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Local entanglement of multidimensional continuous-variable systems
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We study the ‘local entanglement’ remaining after filtering operations corresponding to imperfect
measurements performed by one or both parties, such that the parties can only determine whether
or not the system is located in some region of space. The local entanglement in pure states of general
bipartite multidimensional continuous-variable systems can be completely determined through sim-
ple expressions. We apply our approach to semiclassical WKB systems, multi-dimensional harmonic
oscillators, and a hydrogen atom as three examples.
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I. INTRODUCTION

It has been recognized quite recently that quantum
entanglement is not just a profound feature of quantum
mechanics but it is also a valuable physical resource, like
energy, with massive potential for technological applica-
tions, such as quantum computation [1], quantum cryp-
tography [2] and quantum teleportation [3], etc. How-
ever, our understanding of entanglement is still far from
complete despite current intense research activities.

There are many reasons to focus on the entanglement
of continuous-variable states [4, 5, 6], since the underly-
ing degrees of freedom of physical systems carrying quan-
tum information are frequently continuous, rather than
discrete. Much of the effort has been concentrated on
Gaussian states (i.e., states whose Wigner function is a
Gaussian), since these are common (especially in quan-
tum optics) as the ground or thermal states of optical
modes. Within this framework, many interesting topics
have been studied; for example, entanglement distillation
for Gaussian states [7, 8, 9, 10], multipartite entangled
Gaussian states [11, 12, 13] and entanglement measures,
such as entanglement of formation [14, 15] and logarith-
mic negativity [16, 17]. However one should remember
that non-Gaussian states are also extremely important;
this is especially so in condensed-phase systems, where
harmonic behavior in any degree of freedom is likely to
be only an approximation. Much less is known about the
entanglement of these non-Gaussian states: while there
is some progress in finding criteria for entanglement [18],
there is little knowledge about how to quantify it.

In two preceding papers [19, 20], we demonstrated
how to use a specific type of projective filtering to char-
acterize the distribution (particularly in configuration
space) of entanglement in any smooth two-mode bipar-
tite continuous-variable state. The approach is based
on making an imperfect measurement of the ‘position’
of the system in configuration space, and then studying
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the entanglement remaining after the measurement. We
showed how this approach could be used to map entangle-
ment in different situations [19], and that simple formulae
exist for the entanglement in the limit where the region to
which the system is confined after the measurement be-
comes small (i.e., where the measurement becomes more
and more accurate) [20].
In this paper we generalize these results to general (in-

cluding multimode) smooth bipartite pure states. We
first review the important results for two-mode states
in §II, then generalize to multi-mode states in §III. Fi-
nally in §IV we show examples of our approach applied
to some systems in which analytical expressions for the
energy eigenfunctions are easily obtained, before giving
our conclusions in §V.

II. TWO-MODE STATES

We briefly recapitulate the definitions of essential
terms and the known results for any smooth bipartite
two-mode continuous-variable state. Let Alice and Bob
share a state of two distinguishable one-dimensional par-
ticles. Alice can measure only the position of her parti-
cle (coordinate qA), Bob the position of his (coordinate
qB). They filter their state by determining whether or
not the particles are found in particular regions of con-
figuration space, and discard instances in which they are
not. We refer to the resulting subensemble as the “dis-
carding ensemble”. On the other hand if they choose not
to discard the system when the particles are not in the
desired regions, the resulting subensemble is called the
“nondiscarding ensemble”. The entanglement ED in the
discarding ensemble is related to the entanglement END

in the nondiscarding ensemble by

END = pabED, (1)

where pab is the probability of finding Alice’s particle
within the region {qA : q̄A − a ≤ qA ≤ q̄A + a} and Bob’s
particle in the region {qB : q̄B − b ≤ qB ≤ q̄B + b}. We
shall therefore focus on calculating ED, noting that END

can be simply obtained from it; we show plots for both
quantities for some of the systems discussed in §IV.
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A. Preliminary measurements on Alice’s particle

only

If the initial state ρ̂ is pure, so is ρ̂D in the discarding
ensemble. Suppose the initial filtering is performed only
by Alice, by determining whether qA lies in the region
q̄A − a ≤ qA ≤ q̄A + a, and all instances in which this
is not the case are discarded. Now, since a is to be very
small, Alice’s original (before the measurement) reduced
density matrix ρ(A)(= TrB[ρ̂]) in the neighborhood of q̄A
can be expanded (provided it is smooth in configuration
space) as

ρ(A)(qA; q
′
A) = ρ(A)(q̄A + x; q̄A + x′) (2)

= ρ
(A)
00 + ρ

(A)
10 x+ ρ

(A)
01 x

′ + ρ
(A)
11 xx

′ +O(x2, x′2),

where

ρ(A)
n1n2

=
∂n1

∂qAn1

∂n2

∂q′A
n2
ρ(A)(qA, q

′
A)
∣

∣

∣

qA=q′
A
=q̄A

. (3)

Within region −a ≤ x ≤ a, ρ
(A)
D is obtained by dividing

equation (2) by the normalizing factor 2aρ
(A)
00 +O(a3).

Now seek right eigenfunctions φn of ρ
(A)
D within the

allowed region:

∫ a

−a

dx′ ρ(A)(x;x′)φn(x
′) = λnφn(x). (4)

Expanding φn as a power series

φn(x) = an + bn(x) +
cn
2
x2 +O(x3), (5)

the eigenfunction condition becomes (to order a3)

1

2a[ρ
(A)
00 +O(a2)]






a







2ρ
(A)
00 0 . . .

2ρ
(A)
10 0 . . .
...

...
. . .






+ a3







ρ
(A)
20 /3 2ρ

(A)
01 /3 . . .

0 2ρ
(A)
11 /3 . . .

...
...

. . .



















an
bn
...






≡ M







an
bn
...






= λn







an
bn
...






. (6)

Expanding det(M−λI) to order a4 and equating to zero,
we find two non-zero eigenvalues:

λ1 =
a2

3ρ
(A)
00

2 (ρ
(A)
11 ρ

(A)
00 − ρ

(A)
01 ρ

(A)
10 )

λ2 = 1− λ1. (7)

So to the lowest non-trivial order (a2), the eigenvalues,

and hence the von Neumann entropy, of ρ
(A)
D are entirely

determined by the quantity ǫ ≡ λ1. Specifically, the von
Neumann entropy is

Sv = h(ǫ) ≡ −[ǫ log2(ǫ) + (1 − ǫ) log2(1− ǫ)]. (8)

To find the leading corrections to this result, we include
all terms proportional to x2 or x′2 in the expansion (2)
for ρ(A):

ρ(A)(x;x′) = ρ
(A)
00 + ρ

(A)
10 x+ ρ

(A)
01 x

′ (9)

+
1

2
(ρ

(A)
20 x

2 + ρ
(A)
02 x

′2 + 2ρ
(A)
11 xx

′)

+
1

2
(ρ

(A)
21 x

2x′ + ρ
(A)
12 xx

′2)

+
1

4
ρ
(A)
22 x

2x′2 +O(x3, x′3).

and then carry equation (5) to third order:

φn(x) = an + bnx+
1

2
cnx

2 +
1

6
dnx

3 +O(x4), (10)

From the eigenfunction condition (4), we find the third
non-zero eigenvalue to be

λ3 =
a4

90ρ
(A)
00

2
(ρ

(A)
01 ρ

(A)
10 − ρ

(A)
11 ρ

(A)
00 )

(

ρ
(A)
02 ρ

(A)
11 ρ

(A)
20

+ρ
(A)
01 ρ

(A)
22 ρ

(A)
10 + ρ

(A)
12 ρ

(A)
00 ρ

(A)
21 − ρ

(A)
01 ρ

(A)
12 ρ

(A)
20

−ρ(A)
10 ρ

(A)
02 ρ

(A)
21 − ρ

(A)
00 ρ

(A)
11 ρ

(A)
22

)

+O(a6). (11)

Therefore, the corrections due to higher eigenvalues, aris-
ing from the higher-order terms in equation (2), affect ǫ
(and hence the entanglement) only to order a4.

B. Preliminary measurements on both particles

Now suppose both parties restrict their measurements:
Alice’s particle must lie in {qA : q̄A − a ≤ qA ≤ q̄A + a},
and Bob’s in {qB : q̄B − b ≤ qB ≤ q̄B + b}. In [20]
we attacked this problem by reducing it to an effective
two-qubit one, for which exact results are available. How-
ever this approach does not generalize so naturally to the
multi-mode case, so we give here an alternative approach.
From the argument above we know we can compute the
entanglement from Alice’s reduced density matrix ρ(A)

in the coordinate representation. Our first task, there-
fore, is to evaluate this quantity once Bob has made the
measurement of his particle.
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We do this by making a further Taylor expansion in-
volving Bob’s variables. We define

ρn1n2n3n4
=

∂n1

∂qAn1

∂n2

∂q′A
n2

∂n3

∂qBn3

∂n4

∂q′B
n4

ρ(qA, qB; q
′
A, q

′
B)
∣

∣

∣

q̄A,q̄B
. (12)

As we will see, to obtain the first nontrivial term in the
solution we need all terms to first order in Alice’s coor-
dinates and to second order in Bob’s:

ρ(qA, qB; q
′
A, q

′
B)

= ρ(q̄A + xA, q̄B + xB ; q̄A + x′A, q̄B + x′B)

= ρ0000 + ρ1000xA + ρ0100x
′
A + ρ0010xB + ρ0001x

′
B

+
1

2
(ρ0020xB

2 + ρ0002x
′
B
2
)

+ρ1100xAx
′
A + ρ1010xAxB + ρ1001xAx

′
B

+ρ0110x
′
AxB + ρ0101x

′
Ax

′
B + ρ0011xBx

′
B

+
1

2
(ρ1020xAxB

2 + 2ρ1011xAxBx
′
B + ρ1002xAx

′
B
2

+ρ0120x
′
AxB

2 + 2ρ0111xA′xBx
′
B + ρ0102x

′
Ax

′
B
2
)

+O(xA
2, x′A

2
, xB

3, x′B
3
). (13)

Alice’s reduced density matrix is then found by writing

ρ(A)(xA;x
′
A) =

1

p

∫ b

−b

dxB ρ(xA, xB ;x
′
A, xB)

=
2b

p
[ρ0000 + xAρ1000 + x′Aρ0100]

+
b3

3
[ρ0020 + 2ρ0011 + ρ0002

+(ρ1020 + 2ρ1011 + ρ1002)xA

+(ρ0120 + 2ρ0111 + ρ0102)x
′
A]

+O(b5, xA
2, x′A

2
). (14)

where p is a normalization constant. By comparison with
equation (2) and equating powers of x1 and y1 we can
immediately identify the terms which appear in the ex-
pression for ǫ, and therefore determine the entanglement:

ρ
(A)
00 =

2b

p
[ρ0000 +

b2

6
(ρ0020 + 2ρ0011 + ρ0002)] + O(b5);

ρ
(A)
10 =

2b

p
[ρ1000 +

b2

6
(ρ1020 + 2ρ1011 + ρ1002)] + O(b5);

ρ
(A)
01 =

2b

p
[ρ0100 +

b2

6
(ρ0120 + 2ρ0111 + ρ0102)] + O(b5);

ρ
(A)
11 =

2b

p
[ρ1100 +

b2

6
(ρ1120 + 2ρ1111 + ρ1102)] + O(b5).

(15)

The leading (order b2) terms in the numerator of the
expression for ǫ cancel—this is the reason why we need

the density matrix to quadratic order in Bob’s coordi-
nates. The cancellation occurs because Alice and Bob
(by hypothesis) share a pure state, and so

ρ(qA, qB; q
′
A, q

′
B) = ψ(qA, qB)ψ

∗(q′A, q
′
B)

⇒ ρn1n2n3n4
=

∂n1

∂qAn1

∂n3

∂qBn3

ψ(qA, qB)
∣

∣

∣

q̄A,q̄B

× ∂n2

∂q′A
n2

∂n4

∂q′B
n4
ψ∗(q′A, q

′
B)
∣

∣

∣

q̄A,q̄B
. (16)

We can thus re-arrange the indices in a product of two
ρn1n2n3n4

terms as

ρabcdρefgh = ρebgdρafch, (17)

so in particular

ρ1100ρ0000 = ρ0100ρ1000. (18)

Hence the leading term in the numerator of ǫ is of order
b4, and the overall expression becomes

ǫ =
a2b2

18ρ20000
[ρ1100(ρ0020 + 2ρ0011 + ρ0002)

+ρ0000(ρ1120 + 2ρ1111 + ρ1102)

−ρ1000(ρ0120 + 2ρ0111 + ρ0102)

−ρ0100(ρ1020 + 2ρ1011 + ρ1002)]. (19)

Using equation (17) we can simplify this to obtain

ǫ

a2b2
=

1

9ρ20000
[ρ1100ρ0011 + ρ0000ρ1111

−ρ1000ρ0111 − ρ0100ρ1011] (20)

=
1

18ρ20000
[2ρ1100ρ0011 + 2ρ0000ρ1111 − ρ1000ρ0111

−ρ0100ρ1011 − ρ0010ρ1101 − ρ0001ρ1110]. (21)

The first form (20) is slightly more compact, while the
second form (21) makes it clear that the coordinates of
Alice’s and Bob’s subsystems are treated equivalently,
as required. The von Neumann entropy, and hence the
entanglement (since this is still a pure state), is then
Sv = h(ǫ) as before.
We know, from the arguments leading to equation (11),

that the leading correction to this result is O(a4), and we
should expect from the symmetry between Alice’s and
Bob’s systems that it is also O(b4). We have explicitly
computed the correction and this is indeed the case: the
result is given in Appendix A. The third eigenvalue λ3
measures the extent of the breakdown of our approach.
We note that it is of order a4b4, and therefore does not
affect the expression of ǫ, which is of order a2b2.

III. MULTI-DIMENSIONAL SYSTEMS

A. General approach

Consider first the case in which only Alice makes
preliminary measurements. If Alice’s system is two-
dimensional and she localizes the particle so −ai ≤ xi ≤
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+ai, i ∈ {1, 2}, one can find the eigenvalues of ρ(A) by a
straightforward generalization of the methods in §II A.
Once again we find that there are only two non-zero
eigenvalues to order a2i :

λ1 =

2
∑

i

a2i
3(ρ̄(A))2

(

ρ̄(A) ∂2ρ(A)

∂qA,i∂q′A,i

− ∂ρ(A)

∂qA,i

∂ρ(A)

∂q′A,i

)

+H.T.

λ2 = 1− λ1. (22)

where i goes over the two spatial dimensions of Al-
ice’s subsystems, H.T. stands for higher-order terms and
ρ̄(A) = ρ(A)(q̄A; q̄A).
We now argue that this property holds irrespective of

the dimensionality of Alice’s system, as follows. The
entanglement must be invariant under exchange of the
axis labels, and under all transformations of the form
ai → −ai. The only possibilities consistent with these
requirements are

λ1 = 1−
∑

i

tia
2
i ; λ2 =

∑

i

tia
2
i ; λ3, λ4 . . . = 0, (23)

or

λ1 = 1−
∑

i

tia
2
i ; λ2 = t1a

2
1; λ3 = t2a

2
2, . . . , (24)

where the ti are arbitrary constants. Furthermore the
eigenvalues must reduce to the known forms for one- and
two-dimensional systems if all other ai are set to zero. If
we keep a1 and a2 non-zero, sending all others to zero,

only the first form (23) is consistent with equation (22).
Therefore, the form of the non-zero eigenvalues must be

λ1 =
∑

i

a2i
3(ρ̄(A))2

(

ρ̄(A) ∂2ρ(A)

∂qA,i∂q′A,i

− ∂ρ(A)

∂qA,i

∂ρ(A)

∂q′A,i

)

+H.T.

λ2 = 1− λ1 (25)

λ3 = 0 + H.T.

where i now goes over all the dimensions of Alice’s sub-
systems.

Define

ρ(i,j;n1n2n3n4) =
∂n1

∂qA,i
n1

∂n2

∂q′A,i
n2

∂n3

∂qB,j
n3

∂n4

∂q′B,j
n4

ρ(qA,q
′
A,qB ,q

′
B)
∣

∣

q̄A,i,q̄B,j
. (26)

where i (j) represents one of available dimensions of Al-
ice’s (Bob’s) subsystem. If the state ρ(qA,q

′
A,qB,q

′
B) is

pure, we have the following relation

ρ(i,j;n1n2n3n4)ρ(i,j;n5n6n7n8) = ρ(i,j;n5n2n7n4)ρ(i,j;n1n6n3n8).
(27)

From the previous analysis that led to equation (15)
for a pure two-mode state, we know we can extend equa-
tion (25) to a pure multi-dimensional bipartite state
ρ(qA,q

′
A,qB,q

′
B) for the case where both parties make

preliminary measurements on their particles by making
the following substitutions:

ρ
(A)
00 =

∑

j

(

∏

j′ 2bj′

p

)

[

ρ(ij;0000) +
b2j
6
(ρ(ij;0020) + 2ρ(ij;0011) + ρ(ij;0002))

]

+H.T.;

ρ
(A)
10 =

∑

j

(

∏

j′ 2bj′

p

)

[

ρ(ij;1000) +
b2j
6
(ρ(ij;1020) + 2ρ(ij;1011) + ρ(ij;1002))

]

+H.T.;

ρ
(A)
01 =

∑

j

(

∏

j′ 2bj′

p

)

[

ρ(ij;0100) +
b2j
6
(ρ(ij;0120) + 2ρ(ij;0111) + ρ(ij;0102))

]

+H.T.;

ρ
(A)
11 =

∑

j

(

∏

j′ 2bj′

p

)

[

ρ(ij;1100) +
b2j
6
(ρ(ij;1120) + 2ρ(ij;1111) + ρ(ij;1102))

]

+H.T. (28)

where j and j′ go over all the dimensions of Bob’s sub-
system and p is an appropriate normalization constant.

Therefore, to the lowest order in a and b, λ1 in equation
(25) becomes

λ1 =
∑

i,j

a2i b
2
j

18ρ(i,j;0000)2
{

ρ(i,j;1100)[ρ(i,j;0020) (29)

+2ρ(i,j;0011) + ρ(i,j;0002)]

+ρ(i,j;0000)[ρ(i,j;1120) + 2ρ(i,j;1111) + ρ(i,j;1102)]

−ρ(i,j;1000)[ρ(i,j;0120) + 2ρ(i,j;0111) + ρ(i,j;0102)]

−ρ(i,j;0100)[ρ(i,j;1020) + 2ρ(i,j;1011) + ρ(i,j;1002)]
}

.

This can be further simplified by using equation (27) to
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obtain

λ1 =
∑

i,j

a2i b
2
j

9ρ(i,j;0000)2
[ρ(i,j;1100)ρ(i,j;0011)

+ρ(i,j;0000)ρ(i,j;1111) − ρ(i,j;1000)ρ(i,j;0111)

−ρ(i,j;0100)ρ(i,j;1011)]. (30)

Again the entanglement is completely determined by
Sv = h(ǫ), where ǫ = λ1 as before.

B. Concurrence and negativity for general

bipartite multi-mode pure states

In a similar way, we can generalize our previous expres-
sions [20] for the concurrence [21] and negativity [22, 23]
of the system after the preliminary measurement has
been made.
For an n1 ⊗ n2 (n1 ≤ n2) bipartite system, where n1

and n2 are Hilbert space dimension for two subsystems
respectively, the generalized concurrence of a pure quan-
tum state ψ is defined by [24]

C2(|ψ〉) = 4
∑

m<n

λmλn, (31)

where
√
λm (m = 1, . . . , n1) are the eigenvalues of the

reduced density matrices ρ(A) and ρ(B). Additionally,
the trace norm of the partial transposed density matrix
with respect to Alice’s subsystem turns out to be

‖ρ̂TA‖ = (
∑

m

√

λm)2. (32)

From this we can determine the negativity, which is de-
fined as

N (ρ̂) =
‖ρ̂TA‖ − 1

2
. (33)

As we argued earlier, the reduced density matrix in the
discarding ensemble has only two non-zero eigenvalues
(λ1 and (1 − λ1)) to the lowest order so we then have
from equation (31):

4
∑

m<n

λmλn = 4λ1 +H.T.

=
(

(
∑

m

√

λm)2 − 1
)2

(34)

where we have used
∑

m λm = 1. Therefore, we have
proved that in the limit of small ai and bj , for any multi-
mode bipartite pure state ψ,

C(ψ) = 2N (ψ) = 2
√
ǫ. (35)

Specifically, the squared concurrence is

C2 =
∑

ij

(

2aibj
3|ψ|2

)2 ∣
∣

∣

∣

ψ
∂2ψ

∂qA,i∂qB,j
− ∂ψ

∂qA,i

∂ψ

∂qB,j

∣

∣

∣

∣

2

(36)

≡
∑

ij

C2
ij ,

where i goes over all dimensions of Alice’s subsystem and
j of Bob’s subsystem. C2

ij is the squared concurrence
associated with the degrees of freedom i and j. Note
that Cij ∝ aibj , consistent with the existence of a well-
defined local concurrence density for two-mode systems
[20].
Note also that the concurrence is made particularly

simple by writing

ψ = e−S , (37)

in which case

C2 =
∑

ij

4a2i b
2
j

9

∣

∣

∣

∣

∂2S

∂qA,i∂qB,j

∣

∣

∣

∣

2

. (38)

From this, we see that if S is quadratic in the coordinates
(i.e., the state is a Gaussian) the local entanglement is
constant; on the other hand whenever S is a linear func-
tion of the coordinates, the local entanglement is zero.

C. Nodes in the wavefunction

Evidently S in equation (37) diverges near nodes of
the wavefunction, so that for a fixed ai and bj the con-
currence given by equation (38) also diverges (like 1/|ψ|2
as |ψ| → 0). It is important to realize that this diverg-
ing quantity refers to the entanglement in the discarding
ensemble (i.e., in the sub-ensemble conditional on find-
ing the particles in the chosen measurement region—see
equation 1), and that even in this ensemble our expres-
sion applies only in the limit of very small measurement
regions. We now show that the discarding entanglement
always remains finite provided we keep within the domain
of validity of our approach.
The extent of the domain of validity follows inevitably

from our Taylor-series approximations for the wavefunc-
tions (or density operators—see equation (16)), which are
valid only close to the chosen reference point (q̄A, q̄B).
The requirement that the second term in this expansion
be small compared with the first is

∂ψ

∂qA,i
ai ≪ ψ(q̄A, q̄B) ⇒ ai ≪

ψ(q̄A, q̄B)

∂ψ/∂qA,i
(39)

and similarly for bj; therefore, the domain of validity
shrinks to zero near a node in ψ. Equivalently, if this
condition is not satisfied it leads to the breakdown of the
isomorphism of each mode to one qubit described in [20].
One way to understand the behavior of the entangle-

ment near points where the wavefunction vanishes is to
satisfy equation (39) by writing the maximum valid re-
gion size as

aMAX
i = σ

ψ(q̄A, q̄B)

∂ψ/∂qA,i
, (40)

where σ ≪ 1 is a small parameter, and similarly for
bMAX
j . (We assume here that the derivatives are not also



6

zero near the nodes.) We further define three quantities
ki, kj , and kij by

∂2ψ

∂qA,i∂qB,j
= kijψ;

∂ψ

∂qA,i
= kiψ;

∂ψ

∂qB,j
= kjψ, (41)

so aMAX
i ki = bMAX

j kj = σ. From equation (36), if we

choose ai = aMAX
i , bj = bMAX

j near a node where kikj ≫
kij , the expression for ǫ reduces to

ǫMAX =
∑

ij

σ4

9
. (42)

Therefore ǫ (and hence also the localized concurrence and
entanglement) is cut off near the node at a finite value
that depends on the choice of σ.

D. Transformation of coordinates

We now discuss the behavior of our expressions for the
local entanglement under various coordinate transforma-
tions.

1. Invariance under local transformations

We would expect that the definitions of our local en-
tanglement would remain unchanged if we made a local
redefinition of our coordinate axes (possibly accompa-
nied by changes in the measurement region). To see that
this is the case, consider the following transformation of
Alice’s coordinates:

Qi

Ai
=
∑

j

Oij
qj
aj

(43)

where O is an orthogonal matrix (OOT = 1) and the
sum goes only over the other coordinates of Alice’s par-
ticle. Ai is to determine the length of the measurement
region for new variable Qi. Note that if aj = Ai = a ∀i, j
(i.e. both measurement volumes are hypercubes with the
same dimensions) then (43) reduces to a simple orthogo-
nal transformation of Alice’s coordinates.
Now

ai
∂

∂qi
=
∑

j

Aj
∂Qj

∂qi

∂

∂Qj
=
∑

j

OijAj
∂

∂Qj
. (44)

We then have

∑

i

a2i
∂2ρ

∂qi∂q′i
=
∑

ijk

OijOikAjAk
∂2ρ

∂Qj∂Q′
k

=
∑

j

A2
j

∂2ρ

∂Qj∂Q′
j

(45)

and similarly

∑

i

a2i
∂ρ

∂qi

∂ρ

∂q′i
=
∑

i

A2
i

∂ρ

∂Qi

∂ρ

∂Q′
i

. (46)

Therefore, equation (25) is invariant under the gener-
alized orthogonal transformation (43). It follows that
equation (30), and hence the local entanglement, are also
invariant under these local transformations.

2. Non-local transformations

We now consider some transformations which mix Al-
ice’s and Bob’s coordinates—specifically, those that make
the system separable. That is to say we look for a new
set of coordinates

Xk =
∑

i

Tikxi (47)

such that the wavefunction factorizes as

ψ =
∏

k

ψk(Xk). (48)

Note that the sum over i in (47) runs over all coordinates
of the system (both Alice’s and Bob’s). In this situation
it does not make sense to consider any accompanying
change in the shape or size of the measurement region,
which we continue to define in terms of the original co-
ordinates and to describe by {ai} and {bj}.
Therefore,

∂2ψ

∂xi∂xj
=
∑

kk′

TikTjk′

∂2ψ

∂Xk∂Xk′

(49)

=
∑

k

TikTjk
ψ

ψk

∂2ψk

∂X2
k

+
∑

k 6=k′

TikTjk′

ψ

ψkψ′
k

∂ψk

∂Xk

∂ψk′

∂Xk′

and similarly

∂ψ

∂xi

∂ψ

∂xj
=
∑

kk′

TikTjk′

ψ2

ψkψ′
k

∂ψk

∂Xk

∂ψk′

∂Xk′

. (50)

It follows from equation (36) that

ǫ =
∑

ij

(aibj)
2

9

∣

∣

∣

∣

∣

∑

k

TikTjk
ψ

ψk

[

∂2ψk

∂X2
k

− 1

ψk

(

∂ψk

∂Xk

)2
]∣

∣

∣

∣

∣

2

,

(51)
where the second term inside the modulus signs comes
from the part of (50) having k = k′. In terms of
the logarithms of the separable wavefunctions Sk =
− log[ψk(Xk)]), we have

ǫ =
∑

ij

(aibj)
2

9

∣

∣

∣

∣

∣

∑

k

TikTjk
∂2Sk

∂X2
k

∣

∣

∣

∣

∣

2

. (52)
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One important special case of this result is the trans-
formation to normal coordinates in a harmonic system:
if the potential can be quadratically expanded about an
energy minimum, the transformation to normal coordi-
nates takes the form of equation (47) with

Tik =
√
miOik, (53)

where O is an orthogonal matrix.

3. Relative coordinates

A closely related example is the transformation to
center-of-mass and relative coordinates. (Here we as-
sume that the particles live in the same physical space,
and hence that the dimensions NA and NB are equal.)
If Alice’s particle and Bob’s particle have masses mA

and mB respectively, we define ri ≡ qAi − qBi and Ri ≡
(µ/mB)q

A
i + (µ/mA)q

B
i where µ ≡ mAmB/(mA +mB)

is the reduced mass and i goes over all dimensions of the
system ({x, y, z} in three-dimensional system, for exam-
ple).

ǫ =
∑

ij

(

aibj
3|ψ|2

)2 ∣
∣

∣

∣

−(
µ

mB

∂ψ

∂Ri
+
∂ψ

∂ri
)(

µ

mA

∂ψ

∂Rj
− ∂ψ

∂rj
)

+ψ(
µ

mB

∂

∂Ri
+

∂

∂ri
)(

µ

mA

∂

∂Rj
− ∂

∂rj
)ψ

∣

∣

∣

∣

2

, (54)

where i and j run over all the dimensions of the system.
In many cases, including most importantly the case

where there is no external potential, the wave function
ψ(R, r) can be decoupled into a center-of-mass part χ(R)
and a relative-motion part ϕ(r):

ψ(R, r) = χ(R)ϕ(r). (55)

If we write

ϕ(r) = e−Sϕ(r), χ(R) = e−Sχ(R) (56)

then the entanglement takes the particularly simple form

ǫ =
∑

ij

a2i b
2
j

9

∣

∣

∣

∣

∂2Sϕ(r)

∂ri∂rj
+

µ2

mAmB

∂2Sχ

∂Ri∂Rj

∣

∣

∣

∣

2

. (57)

For example, if χ(R) is a free-particle plane wave χ(R) =
eik0R, its contribution to the entanglement ED is zero; if
χ(R) is a Gaussian wave packet with wave number k0

and real-space width R0:

ψ(R, r) = (
2

πR2
0

)1/4e−R
2/R2

0eik0Rϕ(r), (58)

the expression for ǫ becomes

ǫ =
∑

ij

a2i b
2
j

9

∣

∣

∣

∣

∂2Sϕ(r)

∂ri∂rj
− 2µ2

mAmBR2
0

δij

∣

∣

∣

∣

2

. (59)

FIG. 1: Diagram of a potential well illustrating the different
regions discussed in the text.

IV. EXAMPLES

In this section we apply our method to some easily
soluble examples: first to wavefunctions that (while re-
maining pure states) are semiclassical in the sense that
the potential varies slowly on the scale of the de Broglie
wavelength, so WKB methods are applicable, then to en-
ergy eigenstates of harmonically-interacting particles in
arbitrary dimensionality, and finally to bound states of
an electron and proton (i.e., to the hydrogen atom).

A. The semiclassical case: one-dimensional WKB

wavefunctions

Consider two particles moving in one dimension with
an interaction potential V (r) that depends only on the
relative coordinate. Neglecting center-of-mass contribu-
tions, the entanglement can then be calculated from the
relative wavefunction ϕ(r) using equation (57). If V (r)
is a slowing varying function of r, we can use the WKB
method to find ϕ(r).
We consider an interaction with a single potential well

(shown schematically in Figure 1), so the system moving
in a bound state with energy E has just two classical
turning points. For the classically allowed region with
E > V (region 2 of Figure 1), the classical momentum

at r is p(r) =
√

2m(E − V (r)) and the corresponding
wavefunction can be expressed as

ϕWKB
2 (r) =

2A
√

p(r)
sin

[

1

h̄

∫ r2

r

p(r′) dr′ +
π

4

]

, r1 < r < r2

(60)
so that the local concurrence is

C2 =

∣

∣

∣

∣

ab

3h̄2p(r)2

{

2 csc2
[

1

h̄

∫ r2

r

p(r′)dr′ +
π

4

]

p(r)4

+h̄2p(r)
∂2p(r)

∂r2

}

− h̄2
(

∂p(r)

∂r

)2

(61)
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+2h̄ cot

[

1

h̄

∫ r2

r

p(r′)dr′ +
π

4

]

p(r)2
∂p(r)

∂r

∣

∣

∣

∣

.

The oscillatory structure of the wavefunction, arising
from the interference between right- and left-moving
travelling waves, produces nodes at which the entangle-
ment in the discarding ensemble for fixed a and b diverges
(but remains finite provided we remain within the domain
of validity of (61)—see §III C).
Note also that the entanglement contribution from the

first term in (61) is non-zero even where V (r) (and hence
p(r)) is constant.
For E < V (region 1 and region 3 of Figure 1),

we express the wavefunction in terms of the local
momentum on the inverted potential surface p(r) =
√

2m(V (r)− E). The wavefunctions are respectively

ϕWKB
1 (r) =

(−1)nA
√

|p(r)|
exp

[

− 1

h̄

∫ r1

r

|p(r′)|dr′
]

, r < r1;

(62)

ϕWKB
3 (r) =

A
√

|p(r)|
exp

[

− 1

h̄

∫ r

r2

|p(r′)|dr′
]

, r > r2,

(63)

where n is the number of nodes in Region 2. Correspond-
ingly, the concurrences are

C1 =

∣

∣

∣

∣

−ab
3h̄ |p(r)|2

[

2 |p(r)|2 ∂ |p(r)|
∂r

+h̄

(

∂ |p(r)|
∂r

)2

− h̄ |p(r)| ∂
2 |p(r)|
∂r2

]∣

∣

∣

∣

; (64)

C3 =

∣

∣

∣

∣

ab

3h̄ |p(r)|2
[

2 |p(r)|2 ∂ |p(r)|
∂r

−h̄
(

∂ |p(r)|
∂r

)2

+ h̄ |p(r)| ∂
2 |p(r)|
∂r2

]∣

∣

∣

∣

. (65)

Note that in this case (by contrast to the behavior in re-
gion 2) if there is no force, p(r) is constant, and hence
there is no entanglement. It is interesting that the bound-
aries between these different behaviors of the entangle-
ment correspond to the classical turning points.

B. Multi-dimensional harmonic oscillators

Consider first a system of two one-dimensional har-
monic oscillators of masses mA and mB, having identical
frequencies ω, and coupled by a spring constant K; the
Hamiltonian is

Ĥ = ĤA + ĤB +
1

2
K(X̂A + X̂B)

2. (66)

Transforming to center-of-mass and relative coordinates,
the eigenstates are simply

ψnR,nr
(R, r) = ψnR

(R)ψnr
(r)

=
1

√√
π2nR2nrnR!nr!R0r0

e−R2/2R2

0

e−r2/2r2
0HnR

(
R

R0
)Hnr

(
r

r0
), (67)

where nR and nr label the excitations of each coordinate,

R0 =
√

h̄/(Mω), r0 =
√

h̄/(µ
√

ω2 +K/µ), and Hn(x)

is the Hermite polynomial.
If Alice and Bob each possess an oscillator, the en-

tanglement between their subsystems given by h(ǫ) can
be determined from equation (54); for example, for the
ground state:

ǫ =
a2b2(mAmBr

2
0 −M2R2

0)
2

9M4r40R
4
0

=
a2b2

9M2h̄2
(mAmBω −Mµ

√

K

µ
+ ω2)2, (68)

where M = mA + mB. Note that the ground state is
Gaussian, so ǫ is constant, as expected.
In Fig. 2, we plot the probability distributions and

entanglement E (in the discarding ensemble—center col-
umn, and nondiscarding ensemble—right column) for the
ground state and some excited states. Note that the
ground state (a) is a Gaussian state so the discarding
entanglement is constant and the left and right plots are
proportional to one another; this is no longer true for
the other (non-Gaussian) states, for which there are also
nodes in the wavefunctions. We therefore show the en-
tanglement in both ensembles cut off at the maximum
value determined by equation (42).
For general multi-dimensional oscillators, the wave-

function becomes a product over the normal modes Xk of
one-dimensional harmonic oscillator wavefunctions. The
entanglement is determined by these normal-mode wave-
functions through equation (52). (Note that in the one-
dimensional example considered above, the normal coor-
dinates are the same as the relative and center-of-mass
coordinates.)

C. The hydrogen atom

We next consider the entanglement between the elec-
tron (‘Alice’s particle’) and the proton (‘Bob’s particle’)
in a hydrogen atom. For simplicity, the sizes of the mea-
sured regions are assumed to be the same for all dimen-
sions {x, y, z}, i.e. ai = a and bi = b. First, consider the
case where there is no center-of-mass motion. Instead of
directly applying equation (57), we transform the coor-
dinates and the equation into to spherical coordinates:

∂

∂rx
= sin θ cosφ

∂

∂r
+

cos θ cosφ

r

∂

∂θ
− csc θ sinφ

r

∂

∂φ

∂

∂ry
= sin θ sinφ

∂

∂r
+

cos θ sinφ

r

∂

∂θ
+

csc θ cosφ

r

∂

∂φ

∂

∂rz
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (69)
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(A) ψ0,0(R, r)

(B) ψ1,1(R, r)

(C) ψ1,3(R, r)

FIG. 2: Probability density (left plot), local entanglement ED

in the discarding ensemble (center plot) and local entangle-
ment END in the nondiscarding ensemble (right plot) for three
pure states of the two-oscillator system: (A) nR = 0, nr = 0;
(B) nR = 1, nr = 1; (C) nR = 1, nr = 3. The characteristic
lengths of the problem are r0 = 2 and R0 = 4 in all plots,
and all plots are for a = b = 0.1. The cut-off points for plots
of ED and END are determined from ǫMAX in equation (42)
with σ = 0.1; specifically, EMAX

ND = pMAX

ab h(ǫMAX), where h is
defined in equation (8).

The ground state is

ϕ100(r, θ, φ) = (
1

πa30
)1/2e−r/a0 , (70)

where a0 is the Bohr radius. In this case,

ǫ = 2(
ab

3a0r
)2. (71)

Interestingly, this expression indicates that the entangle-
ment ED for the ground state of a hydrogen atom falls off
with distance in exactly the same way as the electrostatic
force between the electron and the nucleus.
If we include a center-of-mass part to the wave function

with a Gaussian form as in equation (58), we obtain

ǫ =
2a2b2

9R4
0a

2
0(mA +mB)4r2

(

R4
0(mA +mB)

4 (72)

−4R2
0a0mAmB(mA +mB)

2r + 6a20m
2
Am

2
Br

2
)

.

FIG. 3: Probability density (left plot), local entanglement ED

in the discarding ensemble (center plot) and local entangle-
ment END in the nondiscarding ensemble (right plot) for the
relative wavefunction ϕ210(r, θ, φ) of a hydrogen atom. All
plots are for a = b = 0.1. The cut-off points for plots of ED

and END are determined from ǫMAX in equation (42) with
σ = 0.1; specifically, EMAX

ND = pMAX

ab h(ǫMAX), where h is de-
fined in equation (8).

The first term is the component noted previously, decay-
ing in the same way as the atom’s internal electrostatic
force; in addition there are two new contributions from
the localization of the free-particle wave function. Of
these the third term corresponds to the spatially con-
stant entanglement of the gaussian center-of-mass state.
Excited states of the atom can also be analyzed, by

substituting the most general form of the relative wave
function ϕnlm(r, θ, φ) of a hydrogen atom into equation
(57) after it has been transformed to spherical coordi-
nates. The excited states have nodes in the wavefunction,
which have to be treated as discussed earlier. We show
the corresponding probability distribution, and entangle-
ment E (in the discarding and nondiscarding ensembles)
in Fig. 3.

V. DISCUSSION AND CONCLUSIONS

Our approach allows us to analyze the distribution
of entanglement after imperfect local position measure-
ments in any smooth bipartite pure state. Equations
(36) and (38) are our main results, allowing us to cal-
culate the concurrence in terms of simple derivatives of
the wavefunction. Equation (51) allows us to express the
entanglement in the same local region in terms of an ar-
bitrary linear transformation of the coordinates, and (57)
treats the important case where the motion separates into
center-of-mass and relative coordinates.
The three examples of exactly integrable systems that

we have discussed show a number of common features.
First, there is generic behavior near nodes in the wave-
function. There is an apparent divergence in the entan-
glement in the discarding ensemble for a fixed region size,
but this does not mean that large amounts of entan-
glement can be extracted from the continuous-variable
wavefunction once the system has been localized in this
region. Our expressions for entanglement are always true
only in the limit of small region sizes, and their domain
of validity shrinks as we approach a node; the discarding
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entanglement remains finite so long as we take care al-
ways to remain within this domain. Furthermore, when
we measure the locations of the particles we are unlikely
to find them near a node in the wavefunction, so the
probability factor in equation (1) further suppresses the
non-discarding entanglement relative to the discarding
entanglement.
As the size of the measurement regions increases, our

approach starts to break down because more than two
eigenvalues of the reduced density matrix become impor-
tant. We have explicitly computed the extent of this
breakdown, giving the lowest-order corrections to our
main results in Appendix A.
As pointed out in §III D 3, free-particle wavefunctions

do not give rise to any local entanglement. We have
shown how our entanglement expressions are transformed
when moving to other coordinates (e.g. center-of-mass
and relative coordinates); however, it is important to re-
alize that the entanglement we quantify is still between
the original subsystems. The transformation is only done
for the convenience of the calculations.
Our results for the WKB wavefunctions and for the

hydrogen atom suggest an intriguing link between the
interaction force and the local entanglement, but the ex-
act details of the relationship and its generality need to
be further explored. We also note that in this paper we
have only considered pure states; the application of our
approach to the mixed states will be discussed in another
paper.

APPENDIX A: CORRECTIONS TO THE LOCAL

ENTANGLEMENT AFTER TWO-PARTY

PRELIMINARY MEASUREMENTS

The third eigenvalue of Alice’s reduced density ma-
trix in the discarding ensemble when both parties make
preliminary measurements can be found by making the
following additional substitutions in equation (11):

ρ
(A)
20 =

b

p
[ρ2000 +

b2

6
(ρ2020 + 2ρ2011 + ρ2002)] + O(b5);

ρ
(A)
02 =

b

p
[ρ0200 +

b2

6
(ρ0220 + 2ρ0211 + ρ0202)] + O(b5);

ρ
(A)
21 =

b

p
[ρ2100 +

b2

6
(ρ2120 + 2ρ2111 + ρ2102)] + O(b5);

ρ
(A)
12 =

b

p
[ρ1200 +

b2

6
(ρ1220 + 2ρ1211 + ρ1202)] + O(b5);

ρ
(A)
22 =

b

2p
[ρ2200 +

b2

6
(ρ2220 + 2ρ2211 + ρ2202)] + O(b5).

(A1)

This gives

λ3 =
λnu3
λde3

, (A2)

where the denominator is

λde3 = 120(ρ0002ρ0100ρ1000 + 2ρ0011ρ0100ρ1000

+ρ0020ρ0100ρ1000 + ρ0000ρ0102ρ1000

+2ρ0000ρ0111ρ1000 + ρ0000ρ0120ρ1000

+ρ0000ρ0100ρ1002 + 2ρ0000ρ0100ρ1011

+ρ0000ρ0100ρ1020 − 2ρ0000ρ0002ρ1100

−4ρ0000ρ0011ρ1100 − 2ρ0000ρ0020ρ1100

−ρ0000ρ0000ρ1102 − 2ρ0000ρ0000ρ1111

−ρ0000ρ0000ρ1120), (A3)

and the numerator is

λnu3 =
1

54
(ρ0211ρ1120ρ2002 − ρ0120ρ1211ρ2002

−ρ0111ρ1220ρ2002 + ρ0220ρ1111ρ2002

+ρ0202ρ1120ρ2011 − ρ0120ρ1202ρ2011

−ρ0102ρ1220ρ2011 + ρ0220ρ1102ρ2011

−ρ0220ρ1011ρ2102 − ρ0211ρ1020ρ2102

+ρ0020ρ1211ρ2102 + ρ0011ρ1220ρ2102

−ρ0220ρ1002ρ2111 − ρ0202ρ1020ρ2111

+ρ0020ρ1202ρ2111 + ρ0002ρ1220ρ2111

−ρ0211ρ1002ρ2120 + ρ0002ρ1211ρ2120

+ρ0211ρ1000ρ2122 − ρ0000ρ1211ρ2122

+ρ0120ρ1011ρ2202 + ρ0111ρ1020ρ2202

−ρ0020ρ1111ρ2202 − ρ0011ρ1120ρ2202

+ρ0120ρ1002ρ2211 + ρ0102ρ1020ρ2211

−ρ0020ρ1102ρ2211 − ρ0002ρ1120ρ2211

+ρ0111ρ1002ρ2220 + ρ0102ρ1011ρ2220

−ρ0011ρ1102ρ2220 − ρ0002ρ1111ρ2220

−ρ0111ρ1000ρ2222 − ρ0100ρ1011ρ2222

+ρ0011ρ1100ρ2222 + ρ0000ρ1111ρ2222). (A4)
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