

1, a chi-squared distribution
with one degree of freedom, and V ∼ χ2

1(θ
2), a noncentral chi-squared distri-

bution with one degree of freedom and noncentrality parameter θ2. Then we
have (i) Uy ≺ Vy and (ii) Uy2 ≺ Uy1 for any y2 > y1 > 0.

Part (ii) of Lemma 1 is identical to Lemma 2 of [7]. The proofs for both
stochastic orderings follow from the monotone likelihood ratio function.

Lemma 2. Let U1, . . . ,Us−1 be any independent random variables. Let
the same be true for V1, . . . , Vs−1. If T (x1, . . . , xs−1) is a nondecreasing func-
tion and Ui ≺ Vi for i≤ s− 1, then

T (U1, . . . ,Us−1)≺ T (V1, . . . , Vs−1).

This is called by some researchers (see, e.g., [13]) a “stochastic ordering
lemma.”

Corollary 2. Suppose that Ui ∼ χ2
1, 1 ≤ i ≤ s − 1, and Vj ∼ χ2

1(θ
2
j ),

1≤ j ≤ s− 1, are independent random variables. For any y > 0, let U(i),y be
the order statistics of Ui,y (= Ui/y, given that Ui ≤ y, as defined in Lemma 1)
and let V(j),y be the order statistics of Vj,y. Then for any nondecreasing
function TL,

TL(U(1),y, . . . ,U(s−1),y)≺ TL(V(1),y, . . . , V(s−1),y).(14)

Therefore, for any t > 0,

P (TL(U(1),y , . . . ,U(s−1),y)≤ t)≥ P (TL(V(1),y , . . . , V(s−1),y)≤ t).
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Proof. Let

T ∗
L(U1,y, . . . ,Us−1,y) = TL(U(1),y, . . . ,U(s−1),y).

Since each U(i),y is a nondecreasing function in each Uj,y and TL is nonde-
creasing in each of its arguments, T ∗

L is nondecreasing in each of its argu-
ments. Therefore, if one combines part (i) of Lemma 1 with Lemma 2, it can
be concluded that

TL(U(1),y , . . . ,U(s−1),y) = T ∗
L(U1,y, . . . ,Us−1,y)≺ T ∗

L(V1,y, . . . , Vs−1,y)

= TL(V(1),y , . . . , V(s−1),y). �

Corollary 3. Suppose that TL and TR satisfy the monotone and in-
variant conditions specified in the definition of Am in (11) and one defines

G∗(y)≡ P (TL(U(1),y , . . . ,U(s−1),y)≤ TR(1))

=

∫

. . .

∫

{0<u1<···<us−1≤y,TL(u1,···,us−1)≤TR(y)}
(s− 1)!

∏s−1
i=1 f(ui)dui
F (y)s−1

.

Then under the condition of Corollary 2, TL(U(1),y, . . . ,U(s−1),y) is stochas-
tically nonincreasing in y, that is, for y2 > y1 > 0,

TL(U(1),y2 , . . . ,U(s−1),y2)≺ TL(U(1),y1 , . . . ,U(s−1),y1).

Therefore, G∗(y) is a nondecreasing function.

Proof. Combine part (ii) of Lemma 1 with Lemma 2 and define T ∗
L as

in Corollary 2. �

Proof of Theorem 1. Consider two samples,

{β̂2
1 , . . . , β̂

2
m,+∞, . . . ,+∞ (k−m of them)} and {β̂2

1 , . . . , β̂
2
k}.

Clearly, the sth order statistic of the first sample is stochastically larger
than that of the second sample, that is, Xs ≺ Ys,m for any given integer s
satisfying 1< s≤m.

Second, we have

P (TL(Y1,m, . . . , Ys−1,m)<TR(Ys,m))

=E[P (TL(Y1,m, . . . , Ys−1,m)<TR(y)|Ys,m = y)]

=E[P (TL(U(1),y, . . . ,U(s−1),y)<TR(1)|Ys,m = y)]

=E[G∗(Ys,m)].
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Next, for any partition ω = (j1, j2, . . . , js−1)(js)(js+1, . . . , jk) of the inte-

gers 1 to k, we denote by Eω the event {β̂2
ji
< β̂2

js
,∀i < s; β̂2

js
< β̂2

jl
,∀l > s}.

We note that for any β ∈H0,m,

Pβ(R)

=Eβ[Pβ(TL(X1, . . . ,Xs−1)< TR(y)|Xs = y)]

=Eβ[Pβ(TL(X1,y, . . . ,Xs−1,y)<TR(1)|Xs = y)]

=Eβ

[

∑

ω

Pβ({TL(X1,y, . . . ,Xs−1,y)< TR(1)} ∩Eω|Xs = y)

]

=Eβ

[

∑

ω

Pβ({TL(X1,y, . . . ,Xs−1,y)< TR(1)}|Eω ,Xs = y)Pβ(Eω|Xs = y)

]

≤Eβ

[

∑

ω

Pβ
m
({TL(X1,y, . . . ,Xs−1,y)<TR(1)}|Xs = y)Pβ(Eω|Xs = y)

]

=Eβ[Pβ
m
(TL(X1,y, . . . ,Xs−1,y)< TR(1)|Xs = y)]

=Eβ[P (TL(U(1),y , . . . ,U(s−1),y)< TR(1)|Xs = y)]

=Eβ[G
∗(Xs)],

where the above inequality is due to Corollary 2.
Finally, since G∗(y) is a nondecreasing function due to Corollary 3, the

inequality Xs ≺ Ys,m implies that G∗(Xs)≺G∗(Ys,m). Therefore, it can be
concluded that

Eβ[G
∗(Xs)]≤E[G∗(Ys,m)]. �

3. Two tests for H0,m. In this section, we present two tests for H0,m.
While both are of level α, they are to be used under different circumstances.
Let dν,m and dm−1,m denote the numbers determined by (9) when n= ν and
n=m− 1, respectively.

Theorem 2. For any 0<α< 1, the rejection regions

Rν,m = {Wν,m > dν,m} and Rm−1,m = {Wm−1,m > dm−1,m}(15)

both define level-α tests for (3).

This theorem is a special case of Corollary 1 when n= ν and n=m− 1.
The test based on Rν,m estimates the error variance by X̄ν =

∑ν
i=1Xi/ν, irre-

spective of the value of m, while the test based on Rm−1,m uses the adaptive
estimator X̄m−1 =

∑m−1
i=1 Xi/(m− 1). These are referred to by Venter and

Steel [11] as fixed and sequential scaling, respectively. Region Rν,m should
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be applied only when H0,m is of interest and no information is available

on whether H0,n is true for any n <m. In such a case, we are certain that

at least ν of the β̂2
i ’s have a zero mean. It is reasonable to compare Xm

with the average of X1, . . . ,Xν , the smallest ν of the β̂2
i ’s, through their

average. If Wν,m is large, then one concludes that all β̂2
i ’s corresponding to

Xm, . . . ,Xk are from populations with nonzero means. On the other hand,

if one tests H0,n for n<m sequentially up to H0,m and H0,m−1 is accepted,

then at least m−1 of the βi’s are zero. In this case, one should compare Xm

with X1, . . . ,Xm−1 and a large value of Wm−1,m would lead to a rejection

of H0,m.

4. Two step-up testing procedures. When effect sparsity is assumed,

we do not know which and how many of the βi’s are zero. It is of more

interest to conduct tests simultaneously to identify the nonzero effects. The

tests developed in the previous section, in fact, can detect whether there is a

jump at Xm among X1, . . . ,Xk. However, these tests cannot tell whether the

jump, if it exists, is the first one, which is what interests us. Therefore, as

mentioned earlier, since H0,m decreases as m increases, one needs to conduct

tests sequentially. Like all testing problems, there are two major concerns:

to control the experimentwise error rate at a given level α, that is,

sup
β∈
⋃k

m=ν+1
H0,m

Pβ(assert not H0,n, which contains β,

for some n ∈ [ν +1, k])≤ α,
(16)

and to obtain more powerful tests, which means larger rejection regions.

The first requirement (16) can be ensured by using the closed test pro-

cedure proposed by Marcus, Peritz and Gabriel [9]. For details, see [6],

page 137. A näıve solution is to assert not H0,m (i.e., to assert HA,m) if

one rejects H0,i at level α for all i≥m. For example, suppose Rν,i is used to

test for each H0,i. Then assert not H0,m iff Rm =
⋂k

i=mRν,i is true. This, by

the closed test procedure, controls the experimentwise error rate at α. Note

that Rm decreases as m increases, which contradicts the fact that H0,m is

decreasing (we need Rm to increase). Therefore, simply applying the closed

test procedure on the tests derived in the previous section only results in

less powerful tests for the simultaneous hypotheses. We require that the re-

jection region for H0,m (a) increases as m gets larger and (b) is of level-α. In

this section, two testing procedures are discussed with their rejection regions

denoted by {R∗
ν,m}km=ν+1 and {R∗

m−1,m}km=ν+1 corresponding to Rν,m and

Rm−1,m, respectively.
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4.1. The construction of {R∗
ν,m}km=ν+1: step-up tests with fixed scaling

(SUF). The general form of R∗
ν,m, for ν +1≤m≤ k, is

R∗
ν,m =

m
⋃

i=ν+1

{Wν,i > d∗ν,i}= {Sν <max{νXi/d
∗
ν,i}

m
i=ν+1},(17)

where the sequence of constants {d∗ν,m}km=ν+1 is determined iteratively be-
low. More precisely, d∗ν,m depends on d∗ν,i for i <m and causes R∗

ν,m to have
level-α. It is clear that R∗

ν,m is nondecreasing when m gets larger and is
strictly increasing if all d∗ν,m are finite. We start with the following lemma.

Lemma 3. For a sequence of random variables {∆i}
s
i=0, where s is a

given positive integer,

P (∆0 <max{∆i}
s
i=1)≤

s
∑

i=1

P (max{∆j}
i−1
j=0 <∆i).(18)

Proof. We prove (18) by induction. When s= 1, (18) is true. Suppose
(18) is true for any s= n. Then for s= n+1,

P (∆0 <max{∆i}
n+1
i=1 )≤ P (∆0 <max{∆i}

n
i=1) +P (max{∆j}

n
j=0 ≤∆0 <∆n+1)

≤
n+1
∑

i=1

P (max{∆j}
i−1
j=0 <∆i). �

We now determine the sequence of constants {d∗ν,m}km=ν+1 starting from
m = ν + 1. For testing H0,ν+1, let R∗

ν,ν+1 = Rν,ν+1. It is a level-α test by
Theorem 2.

For any ν + 2 ≤ m < k, let d∗ν,ν = ∞ and suppose that {d∗ν,i}
m−1
i=ν+1 are

available. Then d∗ν,m is determined by solving

m
∑

i=ν+1

Pβ
m
(Ai) = α,

(19)
where Ai = {max{Sν ,{νXj/d

∗
ν,j}

i−1
j=ν}< νXi/d

∗
ν,i}.

Note that R∗
ν,m is of level-α because for any β ∈H0,m,

Pβ(R
∗
ν,m)≤

m
∑

i=ν+1

Pβ(Ai)≤
m
∑

i=ν+1

Pβ
m
(Ai) = α,(20)

where the first inequality follows from Lemma 3 (with ∆0 = Sν and ∆i−ν =
νXi/d

∗
ν,i for i = ν + 1, . . . ,m) and the second inequality holds since each

term in the summation achieves its maximum at β
m

by Theorem 1. On the
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other hand, since the thresholds {d∗ν,i}
m−1
i=ν+1 satisfy

∑m−1
i=ν+1Pβ

m−1
(Ai) = α

and each term in this summation satisfies Pβ
m−1

(Ai)> Pβ
m
(Ai) by Theo-

rem 1, the last term in the summation of (19) is greater than zero, that is,
Pβ

m
(Am)> 0. This guarantees d∗ν,m to be finite, which implies that rejection

region R∗
ν,m is larger than R∗

ν,m−1.
Finally, for m= k, since the null hypothesis H0,k now contains only one

parameter configuration β
k
and d∗ν,i is available up to i= k − 1, one deter-

mines d∗ν,k by solving

Pβ
k
(R∗

ν,k) = α,(21)

which implies that R∗
ν,k is level-α. Similarly, one can show that d∗ν,k is fi-

nite. Thus, R∗
ν,k is larger than R∗

ν,k−1. The determination of {d∗ν,m}km=ν+1 is
completed.

To conduct the simultaneous tests for B, assert not H0,m (i.e., assert
HA,m)

if R∗
ν,m is true.(22)

Notice two facts: (1) B is closed under the operation of intersection and
(2) for each ν + 1 ≤m≤ k, R∗

ν,m =
⋂k

i=mR∗
ν,i is level-α. Therefore, the ex-

perimentwise error rate is no greater than α by the closed test procedure.
The discussion above is now summarized as the following theorem.

Theorem 3. The rejection regions R∗
ν,m given in (17) increase when m

gets larger and each defines a level-α test for H0,m. If one conducts simulta-
neous tests for B using (22), then the experimentwise error rate is controlled
at α in the strong sense.

Let [1], . . . , [k] be random indices such that β̂2
[1] < · · ·< β̂2

[k]. We now de-

scribe the step-up testing procedure based on R∗
ν,m as follows:

Step 1: If R∗
ν,ν+1 is true, then conclude that β[ν+1], . . . , β[k] are the k − ν

active effects (=H ∩HA,ν+1) and stop; otherwise, go to step 2.
Step 2: If R∗

ν,ν+2 is true, then conclude that β[ν+2], . . . , β[k] are the k− ν− 1
active effects (=H0,ν+1 ∩HA,ν+2) and stop; otherwise, go to step 3.
...

Step k − ν: If R∗
ν,k is true, then conclude that β[k] is the only active effect

(=H0,k−1 ∩H0,k) and stop; otherwise, conclude no active effect and stop.

4.2. The construction of {R∗
m−1,m}km=ν+1: step-up tests with sequential

scaling (SUS). There is another way to conduct the simultaneous tests for
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B. For each integer m ∈ [ν + 1, k], we construct a level-α region for H0,m,
denoted by R∗

m−1,m (corresponding to Rm−1,m in Section 3), of the form

R∗
m−1,m =

⋃m
i=ν+1{Wi−1,i > d∗i−1,i}=

⋃m
i=ν+1{Sν <Qi}

= {Sν <max{Qi}
m
i=ν+1},

(23)

where Qi = (i− 1)Xi/d
∗
i−1,i − Si−1 + Sν and Si−1 =

∑i−1
j=1Xj .

To determine constants {d∗m−1,m}km=ν+1, we first let the constant d∗ν,ν+1
equal dν,ν+1. Suppose that d

∗
i−1,i is available up to i=m− 1 for m< k. We

then determine d∗m−1,m. Comparing (23) with (17), R∗
m−1,m and R∗

ν,m have
similar forms. Therefore, similarly to (19), we obtain d∗m−1,m by solving

m
∑

i=ν+1

Pβ
m
(max{Sν ,{Qj}

i−1
j=ν}<Qi) = α(24)

(with Qν = 0). Finally, for m= k, since d∗m−1,m is available up to m= k− 1,

d∗k−1,k is solved by Pβ
k
(R∗

k−1,k) = α. The determination of {R∗
m−1,m}km=ν+1

is thus complete.
Using a discussion similar to that used for R∗

ν,m, one can show that
R∗

m−1,m is a level-α test for H0,m and is increasing in m. More specifically,
Lemma 3 implies that

Pβ(R
∗
m−1,m)

≤
m
∑

i=ν+1

Pβ(max{Sν ,{Qj}
i−1
j=ν}<Qi)

=
m
∑

i=ν+1

Pβ

(

max

{

Si−1,

{

(j − 1)Xj

d∗j−1,j

+ Si−1 − Sj−1

}i−1

j=ν

}

<
(i− 1)Xi

d∗i−1,i

)

.

The last step rewrites each set and makes it clear that, by Theorem 1, each
probability above on the right-hand side achieves its maximum at β

m
among

β ∈H0,m. Therefore, the type I error of R∗
m−1,m is bounded by α due to (24).

Again, by Theorem 1, each term corresponding to i <m evaluated at β
m

is
smaller than that at β

m−1
, which ensures the existence of a finite solution

for d∗m−1,m.
To conduct the simultaneous tests for the null hypotheses in B, assert not

H0,m (i.e., assert HA,m)

if R∗
m−1,m is true.(25)

Therefore, we have a theorem similar to Theorem 3.

Theorem 4. The rejection regions R∗
m−1,m given in (23) are increasing

when m increases and each defines a level-α test for H0,m. If one conducts
the simultaneous tests for B using (25), then the experimentwise error rate
is strongly controlled at α.
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We omit the description of the step-up testing procedure based on R∗
m−1,m.

Remark 1. Langsrud and Næs [7] and Venter and Steel [11] also con-
sidered these two step-up procedures. For the same test statistics Wν,m and

Wm−1,m, they proposed to determine critical values d†ν,m and d†m−1,m itera-
tively by

Pβ
m

(

m
⋃

i=ν+1

{Wν,i > d†ν,i}

)

= α and Pβ
m

(

m
⋃

i=ν+1

{Wi−1,i > d†i−1,i}

)

= α.

(26)

Intuitively, the solutions d†ν,m and d†m−1,m to the above equations would be
smaller than their corresponding cutoff points d∗ν,m and d∗m−1,m determined
by (19) and (24) and would hence result in larger rejection regions. However,
it is still not clear that the error rates of their procedures are controlled at
α in the strong sense because it is very difficult to establish that for all
β ∈H0,m,

Pβ(R
∗
ν,m)≤ Pβ

m
(R∗

ν,m) or Pβ(R
∗
m−1,m)≤ Pβ

m
(R∗

m−1,m).(27)

If, for example, we write R∗
ν,m in the form

TL(X1, . . . ,Xν)(=: Sν)<TR(Xν+1, . . . ,Xm)(=: max{νXi/d
∗
ν,i}

m
i=ν+1),

then TR involves more than one argument and Theorem 1 cannot be applied.
However, our numerical studies show no evidence against (27).

4.3. An example. We illustrate the proposed methods using a 24 facto-
rial experiment from [10], pages 246–254, which investigates how tempera-
ture, pressure, concentration of formaldehyde and stirring rate influence the
filtration rate of a chemical product. The results are presented in Table 1.
Column 2 of Table 1 gives the eight effect estimates with largest absolute val-
ues and Column 3 the corresponding squared statistics, while S7 =

∑7
i=1Xi

equals 15.11 for the seven effect estimates with smallest absolute values.
Test statistics Wν,m and Wm−1,m are presented in the next two columns for
ν = 7. The SUF procedure identifies four largest active effects, irrespective
of the two ways of choosing thresholds (d∗ν,m or d†ν,m), while the SUS proce-
dure identifies five largest active effects, also irrespective of the two thresh-
old selections. For the sake of comparison, a step-down procedure from Voss
and Wang [14], which uses test statistics TSD,m =Xm/min{0.92S7,0.23S11},
identifies three largest active effects. Finally, a MATLAB program for the
evaluation of cutoff points is available from the authors.
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Table 1

The Montgomery [10] data, the step-up tests with fixed scaling (SUF) and the step-up
tests with sequential scaling (SUS), and the related cutoff points

Effect Test statistics The cutoff points at level α = 0.05

m estimate Xm Wν,m Wm−1,m d
†
ν,m d∗

ν,m d
†

m−1,m d∗
m−1,m

8 −2.625 6.89 3.2 3.2 14.9 14.9 14.9 14.9
9 3.125 9.77 4.5 3.6 26.5 28.0 16.4 16.7

10 4.125 17.02 7.9 4.8 38.4 42.0 16.0 16.3
11 9.875 97.52 45.2 20.0 52.2 58.5 15.5 15.7
12 14.625 213.89 99.1 16.1 67.7 77.5 15.1 15.2
13 16.625 276.39 128.0 9.2 85.0 99.1 14.6 14.8
14 −18.125 328.52 152.2 6.7 104.5 124.1 14.3 14.5
15 21.625 467.64 216.7 6.8 126.3 123.4 14.0 13.9

5. Simulation study. A limited simulation study was conducted to com-
pare five testing procedures: step-up tests with sequential scaling (SUS and
SUSI using cutoff points determined by (24) and (26), respectively), step-up
tests with fixed scaling (SUF and SUFI using cutoff points determined by
(19) and (26), respectively) and the Voss and Wang [14] step-down proce-
dure (SD). The testing procedures were evaluated in terms of four measures:
(1) the experimentwise error rate (EER), (2) the probability of correctly
selecting the number of inactive effects (PCSN), (3) the probability of com-
plete correct selection (PCCS) and (4) the expected fraction of active effects
that are declared active (Power). The simulation was carried out for several
choices of k. Since the results are similar, we only present the choice k = 15
on six cases below, following Venter and Steel [11]:

C1: β ∈H0,14, β15 = s; C4: β ∈H0,8, β9 = · · ·= β15 = s;
C2: β ∈H0,12; β13 = β14 = β15 = s; C5: β ∈H0,12, β12+i = is,1≤ i≤ 3;
C3: β ∈H0,10, β11 = · · ·= β15 = s; C6: β ∈H0,10, β10+i = is,1≤ i≤ 5,

where s takes values from 0 to 8 with a step of 0.02. Each independent
sample consists of 15 observations, each from N(βi,1) for 1≤ i≤ 15.

Simulation results for PCCS are nearly the same as those for PCSN and
hence are not reported. Figure 1 presents selected results for the other three
evaluation measures for α = 0.05 and ν = 7, although findings are similar
for other choices of α and ν. Each point was determined based on 100,000
simulations. In summary, all procedures control the EER. Second, there
is a very small difference between the two ways of choosing cutoff points,
especially between SUS and SUSI. Third, in C1, C2 and C5, the SUS is
clearly the best. In C4 and C6, there is a small difference between SUF and
SUS. In C3, the SUF performs better at small s, but the SUS is better at
large s. The SD seems to be the worst in most selected cases.
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Fig. 1. Selected simulation results for five test procedures (SUSI, SUS, SUFI, SUF and
SD) using α= 0.05, ν = 7, three evaluation measures (EER, PCSN, Power) and six cases
of parameter configuration (C1–C6) given in the text.

6. Discussion. We search for active effects in orthogonal saturated de-
signs by conducting simultaneous tests on a sequence of decreasing null
hypotheses. A general class of level-α tests is provided for testing at least a
certain number of active effects and the least favorable distribution is iden-
tified to be the one at β

m
. Two sets of simultaneous tests are derived with

increasing rejection regions and their experimentwise error rates are con-
trolled at α in the strong sense. Between these two sets of tests, the step-up
tests with sequential scaling are recommended because our simulation study
indicates that {R∗

m−1,m}km=ν+1 has greater power in most cases. Since the

maximal type I errors for {R∗
ν,m}km=ν+1 and {R∗

m−1,m}km=ν+1 at m= ν + 1
and k are equal to α, simply enlarging the rejection regions cannot yield
valid level-α tests.

We can show that Lemma 1 is also true if U ∼ F1,n, an F -distribution with
1 and n degrees of freedom, and V ∼ F1,n(λ), a noncentral F -distribution
with 1 and n degrees of freedom and noncentrality parameter λ. Conse-
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quently, Theorem 1 remains true if we let X1, . . . ,Xk be the order statistics
of independent random variables with noncentral F distributions F1,n(λi),
1 ≤ i ≤ k. This implies that our step-up simultaneous tests also work for
squares of independent t-statistics.
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