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Fidelity for imperfect postselection

Craig S. Hamilton and John Jeffers
Computational Nonlinear and Quantum Optics Group,

SUPA, Department of Physics, University of Strathclyde,

John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, U.K.

We describe a simple measure of fidelity for mixed state postselecting devices. The measure is
most appropriate for postselection where the task performed by the output is only effected by a
specific state.
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I. INTRODUCTION

Fidelity provides a measure of the closeness of two
states. One situation to which it applies directly is posts-
election, in which a postselecting device (Fig. 1) produces
a quantum state conditioned on the result of a measure-
ment. Postselection is a useful technique for producing
particular quantum states, for example in linear optical
quantum computing (LOQC) [1, 2] and in other cluster
state or matter-based schemes [3, 4, 5, 6, 7]. If either
the measuring device or the internal components of the
postselector are imperfect then the state produced may
not be that which was intended. In most cases postselec-

FIG. 1: Typical postselecting device

tors are designed to produce pure states when functioning
correctly, but this is not always the case, and we shall see
that the concept of mixed state fidelity can be applied to
postselection with imperfect internal components.
A standard measure of fidelity comparing mixed states

ρ̂a and ρ̂b is F = {Tr[(ρ̂1/2a ρ̂bρ̂
1/2
a )1/2]}2, which reduces to

F = Tr (ρ̂aρ̂b) if either of the two states (say ρ̂b) is pure
[8]. In this case the measure is effectively the probability
that the state ρ̂a would pass a measurement test with ρ̂b
as one of the outcomes. Others use the square root of
this quantity as a measure of fidelity [9, 10]. Consider a
postselector designed to produce a pure state when func-
tioning perfectly, with perfect internal components but
an imperfect detector. For such a device it has previ-
ously been shown that the retrodictive conditional prob-
ability that the detector correctly indicates the detector
arm state is a close lower bound to the pure state fidelity
above [11]. This measure, the retrodictive fidelity, is the
most appropriate measure of fidelity when the only useful
output state of the device is the one which it would pro-
duce if it were working perfectly. Its advantages are that

(i) it is simple to calculate because it depends only on
detector arm properties, and not explicitly on the actual
state produced by the device, and (ii) it is the natural
quantity to attempt to maximise to improve the fidelity
in an experiment. Recently the measure has been used
to show that placing an optical amplifier in front of an
imperfect photodetector can greatly improve the fidelity
based on the detector results [13]. The method works
best for postselection based on zero photocounts at the
detector.

In this paper we generalise the results found in [11]
to mixed state fidelities, and apply them to three prac-
tical situations. The paper is organised as follows. In
section 2 we derive a mixed state fidelity, which we have
called the correct output fidelity Fc, that is most appro-
priate for postselection when a particular state is the only
one which will perform the quantum information task re-
quired of the postselected output. In section 3 we apply
this measure to the practical situation of the comparison
of two coherent states selected at random from a limited
set. We show that we can increase the confidence in the
comparison by increasing Fc with preamplified detectors.
Next we apply the measure to a lossy beam splitter, us-
ing two practical examples. Firstly we look at two photon
state generation, and secondly we apply the measure to
the nonlinear sign-shift gate, which uses two such beam
splitters. Finally we summarise our results and conclude.

II. MIXED STATE FIDELITY FOR IMPERFECT

POSTSELECTORS

In this section we derive the correct output fidelity
for a postselecting device which is required to produce
a particular state. The calculation is a generalisation to
mixed states of the results which appear in [11] for pure
state postselectors. The postselector is here assumed to
be imperfect even if the detection on which it is based is
perfect.

A typical postselector (Fig. 1) has at least two output
arms, the joint output state of which will be entangled.
Therefore measuring the state in one arm can collapse
the state in the other arm. Typically in optics the mea-
surement device will be a photodetector, and the mea-
surement will be in the photon number state basis. This
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situation allows the engineering of almost any finite su-
perposition of number states at the output even if the
inputs to the device are infinite superpositions of num-
ber states [12]. Unfortunately the optical components
which make up the postselector, and the detectors, will
be imperfect, and so the device will not produce the post-
selected states advertised by the detection results.

A. Fidelity for perfect detection

The joint output state of the two arms of the posts-
elector is ρ̂12. Suppose that the (perfect at this stage)
detector in arm 2 has a set of orthogonal measurement
results π̂m

2 (corresponding, for example, to numbers of
photocounts in a photodetector). If the result m is ob-
tained this corresponds to measuring arm 2 to have been
in the state ρ̂m2 = π̂m

2 /Trπ̂m
2 . This measured state pro-

vides a valid description of the arm 2 state in retrodic-
tive quantum theory, in which the measured state evolves
backwards in time [14]. When the result m is obtained
the device produces the arm 1 state

ρ̂m1 =
Tr2 (ρ̂12π̂

m
2 )

Tr12 (ρ̂12π̂m
2 )

. (1)

As the detector is insensitive to any off-diagonal elements
in the detection basis we can rewrite the mode 2 state
ρ̂2 = Tr1ρ̂12 as

Λ̂2 =
∑

m

pmρ̂m2 , (2)

where pm is the probability of obtaining detection result
m for a perfect detector, or loosely, the prior probability
that the arm 2 state is ρ̂m2 . Then Eq. (1) becomes

ρ̂m1 =
Tr2 (ρ̂12π̂

m
2 )

Tr2

(

Λ̂2π̂m
2

) . (3)

When the particular result n is obtained at the detec-
tor we assume that the postselector has worked, and so
the state ρ̂n1 is produced by the device. The postselec-
tor is assumed to be imperfect even when the detection
is perfect; it does not produce the exact required state.
Suppose that the arm 1 state that is required is the cor-
rect state ρ̂c. If both ρ̂n1 and ρ̂c are mixed then we can
use the general form of the fidelity [8]

F =

{

Tr

[

(

ρ̂1/2c ρ̂n1 ρ̂
1/2
c

)1/2
]}2

. (4)

We can write ρ̂n1 as follows

ρ̂n1 = Pmaxρ̂c + γ̂, (5)

where Pmax is the maximum fraction of ρ̂c that can be
‘made’ from ρ̂n1 , and γ̂ is the remainder, with positive
diagonal elements in any basis [29]. In optics such a de-
composition will normally be possible for pairs of states

which are finite (pure or mixed) sums of number states.
For continuous variable schemes, where the basis states
are coherent or squeezed such decompositions may not
always be possible due to the fact that the number state
decompositions contain an infinity of terms. We can de-
rive a lower bound on the fidelity F , the correct output
fidelity Fc by substituting only the first term in Eq. (5)
into Eq. (4)

Fc = Pmax. (6)

Although this is a lower bound on F , when only the cor-
rect state ρ̂c performs the appropriate quantum informa-
tion task at the output, Fc and not F is the appropriate
measure of fidelity. Note that Fc is not the probability
of passing a measurement test, but is in a loose sense the
probability that the output state “is” ρ̂c.

B. Imperfect detection

Here we follow the method introduced in [11] to include
the effects of imperfect detection. In this case obtaining
the measurement result n does not correspond perfectly
to the probability operator π̂n

2 . Instead it corresponds to
a mixture of all of the possible π̂m

2 [15], given by

π̂′n
2 = Pp(n|n)π̂n

2 +
∑

m 6=n

Pp(n|m)π̂m
2 (7)

where Pp(m|n) is the predictive conditional probability
that state ρ̂n2 gives result m at the detector [11]. The
state produced by the postselector is then found from
Eqs. (1) and (2) to be

ρ̂′n1 =
Tr2 (ρ̂12π̂

′n
2 )

Tr2

(

Λ̂2π̂′n
2

) = P r(n|n)ρ̂n1 +
∑

m 6=n

P r(m|n)ρ̂m1 , (8)

where Bayes’ theorem has been used to write the result
in terms of the retrodictive conditional probabilities that
particular states were present in the measurement arm
given the detection result n.
The density operators which appear in the second term

of Eq. (8) are those which would have been produced
by the device if the detector had been perfect, and a
result other than n had been obtained. Usually these
will have small overlap with the required state. In any
case P r(n|n) ≈ 1 for a sufficiently good detector and
P r(m 6= n|n) ≈ 0. Thus the second term in Eq. (8) is
small, and we neglect it from here on. In calculating the
fidelity, instead of ρ̂n1 we use the first term in ρ̂′n1 , and
find that the correct output fidelity is

Fc = PmaxP r(n|n). (9)

Fc depends on two factors. The first is output state spe-
cific, and the second depends explicitly only on detector
arm properties. The second factor has been dubbed the
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retrodictive fidelity [11]. It has been recently used as a fi-
delity quantifying the conditional preparation of number
states [16]. Each can be calculated independently from
simple properties of both the device for perfect detection
and the imperfect detector. This makes the correct out-
put fidelity much easier to calculate than Eq. (4) in many
cases. It also makes clear how improving the postselector
increases the fidelity. Either the postselecting system can
be improved, by for example using better components, or
the confidence in the detection can be improved [17].

III. COMPARISON OF COHERENT STATES

Recently a quantum key distribution protocol has been
proposed [18] for sending a key to more than one recip-
ient. The protocol relies on the comparison of coherent
states chosen at random from a finite set. If the coherent
states passed to each recipient are equal, this means that
each recipient receives the same key bit. The comparison
offers some protection against either the key sender or the
recipients deliberately corrupting the key, and against
eavesdropping. In order to determine if two coherent
states are identical a test must be passed. The simple test
devised in [18] is that if equal coherent states form the in-
puts to a 50/50 asymmetric beam splitter from separate
arms then one of the outputs will be in a vacuum state:
no photocounts can be recorded there. However, when
different coherent states are input there will be a non-
zero coherent state in the detector arm, and photocounts
can be recorded. The advantage of using coherent states
is that they can be compared almost non-invasively. If
the measurement arm state is the vacuum state we can
re-obtain the initial states from the other arm simply by
passing the unmeasured output through a further 50/50
beam splitter.
In order to compare the two coherent states to deter-

mine if they are identical they are sent through a beam
splitter as in Fig˙ 2. The transformation for a coherent
state passing through a beam splitter is straightforward
[19], and for two arbitrary coherent states, |α〉 and |β〉,
falling on an asymmetric beam splitter with a reflection
phase change of π from one arm it is

|α〉〈α| ⊗ |β〉〈β| → |tα+ rβ〉〈tα+ rβ| ⊗ |tβ− rα〉〈tβ − rα|
(10)

Suppose that in each input arm a choice of one of the
two coherent states |α〉 and |−α〉 is made randomly. Then
the a priori density operator in each arm is the mixture
indicated in Fig. (2). The beam splitter transmission

and reflection coefficients are 1/
√
2, with a phase change

of π on reflection from arm 2. The output state is then

ρ̂12 =
1

4

[(

|
√
2α〉1〈

√
2α|+ | −

√
2α〉1〈−

√
2α|

)

⊗ |0〉2〈0|

+ |0〉1〈0| ⊗
(

| −
√
2α〉2〈−

√
2α|+ |

√
2α〉2〈

√
2α|

)]

.

(11)

FIG. 2: Beam splitter with coherent state inputs. There is a
phase change of π on reflection from arm 2.

If we place a photodetector in arm 2 we can view the
device as a mixed-state postselector, which postselects
on the basis of recording no counts at the detector. If
the input states are identical then the vacuum state is
produced in arm 2 and the arm 1 state is the mixed state

ρ̂1 =
1

2

(

|
√
2α〉1〈

√
2α|+ | −

√
2α〉1〈−

√
2α|

)

. (12)

This state forms the correct output state ρ̂c. However, if
the two input states are different then the arm 2 output
state is

ρ̂2 =
1

2

(

|
√
2α〉2〈

√
2α|+ | −

√
2α〉2〈−

√
2α|

)

, (13)

and the arm 1 output is the vacuum. The nonorthogo-
nality of the coherent and vacuum states means that if
no counts are recorded in arm 2 it is possible that the
arm 2 state is the coherent state mixture above. Thus
the postselector is not perfect, even if the detector is.
When no counts are recorded in arm 2 the measure-

ment operator is π̂0
2 = |0〉2〈0| and we now have the state

in output arm 1,

ρ̂n=0
1 =

1

2
(

1 + e−2|α|2
)

[

|
√
2α〉〈

√
2α|

+ | −
√
2α〉〈−

√
2α|+ 2e−2|α|2 |0〉〈0|

]

. (14)

We can use the fidelity of this produced state in relation
to the correct state given by Eq. (12) as a measure of
the quality of the comparison. We first consider the cor-
rect output fidelity Fc leaving comparison with F in this
system to later. We can can write (14) as,

ρ̂n=0
1 = Pmaxρ̂c + γ̂ (15)

where Pmax = 1/(1 + e−2|α|2), ρ̂c =
1
2 [|

√
2α〉〈

√
2α|+

|−
√
2α〉〈−

√
2α|] and γ̂ = |0〉〈0|e−2|α|2/(1+e−2|α|2). The
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correct output fidelity is then

Fc = Pmax =
1

1 + e−2|α|2
. (16)

This quantity sets a limit on the distinguishability of the
two input coherent states given no counts. It tends to
unity for large values of |α|, in line with our expectation,
as the coherent states become more orthogonal.

A. Imperfect detection and improving the

comparison

Imperfect photodetection will degrade the fidelity fur-
ther. A photodetector with a poor quantum efficiency
will have an increased probability of a readout of zero
photocounts, as sometimes when there is one photon
‘present’ in the measurement arm it will be registered
as zero counts. Then the state produced by the device
will be the incorrect one. In the comparison of coherent
states the effect of this is that the comparison test will be
passed more often than it should be. Reduced detector
efficiency lowers the confidence in the comparison. For
this reason discarding a correct state (a false negative er-
ror) is not as damaging to the key distribution protocol
as accepting an incorrect state (a false positive error).
One method which helps to distinguish between the

vacuum state and other number states when we have a
lossy photodetector is to place an amplifier in front of
the photodetector [13]. Noiseless amplification is pos-
sible classically, but in quantum physics the process is
accompanied by the addition of extra photons not as-
sociated with the amplified input [22]. Despite this, it
has been shown that for quantum systems amplification
and attenuation are inverse processes [20, 21], contrary
to usual belief in quantum optics. In order to model this
situation we modify our measurement operator to include
the effects of non-unit efficiency detection, which is equiv-
alent to placing an attenuator in front of a perfect detec-
tor [19, 23], and amplification. Our perfect measurement
operator, π̂0 now becomes,

π̂0′ =
∞
∑

n=0

(1− η)n

Gn+1

n
∑

m=0

(

n
m

)

(G− 1)n−mπ̂m (17)

where η is the quantum efficiency of the detector, the
probability that the detector measures an individual pho-
ton that enters, G is the gain of the amplifier and π̂n is

the projector onto the nth number state. We assume that
the amplifier is as good as is allowed by quantum theory,
adding the minimum average number of noise photons.
The state in output arm 1, when we measure no photo-
counts, is now given by

ρ̂n=0′

1 =
Tr2[ρ̂12π̂

0′ ]

Tr2[Λ̂2π̂0′ ]
. (18)

From this and Eq. 8, P r(0|0), the retrodictive conditional
probability is expressible in terms of a quotient of series

which can be summed to give

P r(0|0) = 1 + e−2|α|2

1 + e−2|α|2{ηG/[1−η(G−1)]}
. (19)

The correct output fidelity, Fc, is then given by the prod-
uct of Eqs. (19) and (16),

Fc = PmaxP r(0|0) = 1

1 + e−2|α|2{ηG/[1−η(G−1)]}
, (20)

which we have plotted in Fig. (3) for four different values
of η and for |α| = 1. It can be seen immediately from the
graph that an amplifier will improve the fidelity of the
postselecting device for a lossy detector. This method
gives no improvement for a perfect detector, as expected.

1 2 4 6 8 10
0.6

0.7

0.8

0.9

G
F

C

FIG. 3: Fidelity vs. amplifier gain for four values of detector
quantum efficiency η. From top to bottom the curves are for
η = 1, 0.75, 0.5, 0.25.

B. Photocount probability and information

The downside to this method for improving the fidelity
is that the amplifier reduces the probability of obtaining
zero photocounts. Although when we obtain no counts
we can be more certain that the vacuum state was present
in the measurement arm, we measure this less often, as
an amplifier adds noise photons to the system. This can
be seen in Fig. (4), which shows the probability of no
counts being measured by a lossy detector for the same
four values of η.
One concern in transmitting quantum states is that the

information carried in those states should not approach
the classical limit, because then an eavesdropper could
intercept the key and copy it. A transmitted coherent
state approaches this limit when its amplitude, |α|, be-
comes too large. Although it increases the confidence in
the detection results amplification should not increase the
information present. The fact that the detection proba-
bility decreases bears this out. A more quantitative check
can be performed by noting that the accessible informa-
tion contained in a quantum state has an upper bound
given by the quantity [3]

χ = S(ρ̂)−
∑

i

piρ̂i (21)
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1 2 4 6 8 10
0

0.2

0.4

0.6

0.8

G

P
(0

)

FIG. 4: Probability of recording zero photocounts vs. Am-
plifier gain. From top to bottom the curves are for η =
0.25, 0.5, 0.75, 1.

Where ρ̂ =
∑

i piρ̂i and S(ρ̂) is the Von Neumann en-
tropy of that quantum state. We compare in Fig. (5) the
information held in the quantum state

ρ̂ =
1

2
|0〉〈0|+ 1

4
(|α〉〈α| + | − α〉〈−α|) (22)

before and after it has been amplified and attenuated.
We examine this state in particular as it is of the same
form as the state transmitted along the detector arm
in our postselecting device shown in Fig. (2). In Fig.
(5) the top line is the information contained in the state
without amplification, the middle line is attenuation of
the state only and the bottom line is the same state af-
ter passing through an amplifier and attenuator. From
the graph is can be seen that passing the quantum state
through either an amplifier, an attenuator or both de-
creases the accessible information in the quantum state.
This is expected as the actions of the amplifier and the
attenuator reduce the coherence in the quantum state
and therefore decrease the possible information that can
be carried. It can be also be seen that the accessible
information tends to the classical limit as the coherent
state magnitude tends to infinity.
Although the decrease in accessible information is sig-

nificant even for modest gain this is not such a problem.
In a quantum communication system confidence in the
result is the most important criterion. Provided that
there is not too much excess amplifier noise the correct
output fidelity, and hence the confidence will always be
increased by amplification. The effect of detector dark
counts is more subtle, and can either increase or decrease
the confidence.

C. Comparison with standard mixed state fidelity

The correct output fidelity will always be a lower
bound to the standard mixed state fidelity. How much
lower it is depends on the overlap of the discarded por-
tions of the output with the desired output state. These
portions will include contributions from all of the terms in

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

|α|

χ

FIG. 5: Accessible information in the quantum state vs. co-
herent amplitude. The top, full, line is the accessible infor-
mation contained in a mixture of 3 states: |α〉, | − α〉 and
the vacuum state. The middle, dotted line is the information
contained in the state after attenuation only (η = 0.9). The
lower line is for the same state after being passed through an
amplifier (G=1.5) and attenuator(η = 0.9).

Eq. (8), not simply the first. For this reason the standard
mixed state fidelity is more complicated to calculate. Fig.
(6) compares the correct output fidelity with fidelity de-
fined by Eqs. (4), (12) and (18), as a function of detec-
tor quantum efficiency, for the coherent state comparison
system. Varying η in effect varies the mixedness of the
output state produced by the postselector. The correct

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

η

F
id

el
ity

FIG. 6: Correct output fidelity (solid) and standard mixed
state fidelity (dashed) as a function of detector quantum effi-
ciency. The horizontal dotted line corresponds to Pmax

output fidelity is significantly lower, and is bounded by
Pmax. The fidelity of Eq. (4) is above this value for suf-
ficiently good detectors. The reason is the inclusion in it
of terms corresponding to two effects. Firstly it includes
the effect of the vacuum component of the coherent state
in the detector arm, which corresponds to incorrect func-
tioning of the device. Secondly it should be emphasised
that for perfect detectors any nonzero number of counts
in the detector arm corresponds to a coherent state, and
not the vacuum state, being present in that arm. If the
detector is lossy, sometimes it will record no counts even
though it ought to have recorded some. The inclusion of
terms corresponding to these two situations renders the
standard mixed state fidelity insecure here.
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IV. LOSSY BEAM SPLITTER

A. Two-photon state generation

A second example shows the applicability of the con-
cept to another simple system. It is well-known that
when two single photons interact at a 50/50 beam split-
ter the phenomenon known as two-photon interference
causes them to leave by the same output port [19, 24, 25].
The effect is the basis of gate operations in linear opti-
cal quantum computing [1, 2]. If the beam splitter is
symmetric the output state is

ρ̂12 =
1

2
[|2〉1〈2||0〉2〈0|+ |0〉1〈0||2〉2〈2|] (23)

If the detector in arm 2 is perfect and no counts are
recorded we know that two photons left in arm 1. Thus
we can regard such a device as a two-photon state gen-
erator.
However if we have a lossy beam splitter which satisfies

|t|2+ |r|2 < 1 the output will contain other states such as
|1〉1|0〉2 and |0〉1|0〉2 that also have a vacuum component
in the detector arm, but do not produce the correct state
in the other arm. The probabilities of producing the
relevant states from this beam splitter are, from [26, 27],

p20 = p02 = 2|t|2|r|2
p10 = p01 = (|t|2 + |r|2)(1− |t|2 − |r|2)− (tr∗ + rt∗)2

p00 = (1− |t|2 − |r|2)2 + (tr∗ + rt∗)2 (24)

where pnm is the a priori probability that the beam split-
ter produces the state |n〉1|m〉2〈m|2〈n|1, which depends
on both the magnitude and phase of t and r. When we
measure zero photocounts in one arm the state in the
other arm is,

ρ̂1 =
p20|2〉〈2|+ p10|1〉〈1|+ p00|0〉〈0|

p20 + p10 + p00
= Pmaxρ̂c + γ̂

(25)
Given a perfect detector, such that PR(n|n) = 1 ∀n we
can equate Pmax with the correct output fidelity,

Fc = Pmax =
p20

p20 + p10 + p00
(26)

Even though the state produced by the lossless beam
splitter is pure, this makes no difference to the form of
the correct output fidelity. Eq. (26) is plotted in Fig. (7)
where we have assumed that |t| = |r|. This shows that
the fidelity tends to unity as the beam splitter approaches
50/50. There is some freedom in the phase difference be-
tween reflection and transmission coefficients for a lossy
beam splitter, ranging from zero for a perfect 50/50 to
a 2π range for a 25/25 or less, although, as can be seen
by comparing the expressions for p10 and p00, the phase
dependent terms in the denominator in Eq. (26) cancel.
The general results in the previous section relating to im-
perfect detection also apply here. There is a reduction
in fidelity because of non-unit quantum efficiency, which
can be offset by preamplification, as has already been
shown in this system [13].

0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

|t|

F
C

FIG. 7: Correct output fidelity for a two-photon generator
with loss in the beam splitter vs. transmission coefficient of
the beam splitter ( |t| = |r|).

B. Nonlinear sign-shift gate

For the quantum optical gates which have been pro-
posed as processing elements in quantum computers, gate
outputs which have the correct states in the detector
arms, but do not produce the correct state in the output
arms can cause gate errors or project the system out of
the computational space. This is a serious problem when
only the perfect gate outout state performs the compu-
tational task. Then overlap-based fidelities will overesti-
mate the gate fidelity [11]. A simple example of this is
the nonlinear sign shift gate (see section V in [28]) shown
in Fig. (8). This gate makes the state transformation

α|0〉+ β|1〉+ γ|2〉 → α|0〉+ β|1〉 − γ|2〉, (27)

and succeeds with probability |r2|2 =
(

3−
√
2
)

/7 ≈
.2265, where r2 is the amplitude reflection coefficient of
the second beam splitter. Two of these gates can be com-
bined in parallel to form a two-qubit control-NOT gate
[28]. The fidelity of this gate was analysed in [11] for a

FIG. 8: Nonlinear sign-shift gate [28]. The beam splitter
reflectivities are |r1|2 = 5− 3

√
2 (left) and |r2|2 = (3−

√
2)/7

with phase changes of π on reflection from the light grey sides.

lossy detector but perfect beam splitters, and it was indi-
cated that the lower, retrodictive fidelity provides a good
test of accurate device operation. If the beam splitters
which make up the gate itself are lossy then the retrod-
ictive fidelity becomes the correct output fidelity due to
the inclusion of the extra factor Pmax < 1.
If we assume that the transmission and reflection coef-

ficients for both beam splitters are lowered by the same
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factor K, so that |t1,2|2 + |r1,2|2 = K < 1, and that
there is no phase change associated with the loss, the
factor Pmax will be proportional to the loss of the two-
photon component of the transformed state(Eq. (27)),
as this will show the largest decrease. This component
depends on the factor r21

(

r22 − 2t22
)

, which is -1 for the
device formed from lossless beam splitters. Thus this
factor is decreased by K2, and so Pmax = K4 - a fairly
drastic reduction in fidelity even for relatively low loss.

V. CONCLUSIONS

In this paper we have introduced a measure of fi-
delity appropriate for postselecting devices which pro-
duce mixed states, generalising earlier pure state work
[11]. For situations in which only a particular output
state is useful the measure is especially appropriate, as
it will normally be the probability that the device pro-
duces this useful output state. For this reason we have
called this measure the correct output fidelity Fc. This
is in contrast to more the normally used fidelity, Eq. (4),
which corresponds to the passing of a measurement test
if one of the states is pure. Fc forms a lower bound on
this quantity.
The correct output fidelity factorises into two parts,

one of which depends only on the postselector design and
components. These directly affect the output state pro-
duced when the detector functions perfectly. The second
factor is based on the correct functioning of the detector,
and is the probability that the detector correctly indi-
cates the detector arm state. These two factors are the
quantities that should be maximised in any postselect-
ing device, and they will normally be simply expressible
in terms of experimental quantities. This renders the
correct output fidelity more simple to calculate than the
normally used mixed state fidelity.
The results are illustrated using practical examples.

In each case the output of the postselector is only use-
ful when the correct state is output by the device, and so
the correct output fidelity is an appropriate measure. For

the comparison of coherent states the correct mixture of
coherent states in the output arm occurs when two identi-
cal coherent states are chosen as inputs. The signature of
this is the production of the vacuum state in the measure-
ment arm. Poor detection efficiency increases the prob-
ability of obtaining no counts at a photodetector placed
in this arm, and thus increases the probability that the
state is incorrectly identified as the vacuum. One simple
way around this is to preamplify the state input into the
photodetector, which, at the cost of decreasing both the
probability of obtaining no counts and the accessible in-
formation, increases the confidence in this result when it
is obtained.
The second example is that of two photon state gen-

eration using a lossy beam splitter. For a perfect 50/50
beam splitter in this case the output state would be pure,
but the correct output fidelity measure still applies. The
beam splitter is the basic element in all LOQC schemes,
and if it is lossy this naturally impacts on gate fidelity.
Our final example, in which the beam splitters which
form a nonlinear sign-shift gate are lossy, shows that the
impact of the loss on the fidelity of such systems is con-
siderable.
Until reliable push-button state makers become avail-

able postselection will be a major tool in quantum
physics, and especially in optical implementations of
quantum information systems. The standard measures of
fidelity, for all their mathematical symmetry, are some-
what maladroit for such asymmetric circumstances, and
can overestimate the usefulness of the states produced
by postselectors. A fidelity measure such as the one de-
scribed here overcomes this problem, providing a safe
lower bound based on the simple criterion of whether or
not the postselecting device performs the task that is re-
quired of it.
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