
ar
X

iv
:0

71
1.

40
15

v1
  [

m
at

h-
ph

] 
 2

6 
N

ov
 2

00
7

Twisted spin Sutherland models from quantum

Hamiltonian reduction
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Abstract

Recent general results on Hamiltonian reductions under polar group actions are applied
to study some reductions of the free particle governed by the Laplace-Beltrami operator of
a compact, connected, simple Lie group. The reduced systems associated with arbitrary
finite dimensional irreducible representations of the group by using the symmetry induced
by twisted conjugations are described in detail. These systems generically yield integrable
Sutherland type many-body models with spin, which are called twisted spin Sutherland
models if the underlying twisted conjugations are built on non-trivial Dynkin diagram
automorphisms. The spectra of these models can be calculated, in principle, by solving
certain Clebsch-Gordan problems, and the result is presented for the models associated
with the symmetric tensorial powers of the defining representation of SU(N).
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1 Introduction

The investigation of one-dimensional integrable many-body systems initiated by Calogero [1],
Sutherland [2] and others is still an actively pursued field of mathematical physics. These models
possess interesting physical applications and are closely related to harmonic analysis and to the
theory of special functions. See e.g. the reviews in [3, 4, 5, 6, 7, 8, 9, 10].

The aim of this paper is to apply the quantum Hamiltonian reduction approach developed
in [11, 12] under certain general assumptions to construct and analyze new examples of spin
Sutherland type models, where by ‘Sutherland type’ we mean that the interaction potential
involves the function 1/ sin2 x in association with a root system. A first impression about our
models may be obtained by viewing the special cases in equations (5.19) and (5.20) below, where
the operators in the numerators act on internal ‘spin’ degrees of freedom and the presence of
1/ cos2 x in the interaction indicates the twisted character of these Sutherland type models.
These examples illustrate the statement [11] that quantum Hamiltonian reductions of the free
particle on a Lie group or on a symmetric space under polar actions of compact symmetry groups
lead to Calogero-Sutherland type models with internal degrees of freedom in general.

A polar action of a compact Lie group, G, is an isometric action on a complete Riemannian
manifold, Y , which permits the introduction of adapted polar coordinates as defined in [13]
systematizing classical examples. In the cases of our interest the radial coordinates run over a
suitable Abelian Lie group, whose Lie algebra carries an associated root system. The quantum
Hamiltonian reduction amounts to restricting the Laplace-Beltrami operator, ∆Y , of Y to vector
valued generalized spherical functions, which are wave functions on Y belonging to some fixed
representation type under the symmetry group G. If this representation is the trivial one, then
the reduction yields the radial part of the Laplace-Beltrami operator.

It was a pioneering observation of Olshanetsky and Perelomov [14] that the radial part of the
Laplace-Beltrami operator of any Riemannian symmetric space provides the Hamiltonian of a
Calogero-Sutherland type model at special coupling constants. One may also notice by inspecting
examples that if one considers spherical functions corresponding to an arbitrary representation
of the symmetry group, then the angular part of the Laplace-Beltrami operator contributes an
interaction term of spin Calogero-Sutherland type for general families of polar actions (e.g., for
the so-called Hermann actions recalled in Chapter 3). We say that ‘spin’ degrees of freedom
are present to express the fact that the reduced wave functions are vector valued in all but
some exceptional cases. It is also important to note that the reduced wave functions are actually
scalar valued for certain non-trivial representation types under some symmetry groups. This was
pointed out by Etingof, Frenkel and Kirillov in [15], where they used this observation to derive
the standard Sutherland model with arbitrary integer coupling constants from Hamiltonian
reduction of the free particle on the group manifold SU(N).

In standard harmonic analysis [16] the spherical functions and the spectrum of the Laplace-
Beltrami operator are among the central objects of interest. As discussed above, it is well-known
that several powerful results of harmonic analysis can be translated into statements about many-
body models with spin defined by Hamiltonian reduction. However, it appears that this idea has
not yet been systematically exploited. In fact, since the standard harmonic analysis approach
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has the limitation of giving spinless models only at special coupling constants, the attention
was mainly focused on the more algebraic methods that are capable to overcome this limitation,
such as the techniques relying on Dunkl operators and Hecke algebras (reviewed in [4, 5, 7, 10]).
Our opinion is that although the standard harmonic analysis approach gives indeed only a
limited class of spinless many-body models, it would be worth to develop this point of view
systematically, partly since the resulting models with spin are interesting, and partly since it is
still not clear what is the full set of spinless models that can be described in this framework.
For recent studies concerning the spinless models, see [17, 18].

The program to develop the classical and quantum Hamiltonian reduction approach to spin
Calogero-Sutherland type models in general terms and to explore the set of systems that it
covers was advanced in the recent papers [19, 20, 21, 11]. In this paper we deal with certain
novel examples at the quantum mechanical level, which we call twisted spin Sutherland models
since they result from quantum Hamiltonian reduction based on the so-called twisted conjugation
action of a compact simple Lie group on itself. The definition of this polar action can be seen
in equation (3.12) below, where Θ is an automorphism of the compact symmetry group G. It
generalizes the ordinary conjugation action, which is recovered if Θ is the identity automorphism.
The geometry of twisted conjugations has been recently investigated in [22, 23, 24], and we shall
use some results of these references. Our work builds also on [20], where we have described the
classical mechanical counterparts of the twisted spin Sutherland models.

The content of the present paper and our main results can be outlined as follows. In Chapter
2 we review the quantum Hamiltonian reduction of the free particle focusing mainly on the
description of the reduced systems obtained with the aid of polar actions of compact Lie groups.
This chapter is based on our earlier work [11, 12] (see also [25]). Chapter 3 contains the derivation
of the spin Sutherland models associated with involutive Dynkin diagram automorphisms of the
simple Lie algebras. The models are displayed in Proposition 3.1, which is a new result. The
twisted spin Sutherland models correspond to non-trivial automorphisms, but the previously
studied case (e.g. [15]) of the trivial automorphism is also covered. Chapter 4 is devoted to
explaining how the diagonalization of the spin Sutherland Hamiltonians of Proposition 3.1 can
be performed in principle by solving certain Clebsch-Gordan problems in the representation
theory of the underlying symmetry group G. The construction of the models involves choosing
a representation of G, and in Chapter 5 we analyze the examples associated with the symmetric
tensorial powers of the defining representation of G = SU(N). We first present these models, in
Propositions 5.1 and 5.2, by using the realization of the symmetric tensors in terms ofN harmonic
oscillators. We then determine the spectrum of the Hamiltonian in these cases by applying some
standard results (the so-called Pieri formulae) of representation theory. The spectra of these
twisted spin Sutherland Hamiltonians are given by Theorem 5.3, which is one of our main
results. This generalizes the well-known formula (5.33) of the spectrum of the standard spinless
Sutherland model (5.30), here recovered from Hamiltonian reduction, at integer couplings, as a
warm-up exercise [15]. Finally, our conclusions and comments on open problems are collected
in Chapter 6, and the three appendices contain some technical details.

In what follows we make an effort to present the analysis in a self-contained manner, as an
application of a general framework that can be used in future works as well.
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2 Some facts about quantum Hamiltonian reduction

We here summarize basic facts about quantum Hamiltonian reductions of free particles on com-
plete Riemannian manifolds under isometric actions of compact Lie groups. The free Hamiltonian
will be taken to be the scalar Laplace-Beltrami operator, and we shall assume the existence of
generalized polar coordinates adapted to the group action. No new results are contained in this
chapter, which mainly serves to fix notations for the subsequent developments. Proofs and more
details can be found in [11, 12, 25].

2.1 Definitions

Suppose that a compact Lie group G acts on a complete, connected, smooth Riemannian mani-
fold (Y, η) in an isometric manner. This means that we are given a smooth left-action

φ : G× Y → Y, (g, y) 7→ φ(g, y) = φg(y) = g.y (2.1)

of G on Y satisfying φ∗
gη = η for every g ∈ G. Then the measure µY on Y induced by the metric

η is G-invariant, and the natural action of G on the Hilbert space L2(Y, dµY ) gives rise to a
continuous unitary representation of G,

U : G→ U(L2(Y, dµY )), g 7→ U(g). (2.2)

Obviously, this unitary representation of G commutes with the restriction, ∆0
Y , of the Laplace-

Beltrami operator, ∆Y , to the space of smooth complex functions of compact support, C∞
c (Y ),

∆0
Y U(g)f = U(g)∆0

Y f ∀g ∈ G, ∀f ∈ C∞
c (Y ). (2.3)

The Laplace-Beltrami operator with domain C∞
c (Y ),

∆0
Y := ∆Y |C∞

c (Y ) : C
∞
c (Y ) → C∞

c (Y ), (2.4)

is an essentially self-adjoint operator on L2(Y, dµY ), i.e., its closure ∆̄0
Y is self-adjoint (see

e.g. [26]). As a result, the pair (L2(Y, dµY ),−1
2
∆̄0

Y ) is a quantum mechanical system with
symmetry group G, which is a quantum mechanical analogue of the free classical point mass
moving along geodesics on the Riemannian manifold (Y, η).

Let ρ : G → U(Vρ) be a continuous unitary irreducible representation (finite dimensional
‘irrep’) of G, and denote the corresponding complex conjugate representation by (ρ∗, Vρ∗). It is
not difficult to exhibit the following unitary equivalence of G-representations:

L2(Y, dµY ) ∼= ⊕ρ L
2(Y, Vρ, dµY )

G ⊗ Vρ∗ (2.5)

where the sum is over the pairwise inequivalent irreps and L2(Y, Vρ, dµY )
G is the space of

G-singlets in the Hilbert space of Vρ-valued square integrable functions on Y . (Of course,
L2(Y, Vρ, dµY ) ∼= L2(Y, dµY ) ⊗ Vρ as a representation space of G, and its scalar product uses
also the scalar product on Vρ.) In terms of the decomposition (2.5) of L2(Y, dµY ), the action of
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G is non-trivial only on the factors Vρ∗ , and the action of ∆̄0
Y is non-trivial only on the ‘multi-

plicity spaces’ L2(Y, Vρ, dµY )
G. By keeping only these multiplicity spaces, one obtains a reduced

quantum system for every G irrep (ρ, Vρ).

To be more explicit, the reduced Hilbert space consists of the Vρ-valued G-equivariant square-
integrable functions on Y ,

L2(Y, Vρ, dµY )
G := {f | f ∈ L2(Y, Vρ, dµY ), f ◦ φg = ρ(g) ◦ f ∀g ∈ G}. (2.6)

The Laplace-Beltrami operator acts naturally on the space of the Vρ-valuedG-equivariant smooth
functions of compact support, simply componentwise. This gives the operator

∆ρ : C
∞
c (Y, Vρ)

G → C∞
c (Y, Vρ)

G, (2.7)

which is essentially self-adjoint on the Hilbert space L2(Y, Vρ, dµY )
G. The closure of ∆ρ is the

Hamiltonian of the reduced quantum system,

(L2(Y, Vρ, dµY )
G,−1

2
∆̄ρ), (2.8)

that arises from the free particle in association with the irrep (ρ, Vρ).

Although the reduced quantum system is already completely fixed by (2.8), it is desirable
(e.g., for the physical interpretation) to realize the reduced state-space L2(Y, Vρ, dµY )

G as a
Hilbert space of appropriate functions on the reduced configuration space Yred := Y/G, and the
reduced Hamiltonian operator as a differential operator over this space. Here one encounters a
difficulty since the orbit space Y/G is not a smooth manifold but a stratified space in general,
i.e., a disjoint union of countably many smooth Riemannian manifolds. However, restricting
to the generic points forming the submanifold Y̌ ⊂ Y of principal orbit type, one obtains a
smooth fiber bundle π : Y̌ → Y̌ /G, and the smooth part of the reduced configuration space,
Y̌red := Y̌ /G, can be endowed with a reduced Riemannian metric, ηred, in such a way that
π becomes a Riemannian submersion1. The crucial facts are that Y̌ is dense and open in Y
and its complement is of zero measure. Since the wave functions belonging to the domain of
essential self-adjointness C∞

c (Y, Vρ)
G (2.7) can be recovered from their restriction to Y̌ , the above

mentioned difficulty is only apparent. It is possible to work out a complete characterization of
the reduced systems in terms of the smooth reduced configuration manifold (Y̌red, ηred) in general.
Next we present this under a simplifying assumption that holds in the examples of our interest.

2.2 Characterization of the reduced systems

From now on we assume that G acts on (Y, η) in a polar manner, that is, the action φ (2.1)
admits sections in the sense of Palais and Terng [13]. Recall that a section Σ ⊂ Y is a connected,
closed, regularly embedded smooth submanifold of Y that meets every G-orbit and it does so
orthogonally at every intersection point of Σ with an orbit. By its embedding, Σ inherits a
Riemannian metric ηΣ, which induces a measure µΣ on Σ. For a section Σ, denote by Σ̌ a

1For detailed discussions on the principal orbit type and stratifications, we recommend the references [27, 28].
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connected component of the manifold Σ̂ := Y̌ ∩ Σ. The isotropy subgroups of all elements
of Σ̂ are the same and for a fixed section we define K := Gy for y ∈ Σ̂. The restriction of
π : Y̌ → Y̌ /G onto Σ̌ provides an isometric diffeomorphism between the Riemannian manifolds
(Σ̌, ηΣ̌) and (Y̌red, ηred), and the G-equivariant diffeomorphism

Σ̌× (G/K) ∋ (q, gK) 7→ φg(q) ∈ Y̌ (2.9)

defines a global trivialization of the fiber bundle π : Y̌ → Y̌ /G. We below recall the characteri-
zation of the reduced systems in terms of the reduced configuration space (Σ̌, ηΣ̌)

∼= (Y̌red, ηred).

First, we introduce the C-linear space

Fun(Σ̌, V K
ρ ) := {f ∈ C∞(Σ̌, V K

ρ ) | ∃F ∈ C∞
c (Y, Vρ)

G, f = F|Σ̌ }, (2.10)

where V K
ρ is the subspace of K-invariant vectors in the representation space Vρ. We assume that

dim(V K
ρ ) > 0. As a vector space, Fun(Σ̌, V K

ρ ) is naturally isomorphic to C∞
c (Y, Vρ)

G and can
be equipped with a scalar product induced by this isomorphism. Using also that C∞

c (Y, Vρ)
G is

dense in L2(Y, Vρ, dµY )
G, for the closure of Fun(Σ̌, V K

ρ ) we obtain the Hilbert space isomorphism

Fun(Σ̌, V K
ρ ) ∼= L2(Y, Vρ, dµY )

G.

We also introduce the density function, δ : Σ̌ → (0,∞), as follows. The G-orbit G.q ⊂ Y
through any point q ∈ Σ̌ is an embedded submanifold of Y and by its embedding it inherits a
Riemannian metric, ηG.g. We let

δ(q) := volume of the Riemannian manifold (G.q, ηG.q), (2.11)

where, of course, the volume is understood with respect the measure belonging to ηG.q.

Now let us consider the Lie algebra G := Lie(G) and its subalgebra K := Lie(K). Choose a
G-invariant positive definite scalar product, B, on G, which gives rise to the orthogonal decom-
position

G = K ⊕K⊥. (2.12)

For any ξ ∈ G denote by ξ♯ the corresponding vector field on Y . At each point q ∈ Σ̌, the linear
map

K⊥ ∋ ξ 7→ ξ♯q ∈ TqY (2.13)

is injective and permits to define the ‘inertia operator’ J (q) ∈ GL(K⊥) by requiring

ηq(ξ
♯
q, ζ

♯
q) = B(ξ,J (q)ζ) ∀ξ, ζ ∈ K⊥. (2.14)

Note that J (q) is symmetric and positive definite with respect to the restriction of the scalar
product B to K⊥. In K⊥ we introduce dual bases {Tα} and {T α}, B(T α, Tβ) = δαβ , and we let

bα,β(q) := B(Tα,J (q)Tβ), bα,β(q) := B(T α,J (q)−1T β). (2.15)

The matrix bα,β(q) is the inverse of bα,β(q), and for the density function we have

δ(q) = C
√

| det(bα,β(q))| ∀q ∈ Σ̌, (2.16)
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where C > 0 is some constant.

Finally, for the Lie algebra representation belonging to the unitary representation (ρ, Vρ) of
G, we introduce the notation ρ′ : G → u(Vρ), where u(Vρ) is the Lie algebra of anti-hermitian
operators on Vρ. The following result is then proved in [11] (see also [12]).

Proposition 2.1. Suppose that φ (2.1) is a polar action of the compact Lie group G on the
Riemannian manifold (Y, η) and choose a section Σ for this action. Then, using the notations
introduced above, the reduced system (2.8) associated with a continuous unitary irreducible repre-
sentation (ρ, Vρ) of G can be identified with the pair (L2(Σ̌, V K

ρ , dµΣ̌),−1
2
∆̄red), where the reduced

Laplace-Beltrami operator

∆red := ∆Σ̌ − δ−
1
2∆Σ̌(δ

1
2 ) + bα,βρ′(Tα)ρ

′(Tβ) (2.17)

with domain δ
1
2Fun(Σ̌, V K

ρ ) is essentially self-adjoint on the Hilbert space L2(Σ̌, V K
ρ , dµΣ̌), and

∆̄red denotes its self-adjoint closure.

Remark 2.2. Proposition 2.1 utilizes the identification L2(Y, Vρ, dµY )
G ∼= L2(Σ̌, V K

ρ , δdµΣ̌)

(obtained by restricting the G-equivariant wave functions to Σ̌) as well as the isometry between

L2(Σ̌, V K
ρ , δdµΣ̌) and L

2(Σ̌, V K
ρ , dµΣ̌) defined by multiplying the restricted wave functions by δ

1
2 .

The latter step is natural since the measure µΣ̌ is directly defined by the reduced Riemannian
metric ηΣ̌ that enters also ∆Σ̌.

Remark 2.3. One can view the reduced systems of Proposition 2.1 from an alternative per-
spective that sheds light on a generalization of the well-known Weyl group invariance of the
standard Calogero-Sutherland models. The essential point is that the restriction of the elements
of C∞

c (Y, Vρ)
G to Σ̌ can be implemented in two steps, initially restricting them to Σ̂ = Y̌ ∩Σ. The

wave functions obtained in this first step are equivariant with respect to the residual symmetry
transformations generated by the elements of G that map Σ (or equivalently Σ̂) to itself. More
precisely, since K acts trivially on Σ, these transformations form the factor group

W := NG(Σ)/K, (2.18)

where NG(Σ) contains the Σ-preserving elements of G. It is proved in [13] that W is a finite
group for any polar action. The representation of G on Vρ induces a representation of W on

V K
ρ , and W permutes the connected components of Σ̂ by its action. We now have the following

natural Hilbert space isomorphisms:

L2(Y, Vρ, dµY )
G ∼= L2(Σ̌, V K

ρ , dµΣ̌)
∼= L2(Σ̂, V K

ρ ,
1

|W |dµΣ̂)
W ∼= L2(Σ, V K

ρ ,
1

|W |dµΣ)
W , (2.19)

where the last equality is based on the fact that Σ \ Σ̂ has measure zero. The Hilbert space
L2(Σ̂, V K

ρ , 1
|W |

dµΣ̂)
W carries the Hamiltonian given by the same formula as ∆red (2.17) but using

Σ̂ instead of Σ̌. This operator is essentially self-adjoint on the domain δ
1
2Fun(Σ̂, V K

ρ ), where

δ
1
2 is defined on Σ̂ as in (2.11). The space Fun(Σ̂, V K

ρ ), defined similarly to (2.10), consists of
W -equivariant functions. We shall further elaborate this remark, with full proofs, elsewhere.
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3 Construction of twisted spin Sutherland models

Next we briefly present a general Lie theoretic framework that permits to construct a large
family of spin Sutherland type models. Then we describe some examples (which we call twisted
spin Sutherland models) in detail; the full family will be studied in a future publication.

Take Y to be a compact, connected, semisimple Lie group endowed with a biinvariant Rie-
mannian metric η induced by a multiple of the Killing form. Let G be an arbitrary symmetric
subgroup of the product Lie group Y × Y , that is, G satisfies

(Y × Y )σ0 ⊂ G ⊂ (Y × Y )σ, (3.1)

where σ is an involutive automorphism of Y × Y , (Y × Y )σ denotes the fixed point subgroup of
σ, and (Y × Y )σ0 is the connected component of the identity in (Y × Y )σ. In this general case
the following action (often called ‘Hermann action’)

φ : G× Y → Y, ((a, b), y) 7→ φ(a,b)(y) := ayb−1 (3.2)

of G on Y is known to be hyperpolar, which means that this action is polar in such a way that
the sections are flat in the induced metric. In fact, the sections Σ ⊂ Y are provided by certain
tori of Y associated with Abelian subalgebras of the correct dimension lying in the subspace
(Te(G.e))

⊥ of TeY . These results, and many more on related matters, can be found in [29, 30].

For example, choose an arbitrary automorphism Θ ∈ Aut(Y ) and set

σ(y1, y2) := (Θ−1(y2),Θ(y1)) ∀(y1, y2) ∈ Y × Y. (3.3)

By projection to the second factor, the symmetric subgroup

G := {(Θ−1(g), g) | g ∈ Y } ⊂ Y × Y (3.4)

can be identified with Y , G ∼= Y , and (3.2) then becomes the action of Y on itself by Θ-twisted
conjugations. Indeed, after identifying G with Y , equation (3.2) yields the action whereby g ∈ Y
sends y ∈ Y to Θ−1(g)yg−1, which is ordinary conjugation by g if Θ is the identity. In the most
interesting cases Θ corresponds to a Dynkin diagram symmetry of Y . Some of the resulting
spin Sutherland models have been investigated in our earlier work [20] at the classical level.
After fixing the necessary group theoretical conventions, we describe the quantum mechanical
counterparts of these models in subsection 3.2. For simplicity, in what follows we assume that
the underlying Lie group is simple and simply connected.

3.1 Conventions

Let G be a compact, connected, simply-connected, simple Lie group with fixed maximal torus
T ⊂ G. Set r := dim(T ). Denote by A and H the complexifications of the real Lie algebras
G := Lie(G) and T := Lie(T ). Then A is a complex simple Lie algebra with Cartan subalgebra

8



H, and we choose a polarization Φ = Φ+ ∪ Φ− for the root system Φ of (H,A) and a set of
simple roots {ϕk}rk=1 ⊂ Φ+. We also select root vectors {Xϕ}ϕ∈Φ satisfying

〈Xϕ, X−ϕ〉 = 1 ∀ϕ ∈ Φ+, (3.5)

where 〈 , 〉 : A×A → C is a convenient positive multiple of the Killing form of A. We let

Tϕk
:= [Xϕk

, X−ϕk
] ∈ H, 1 ≤ k ≤ r, (3.6)

and thus we have
T = iHr with Hr := span

R
{Tϕk

| 1 ≤ k ≤ r}. (3.7)

By a suitable choice of the root vectors we may assume that

G = T ⊕
(

⊕ϕ∈Φ+RYϕ
)

⊕
(

⊕ϕ∈Φ+RZϕ

)

, (3.8)

where

Yϕ :=
i√
2
(Xϕ +X−ϕ) and Zϕ :=

1√
2
(Xϕ −X−ϕ) ∀ϕ ∈ Φ+. (3.9)

The bilinear form
B := −〈 , 〉|G×G : G × G → R (3.10)

is a G-invariant positive definite scalar product on G and (3.9) defines an orthonormal set of
vectors with respect to B. We equip G with the biinvariant Riemannian metric η induced by
this scalar product.

Any symmetry θ of the Dynkin diagram of A extends to an automorphism of A by the
requirement

θ(X±ϕk
) = X±θ(ϕk) 1 ≤ k ≤ r. (3.11)

The resulting automorphism θ ∈ Aut(A) preserves the real algebras G and T and gives rise to
an automorphism Θ of the group G, which maps the torus T to itself. Then G acts on itself by
the Θ-twisted conjugations mentioned before. We here designate this action as

IΘ : G×G→ G, (g, y) 7→ IΘg (y) := Θ−1(g)yg−1. (3.12)

A section for this hyperpolar action is furnished [24] by the fixed point subgroup TΘ of Θ in
the maximal torus T . The isotropy subgroup of the elements of principal IΘ orbit type in TΘ is
given by TΘ itself. In the notations used in Proposition 2.1, we have

Σ = TΘ, K = TΘ. (3.13)

Correspondingly, Σ̌ = ŤΘ stands below for a connected component of the set of IΘ-regular
elements in TΘ. Note also that in the fixed point subalgebra T θ of θ in T one can choose a
bounded open domain Ť θ (a generalized Weyl alcove) such that the exponential map restricted
to Ť θ provides a one-to-one parametrization of ŤΘ. Following [24], we explain in Appendix B
that Ť θ can be characterized as the interior of a fundamental domain for the action of a ‘twisted
affine Weyl group’ on T θ. In the above we used that G is not only connected but also simply
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connected, since otherwise TΘ would not be always connected [23, 24], and here we wish to avoid
this complication.

From now on we assume that the automorphism (3.11) is involutive, and denote by A±, G±,
H±, H±

r and T ± the corresponding eigensubspaces of θ with eigenvalues ±1. Then A+ is a
complex simple Lie algebra with Cartan subalgebra H+, and A− is an irreducible module of A+

whose non-zero weights have multiplicity one [31]. Moreover, (T +,G+) is a compact real form
of (H+,A+) with the associated real irreducible module G−. Based on the standard ‘folding
procedure’, detailed for example in [20], one can construct convenient bases for all these spaces
from the above Weyl-Chevalley basis of A. We next display the bases needed later.

Let R be the set of roots of (H+,A+) and let W be the set of non-zero weights for (H+,A−).
We choose root vectors X+

α (α ∈ R) and weight vectors X−
λ (λ ∈ W) normalized by

〈X+
α , X

+
−α〉 = 1 ∀α ∈ R, 〈X−

λ , X
−
−λ〉 = 1 ∀λ ∈ W. (3.14)

Selecting positive roots and weights, R = R+ ∪R− and W = W+ ∪W−, we define

Y +
α :=

i√
2
(X+

α +X+
−α), Z+

α :=
1√
2
(X+

α −X+
−α) ∀α ∈ R+,

Y −
λ :=

i√
2
(X−

λ +X−
−λ), Z−

λ :=
1√
2
(X−

λ −X−
−λ) ∀λ ∈ W+, (3.15)

which form an orthonormal set with respect to the scalar product B on G. By using the folding
procedure to construct the base elements in (3.14), we obtain the orthogonal decompositions

G+ = T +⊕
(

⊕α∈R+RY
+
α

)

⊕
(

⊕α∈R+RZ
+
α

)

, G− = T −⊕
(

⊕λ∈W+RY
−
λ

)

⊕
(

⊕λ∈W+RZ
−
λ

)

. (3.16)

As was shown at the classical level in [20], certain dynamical r-matrices enter in the de-
scription of the spin Sutherland type models resulting from Hamiltonian reduction based on
Θ-twisted conjugations. We recall that the dynamical r-matrix associated with the involutive
automorphism θ is a function Rθ : Ȟ+ → End(A) defined on an open subset Ȟ+ ⊂ H+. Its
‘shifted’ versions, Rθ

± = Rθ ± 1
2
, take particularly simple form, for example,

Rθ
+(h) = Rθ(h) +

1

2
=

{ 1
2

onH,
(

1− θ ◦ e−adh |H⊥

)−1
onH⊥.

(3.17)

Take h := iq ∈ Ť + with some q ∈ H+
r . Then, on the basis vectors (3.15), we have

Rθ(iq)Y +
α =

1

2
cot

(

α(q)

2

)

Z+
α , Rθ(iq)Z+

α = −1

2
cot

(

α(q)

2

)

Y +
α , ∀α ∈ R+,

Rθ(iq)Y −
λ = −1

2
tan

(

λ(q)

2

)

Z−
λ , Rθ(iq)Z−

λ =
1

2
tan

(

λ(q)

2

)

Y −
λ , ∀λ ∈ W+. (3.18)

These r-matrices, which solve the classical dynamical Yang-Baxter equation on H+ [32], appear
in the subsequent equations.
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3.2 The twisted spin Sutherland models

Now we are ready to determine the explicit form of the objects occurring in Proposition 2.1 for
the twisted conjugation action (3.12) based on an involutive diagram automorphism.

Take an arbitrary point eiq ∈ ŤΘ with q ∈ H+
r . At this point, the value of the infinitesimal

generator of the action (3.12) corresponding to ξ ∈ G = TeG is easily seen to be

ξ♯
eiq

= −(dLeiq)e ◦ (1− θ ◦ e−adiq)(ξ), (3.19)

where Lg : y 7→ gy is the left-translation on G by g ∈ G, and we used that θ−1 = θ. On account
of (2.14), to calculate the inertia operator we need ξ♯ only for ξ ∈ K⊥. In our case

K = T +, (3.20)

and comparison with (3.17) shows that the linear isomorphism (2.13) is given by

K⊥ ∋ ξ 7→ ξ♯
eiq

= −(dLeiq)e ◦Rθ
+(iq)

−1(ξ) ∈ TeiqG ∀iq ∈ Ť +. (3.21)

Since for the transpose of Rθ
+(iq) with respect to B we have Rθ

+(iq)
T = −Rθ

−(iq), equation (2.14)
implies the following formula of the inertia operator:

J (eiq) = −(Rθ
+(iq)R

θ
−(iq))

−1 ∀iq ∈ Ť +. (3.22)

After introducing an orthonormal basis {iK−
j } in T −, the set of vectors {iK−

j , Y
+
α , Z

+
α , Y

−
λ , Z

−
λ }

is an orthonormal basis in K⊥, and the action of J (eiq) on these vectors spells as

J (eiq)iK−
j = 4iK−

j ,

J (eiq)Y +
α = 4 sin2

(

α(q)
2

)

Y +
α , J (eiq)Z+

α = 4 sin2
(

α(q)
2

)

Z+
α , (3.23)

J (eiq)Y −
λ = 4 cos2

(

λ(q)
2

)

Y −
λ , J (eiq)Z−

λ = 4 cos2
(

λ(q)
2

)

Z−
λ .

These relations come from (3.18) together with the identity Rθ
+R

θ
− = (Rθ)2 − 1

4
. Since the

matrix of J (eiq) in the above basis is diagonal, it is easy to find its inverse and determinant.
The non-zero entries of the matrix of J (eiq)−1 appear in the list

B(iK−
k ,J (eiq)−1iK−

l ) =
1
4
δk,l,

B(Y +
α ,J (eiq)−1Y +

β ) = 1

4 sin2(α(q)
2 )

δα,β, B(Z+
α ,J (eiq)−1Z+

β ) =
1

4 sin2(α(q)
2 )

δα,β, (3.24)

B(Y −
λ ,J (eiq)−1Y −

µ ) = 1

4 cos2(λ(q)
2 )

δλ,µ, B(Z−
λ ,J (eiq)−1Z−

µ ) =
1

4 cos2(λ(q)
2 )

δλ,µ.

These formulae directly give the third term in the reduced Laplace-Beltrami operator (2.17).

To calculate the second term in (2.17), we first observe from (2.16) and the above that, up
to an irrelevant non-zero multiplicative constant (whose sign depends on the choice of Ť +), the
density function now has the form

δ
1
2 (eiq) =

∏

α∈R+

sin

(

α(q)

2

)

∏

λ∈W+

cos

(

λ(q)

2

)

. (3.25)
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Choosing an orthonormal basis {iK+
j } in T +, we parametrize ŤΘ by the diffeomorphism

Ť + ∋ iq = qkiK+
k 7→ eiq ∈ ŤΘ, (3.26)

where Ť + is an appropriate bounded open domain in T +. In the coordinates {qk} the Laplace-
Beltrami operator ∆ŤΘ is simply2

∆ŤΘ =
∑

k

∂2k , (3.27)

where ∂k := ∂
∂qk

. We then find that in the present case the second term of (2.17) yields just a
constant,

(

δ−
1
2∆ŤΘ(δ

1
2 )
)

(eiq) = −〈̺θ
G ,̺

θ
G〉 (3.28)

with

̺
θ
G :=

1

2

∑

α∈R+

α +
1

2

∑

λ∈W+

λ, (3.29)

generalizing the well-known θ = id case [14, 16]. The derivation of (3.28) and the value of
〈̺θ

G ,̺
θ
G〉 are elaborated in Appendix A. The foregoing considerations are now summarized by

the following result.

Proposition 3.1. Consider the twisted conjugation action (3.12) of a compact, connected, sim-
ply connected, simple Lie group G on itself, equipped with the Riemannian metric corresponding
to the scalar product B (3.10) on G. Then, using the above notations, the reduced Laplace-
Beltrami operator (2.17) associated with a finite dimensional unitary irrep (ρ, Vρ) of G takes the
form

∆red = ∆ŤΘ + 〈̺θ
G ,̺

θ
G〉+

1

4

∑

j

ρ′(iK−
j )

2

+
1

4

∑

α∈R+

ρ′(Y +
α )2 + ρ′(Z+

α )
2

sin2
(

α(q)
2

) +
1

4

∑

λ∈W+

ρ′(Y −
λ )2 + ρ′(Z−

λ )
2

cos2
(

λ(q)
2

) . (3.30)

This operator is essentially self-adjoint on the dense domain δ
1
2Fun(ŤΘ, V K

ρ ) of the reduced

Hilbert space L2(ŤΘ, V K
ρ , dµŤΘ), where K = TΘ and ŤΘ is parametrized according to (3.26).

Now we have a few remarks to make. First, since K = TΘ is connected, we can equivalently
write V K

ρ as V T +

ρ , which denotes the set of vectors annihilated by T + in the representation ρ′. We
shall make use of this remark in Chapter 5. Second, as follows for example by comparison with
the results in [24], the possible domains Ť + ⊂ T + that parametrize ŤΘ in a one-to-one manner
by the exponential map can be determined very explicitly from the formula (3.25). Namely,
each connected component of the open set {iq | iq ∈ T +, δ(eiq) > 0} ⊂ T + is an appropriate
choice for Ť +. Using the coordinates qk (3.26), dµŤΘ =

∏

k dq
k is the Lebesgue measure on Ť +.

2The coordinates qk associated with an orthonormal basis of T + should not be confused with the components
qi used in the examples presented at the end of this chapter and in Chapter 5.
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Third, according to Remark 2.3, one can also describe the reduced system in terms of the larger
configuration space T̂Θ. In this description, the wave functions are equivariant with respect to
the generalized Weyl group (2.18), which in the present case becomes the so-called ‘twisted Weyl
group’

W (G, TΘ,Θ) := NG(T
Θ, IΘ)/TΘ, (3.31)

where
NG(T

Θ, IΘ) = {g ∈ G | IΘg (TΘ) = TΘ}. (3.32)

Based on [22, 23, 24], we review the structure of this group in Appendix B.

We finish this section by listing the positive roots R+ and weights W+ and a possible choice
for Ť + ⊂ T + for the non-trivial involutive diagram automorphisms of the classical Lie algebras.

If A = Dn+1, then A+ = Bn and the module A− is isomorphic to the defining representation
of Bn. The real Abelian subspace H+

r can be realized as real diagonal matrices of the form

q = diag(q1, q2, . . . , qn, 0, 0,−qn, . . . ,−q2,−q1). (3.33)

By introducing the linear functionals em : q 7→ qm, we can write

R+ = {ek ± el, em | 1 ≤ k < l ≤ n, 1 ≤ m ≤ n}, W+ = {em | 1 ≤ m ≤ n}. (3.34)

A possible choice for Ť + ⊂ T + is given by the set

Ť + = {iq | 0 < qn < qn−1 < · · · < q2 < q1 < π}. (3.35)

If A = A2n−1, then A+ = Cn and H+
r can be realized as diagonal matrices of the form

q = diag(q1, q2, . . . , qn,−qn, . . . ,−q2,−q1). (3.36)

Using the functionals em : q 7→ qm, we can write

R+ = {ek ± el, 2em | 1 ≤ k < l ≤ n, 1 ≤ m ≤ n}, W+ = {ek ± el | 1 ≤ k < l ≤ n}. (3.37)

For Ť + we can choose the set

Ť + = {iq | 0 < qn < qn−1 < · · · < q2 < q1 < π, 0 < q1 + q2 < π}. (3.38)

For A = A2n one has A+ = Bn. Now H+
r can be realized as

q = diag(q1, q2, . . . , qn, 0,−qn, . . . ,−q2,−q1), (3.39)

and with em : q 7→ qm we have

R+ = {ek ± el, em | 1 ≤ k < l ≤ n, 1 ≤ m ≤ n},
W+ = {ek ± el, em, 2em | 1 ≤ k < l ≤ n, 1 ≤ m ≤ n}. (3.40)

A possible choice for Ť + is the bounded open domain

Ť + = {iq | 0 < qn < qn−1 < · · · < q2 < q1 <
π

2
}. (3.41)
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4 How to diagonalize the reduced Hamiltonians?

We below explain how the diagonalization of the ‘twisted spin Sutherland Hamiltonians’ ∆red

given by Proposition 3.1 can be performed in principle in terms of certain Clebsch-Gordan
problems in the representation theory of the underlying symmetry group G.

Let us start by noting that the Hilbert space L2(G, dµG) carries the unitary representation
Uθ(g) of the group G defined by

Uθ(g)ψ := ψ ◦ IΘg−1 (4.1)

for any ‘wave function’ ψ and g ∈ G. Let L+ be the set of dominant integral weights of G
and for any Λ ∈ L+ denote by (ρΛ, VΛ) the corresponding irreducible unitary highest weight
representation3, of dimension dΛ. By arbitrarily fixing a basis in VΛ, introduce the matrix
elements ρa,bΛ ∈ L2(G, dµG) spanning the subspace

FΛ := span{ρa,bΛ | a, b = 1, . . . , dΛ } (4.2)

of L2(G, dµG). By the Peter-Weyl theorem, one has the orthogonal direct sum decomposition

L2(G, dµG) = ⊕Λ∈L+FΛ. (4.3)

The restriction of the representation Uθ to F
Λ can be written as the following tensor product of

irreps:
FΛ = V(Λ◦θ−1)∗ ⊗ VΛ, (4.4)

where Λ∗ denotes the highest weight of the complex conjugate of the representation ρΛ and,
as θ gives a Cartan preserving automorphism of the complexification of G, Λ ◦ θ−1 ∈ L+ is
a well-defined functional on the Cartan subalgebra. With these notations, using that θ is an
involution, we have

L2(G, dµG) = ⊕Λ∈L+V(Λ◦θ)∗ ⊗ VΛ. (4.5)

Focusing now on our Hamiltonian reduction problem, let us set

(ρ, Vρ) := (ρν , Vν) (4.6)

with some highest weight ν (see footnote 3). Then the reduced Hilbert space takes the form

L2(G, Vν , dµG)
G = ⊕Λ∈L+(V(Λ◦θ)∗ ⊗ VΛ ⊗ Vν)

G. (4.7)

Therefore we have to find the singlets, i.e., theG-invariant states, in the threefold tensor products
in (4.7). Any such singlet state, say

FΛ,ν ∈ (V(Λ◦θ)∗ ⊗ VΛ ⊗ Vν)
G, (4.8)

is in effect a Vν-valued I
Θ-equivariant function on G.

3We should have written VρΛ
according to our general notation used before, but here we simplify this to VΛ.
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The point is that the functions FΛ,ν are eigenstates of the Laplace-Beltrami operator ∆G,

∆GFΛ,ν = −〈Λ + 2̺G ,Λ〉FΛ,ν, (4.9)

since ∆G corresponds to the quadratic Casimir operator of the Lie algebra G, that survive the
reduction. ̺G stands for the sum of the fundamental weights of the complexification, A, of G.
More generally, take any left G-invariant, formally self-adjoint scalar differential operator over
G induced by a corresponding element of the center of the universal enveloping algebra of A.
Any such differential operator, say P̂ , takes a constant value on FΛ,

P̂F = p(Λ + ̺G)F ∀F ∈ FΛ, (4.10)

with an associated Weyl invariant polynomial function p on the dual of the Cartan subalgebra.
The map sending P̂ to p is the so-called Harish-Chandra isomorphism [33]. (A rather explicit
formula for the eigenvalue p(Λ + ̺G) of the Casimir operator P̂ is contained in [34].) It is
standard to show that these commuting differential operators induce commuting self-adjoint
‘Hamiltonians’ for the reduced quantum system.

Returning to (4.7), one has the Clebsch-Gordan series

VΛ ⊗ Vν = ⊕λ∈L+Nλ
Λ,νVλ, (4.11)

where Nλ
Λ,ν ∈ Z+ are often called Littlewood-Richardson numbers. In principle, they can be

found algorithmically since the irreducible characters are known. In order to find the spectra
of the reduced Laplace-Beltrami operator (as well as the spectra of the higher Casimirs) on
L2(G, Vν, dµG)

G, we need the numbers

dim(V(Λ◦θ)∗ ⊗ VΛ ⊗ Vν)
G = NΛ◦θ

Λ,ν . (4.12)

In fact, it follows from the definition of ∆red that

spectrum (∆red) = {−〈Λ + 2̺G ,Λ〉 |Λ ∈ L+, NΛ◦θ
Λ,ν 6= 0}. (4.13)

The Littlewood-Richardson numbers determine the multiplicities of the eigenvalues of ∆red as
well. It is an archetypical Clebsch-Gordan problem to find explicitly the pairs (Λ, ν) for which
NΛ◦θ

Λ,ν 6= 0. It is even more difficult to obtain the explicit form of the states FΛ,ν , since they involve
the Clebsch-Gordan coefficients themselves. The diagonalization of the reduced Hamiltonian
boils down to these finite dimensional, purely algebraic problems.

The eigenfunctions FΛ,ν ‘descend’ to certain trigonometric polynomials through the reduction
procedure. To see this, let us take a basis vΛa in VΛ consisting of weight vectors with respect to
H+, with weight µa:

ρ′Λ(iq)v
Λ
a = iµa(q)v

Λ
a ∀q ∈ H+

r . (4.14)

Similarly, take a basis uνk in V TΘ

ν . The restricted eigenfunction of ∆G,

f̂Λ,ν := FΛ,ν |TΘ, (4.15)
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is a linear combination of functions of the form

(vΛa , ρΛ(e
iq)vΛb )u

ν
k, (4.16)

where µa + µb = 0. Therefore we can write

f̂Λ,ν(e
iq) =

∑

a,k

Ca,ke
iµa(q)uνk (4.17)

with some constants Ca,k. The sum runs over all the H+-weights of the representation space VΛ
and a basis of V TΘ

ν . It is also worth noting that, as a result of the G-equivariance of FΛ,ν, the f̂Λ,ν
are Weyl-equivariant functions on TΘ, where the relevant generalized Weyl group isW (G, TΘ,Θ)
(3.31), which acts naturally both on V TΘ

ν and on TΘ. Of course, the eigenfunctions of the spin
Sutherland operator ∆red, obtained as a similarity transform of the restriction of ∆G, also include
the pre-factor δ

1
2 (3.25) in front of the above function f̂Λ,ν , or rather in front of fΛ,ν := f̂Λ,ν |ŤΘ.

See also the remarks after Proposition 2.1 and Appendix B.

5 Some examples with explicitly computable spectra

In a few distinguished cases the Littlewood-Richardson numbers (4.12) can be determined ex-
plicitly due to ‘standard plethysm’ rules in representation theory [35]. For G = su(N), such are
the cases

ν = kλ1 or kλN−1, and ν = λa for a = 2, . . . , (N − 2), (5.1)

where from now on we denote by λa, a = 1, . . . , rank(G), the fundamental weights. Indeed, in
these cases one has the so-called Pieri formulae for the decomposition of the tensor products
VΛ ⊗ Vν . The first two cases are essentially equivalent, being related by the Dynkin diagram
symmetry of AN−1. Below we concentrate on the first case, since it contains also an arbitrary
parameter k ∈ Z+. Throughout this chapter, we use ̺su(N) =

∑N−1
a=1 λa, which is the θ = id

special case of ̺θ
su(N) in (3.29). We let TN ⊂ SU(N), TN ⊂ su(N) stand for the standard

maximal torus and its Lie algebra, and denote the root system of sl(N,C) by ΦN . We fix the
invariant bilinear form on sl(N,C) to be

〈X, Y 〉 := tr(XY ) ∀X, Y ∈ sl(N,C). (5.2)

5.1 Oscillator realization of Vkλ1
for su(N) and corresponding models

In this subsection we recall the oscillator realization of Vkλ1 and spell out the corresponding
models both for the trivial and for the non-trivial Dynkin diagram automorphisms of su(N).

Let us introduce N pairs of bosonic annihilation and creation operators, ai and a
†
i ,

[ai, a
†
j] = δi,j (1 ≤ i, j ≤ N). (5.3)
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These operators act on the Fock space, V, spanned by the basis

N
∏

i=1

(a†i )
niv0 (∀ni ∈ Z+), (5.4)

where v0 is the vacuum vector annihilated by the ai. We also need the ‘number operators’

n̂i := a†iai, (5.5)

whose eigenvalues are the ni in (5.4). The Lie algebra gl(N,C) is represented on V by

Ei,j 7→ ρ′(Ei,j) := a†iaj . (5.6)

One has V = ⊕k∈Z+Vk, where Vk is the eigensubspace of the ‘total number operator’
(

∑N
i=1 n̂i

)

with eigenvalue k, which is an invariant subspace for gl(N,C). Restriction of ρ′ to Vk, and to
the subalgebra su(N) ⊂ gl(N,C), yields a model of the highest weight representation Vkλ1. We
display this fact symbolically as

Vkλ1
∼= Vk. (5.7)

It is easy to see from (5.6) that VTN
k is non-zero if and only if k = γN for some γ ∈ Z+ and

VTN
γN = C

N
∏

i=1

(a†i )
γv0 (5.8)

is one-dimensional. It also follows from (5.6) that

(ρ′(Ei,j)ρ
′(Ej,i)) |VTN

γN

= γ(γ + 1) id
V

TN
γN

∀i 6= j. (5.9)

Thus in the non-twisted case (with G = su(N), θ = id and V = Vkλ1), ∆red in (3.30) yields

∆γ
red = ∆ŤN

+ 〈̺su(N),̺su(N)〉 −
1

2

∑

α∈ΦN
+

γ(γ + 1)

sin2 α( q
2
)
, (5.10)

which is the standard Sutherland operator with coupling constant determined by γ ∈ Z+ (ŤN is
parametrized by eiq with q in a Weyl alcove). This result is of course well-known [15, 10].

Turning to the twisted spin Sutherland models, first note that the non-trivial automorphism
of su(N) can be defined on the generators Ei,j ∈ gl(N,C) as

θ(Ei,j) := −(−1)i+jEN+1−j,N+1−i. (5.11)

Combining this with (5.6), we obtain that if N = 2n is even, then

VT +
2n

k = span

{

n
∏

i=1

(a†ia
†
2n+1−i)

niv0

∣

∣

∣
2

n
∑

i=1

ni = k

}

. (5.12)
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The non-triviality of this space requires k to be even, and

dim(VT +
2n

2κ ) =

(

κ+ n− 1

n− 1

)

, ∀κ, n ∈ Z+, n ≥ 2. (5.13)

If N = (2n+ 1) is odd, then the index i = (n+ 1) is special and we introduce the notation

c := an+1, c† = a†n+1, m̂ := c†c. (5.14)

In this case we find that

VT +
2n+1

k = span

{

(c†)m
n
∏

i=1

(a†ia
†
2n+2−i)

niv0

∣

∣

∣
m+ 2

n
∑

i=1

ni = k

}

, (5.15)

and

dim(VT +
2n+1

k ) =

[k/2]
∑

κ=0

(

κ+ n− 1

n− 1

)

, ∀k, n ∈ Z+, n ≥ 1. (5.16)

This dimension formula was obtained by setting 2κ := 2
∑n

i=1 ni = k −m.

Based on (5.6), it is a matter of straightforward calculation to derive from Proposition 3.1
explicit formulae for the reduced Laplace-Beltrami operators in the above cases. We give a brief
outline of this calculation in Appendix C, and here only display the result. For this purpose, for
any N = 2n or N = (2n+ 1), we define the operators

Ai,j := 2n̂in̂j + n̂i + n̂j , 1 ≤ i ≤ j ≤ n, (5.17)

Bi,j := (−1)i+j(a†ia
†
N+1−iajaN+1−j + aiaN+1−ia

†
ja

†
N+1−j), 1 ≤ i < j ≤ n.

If N = (2n+ 1), then using (5.14) we also define

Ci := 2n̂im̂+ m̂+ n̂i, 1 ≤ i ≤ n, (5.18)

Di := (−1)i+n(a†ia
†
2n+2−icc+ aia2n+2−ic

†c†), 1 ≤ i ≤ n.

These operators act on the space VT +
N

k , where the reduced wave functions take their values.

Proposition 5.1. Choosing N = 2n (n ≥ 2) even and the representation V2κλ1
∼= V2κ (κ ∈ Z+)

of G = SU(N), the reduced Laplace-Beltrami operator (3.30) corresponding to the diagram
automorphism (5.11) is given by the explicit formula

∆red =
1

2

n
∑

i=1

∂2

∂q2i
+ 〈̺θ

su(2n),̺
θ
su(2n)〉+

κ2

2n
− 1

2

n
∑

i=1

n̂2
i −

1

4

n
∑

i=1

Ai,i

sin2 (qi)
(5.19)

−1

4

∑

1≤i<j≤n

[

Ai,j − Bi,j

sin2
(qi−qj

2

) +
Ai,j + Bi,j

cos2
( qi−qj

2

) +
Ai,j + Bi,j

sin2
( qi+qj

2

) +
Ai,j − Bi,j

cos2
( qi+qj

2

)

]

,

where we use (5.17). The constant 〈̺θ
su(2n),̺

θ
su(2n)〉 is given by (A.7) in Appendix A, and the

coordinates qi can be taken to vary in the domain (3.38).
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Proposition 5.2. Choosing N = (2n + 1) (n ≥ 1) odd and the representation Vkλ1
∼= Vk

(k ∈ Z+) of G = SU(N), the reduced Laplace-Beltrami operator (3.30) corresponding to the
diagram automorphism (5.11) is given by the explicit formula

∆red =
1

2

n
∑

i=1

∂2

∂q2i
+ 〈̺θ

su(2n+1),̺
θ
su(2n+1)〉 −

1

2

n
∑

i=1

(n̂i − m̂)2 (5.20)

+
1

2n

[

n
∑

i=1

(n̂i − m̂)

]2

− 1

4

n
∑

i=1

[

Ci +Di

sin2
(

qi
2

) +
Ci −Di

cos2
(

qi
2

) +
Ai,i

cos2 (qi)

]

−1

4

∑

1≤i<j≤n

[

Ai,j − Bi,j

sin2
(qi−qj

2

) +
Ai,j + Bi,j

cos2
( qi−qj

2

) +
Ai,j − Bi,j

sin2
( qi+qj

2

) +
Ai,j + Bi,j

cos2
( qi+qj

2

)

]

,

where we use the operators defined in (5.17), (5.18). The constant 〈̺θ
su(2n+1),̺

θ
su(2n+1)〉 is eval-

uated in (A.7) and now the coordinates qi can be taken to vary in the domain (3.41).

The above formulae of ∆red can be somewhat simplified by using obvious trigonometry, like

4 sin2 x
2
cos2 x

2
= sin2 x. The operators Ai,j, Bi,j , Ci and Di act on the respective spaces VT +

N

k ,
where Ai,j and Ci are diagonal, whilst Bi,j and Di are off-diagonal in the natural bases that
appear in equations (5.12) and (5.15). Subsequently, we shall determine the spectra of the
self-adjoint matrix differential operators ∆red given by (5.19) and (5.20).

5.2 Determination of the spectra from the Pieri formula

For G = su(N), write an arbitrary Λ ∈ L+ in the form

Λ =

N−1
∑

i=1

M iλi M i ∈ Z+. (5.21)

Then the so-called Pieri formula (see e.g. [35]) says that precisely those

λ =
N−1
∑

i=1

miλi mi ∈ Z+ (5.22)

appear in the tensor product VΛ ⊗ Vkλ1 for which

mi =M i + C i − C i+1 ∀i = 1, . . . , (N − 1) (5.23)

with some (C1, C2, . . . , CN−1, CN) ∈ ZN
+ such that

C i+1 ≤ M i ∀i = 1, . . . , (N − 1),
N
∑

i=1

C i = k. (5.24)

Note that Nλ
Λ,kλ1

= 1 for all λ for which Nλ
Λ,kλ1

6= 0. The spectra of the reduced Laplace-Beltrami
operators displayed in subsection 5.1 are easily found by utilizing the Pieri formula.
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5.2.1 The standard Sutherland model with integer couplings

In the non-twisted su(N) case, for θ = id and ν = kλ1, the determination of the spectrum (4.13)
boils down to finding all Λ ∈ L+ for which

NΛ
Λ,kλ1

= 1. (5.25)

From the Pieri formula (5.23) with mi =M i we immediately get that

C1 = C2 = . . . = CN := γ ∈ Z+ (5.26)

and therefore k = γN with some γ ∈ Z+, which also follows from the condition dim(V TN
kλ1

) 6= 0
as we saw. The first part of (5.24) then says that we must have

M i = γ + µi with some arbitrary µi ∈ Z+. (5.27)

This means that the admissible weights Λ are precisely the weights of the form

Λ = γ̺su(N) + µ, ∀µ =

N−1
∑

i=1

µiλi ∈ L+. (5.28)

We have already seen that dim(V TN
γNλ1

) = 1 by (5.8), and have derived the formula (5.10) of ∆red

that arises in this case. We now rewrite this scalar Schrödinger operator in the form

∆γ
red =

1

4

N−1
∑

i=1

(

∂

∂xi

)2

+ 〈̺su(N),̺su(N)〉 −
1

2

∑

1≤i<j≤N

γ(γ + 1)

sin2(xi − xj)
, (5.29)

where x := q
2
with the real Cartan variable q ∈ Hr introduced before, and the xi denote the

components of x = diag(x1, . . . , xN) in an orthonormal basis of Hr (here TN = iHr ⊂ su(N), see
also footnote 2).

Recall that the standard N -particle Sutherland Hamiltonian, after separation of the center
of mass and introducing dimensionless variables, can be written as follows:

HN,g
standard = −1

2

N−1
∑

i=1

(

∂

∂xi

)2

+
∑

1≤i<j≤N

g(g − 1)

sin2(xi − xj)
, (5.30)

where the domain of x is bounded by the singular locus of the potential. By setting g := (γ+1),
comparison shows that

HN,g
standard = −2∆γ

red + 2〈̺su(N),̺su(N)〉. (5.31)

It follows from (5.28) that

spectrum(∆γ
red) = {−〈(γ̺su(N) + µ) + 2̺su(N), (γ̺su(N) + µ)〉 |µ ∈ L+ }. (5.32)

Combining the last two equations we recover the well-known formula (see e.g. [8])

spectrum(HN,g
standard) = {2〈µ+ g̺su(N), µ+ g̺su(N)〉 |µ ∈ L+ } (5.33)

as a consequence of representation theory [15]; for integer coupling constants g > 0.
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5.2.2 The spectrum in the twisted su(N) case with ν = kλ1

The non-trivial diagram automorphism θ satisfies

Λ∗ = Λ ◦ θ (5.34)

for any dominant integral weight of su(N). This means that

Λ∗ =

N−1
∑

i=1

MN−iλi for Λ =

N−1
∑

i=1

M iλi, M i ∈ Z+. (5.35)

Therefore, to find the spectrum (4.13) for the operators ∆red in (5.19) and (5.20), we have to
determine the admissible weights Λ for which

NΛ∗

Λ,kλ1
= 1. (5.36)

Theorem 5.3. The dominant integral weights Λ of su(N) that satisfy (5.36) have the form

Λ = µ+ χ, (5.37)

where µ is an arbitrary self-conjugate dominant integral weight, µ∗ = µ, and χ reads

χ :=
N−1
∑

i=1

C i+1λi (5.38)

with some (C1, . . . , CN) ∈ ZN
+ subject to the requirements

CN+1−i = C i ∀i = 1, . . . , N and

N
∑

i=1

C i = k. (5.39)

The number of distinct solutions for χ equals dim(V
T +
N

kλ1
), which in particular means that k must be

even if N ≥ 4 is even. The spectrum of the corresponding twisted spin Sutherland Hamiltonian,
given by (5.19) or (5.20), is provided by (4.13) with these weights Λ.

Proof. Taking any Λ =
∑N−1

i=1 M iλi satisfying (5.36), the Pieri formula (5.23) implies that

MN−i =M i + C i − C i+1 (5.40)

for some C i ∈ Z+ subject to (5.24). If we define

µi :=M i − C i+1, i = 1, . . . , N − 1, (5.41)

then we see from (5.24) that µi ∈ Z+, and (5.40) gives

µi = µN−i + (CN+1−i − C i), ∀i = 1, . . . , N − 1. (5.42)
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Replacing i by (N − i), we obtain

µi = µN−i + (C(N+1)−(i+1) − C i+1), ∀i = 1, . . . , (N − 1). (5.43)

If we now define
ϑi := CN+1−i − C i ∀i = 1, . . . , N, (5.44)

then we can read off from (5.42) and (5.43) that ϑi = ϑi+1, and hence

ϑ1 = ϑ2 = . . . = ϑN . (5.45)

But by its very definition ϑi satisfies

ϑN+1−i = C i − CN+1−i = −ϑi, (5.46)

and therefore ϑi = 0, that is (5.39) holds. By substituting this back into equation (5.43), we
obtain µi = µN−i. Thus (5.41) yields the required formula (5.37) with

µ :=

N−1
∑

i=1

µiλi, χ :=

N−1
∑

i=1

C i+1λi, (5.47)

where µ∗ = µ and χ satisfies (5.39). We have just shown that all ‘admissible weights’ must have
the form of Λ in (5.37), and it is trivial to check that any Λ of this form satisfies (5.36) indeed.
The claim about the number of solutions for χ follows by obvious comparison of (5.39) with the

bases of VT +
N

kλ1
furnished by (5.12) and (5.15). Q.E.D.

6 Conclusion

In this paper we first reviewed the quantum Hamiltonian symmetry reductions of the free particle
on a Riemannian manifold governed by the Laplace-Beltrami operator. We assumed that the
underlying symmetry group G is compact and it acts in polar manner in the sense of Palais and
Terng [13]. This strong assumption permits to derive nice results in a unified way and it holds in
many important examples. For instance, it holds for the so-called Hermann actions (3.2), which
are hyperpolar and lead to spin Sutherland type models in general.

In the main text we focused on the group action defined by twisted conjugations (3.12), and
described the corresponding twisted spin Sutherland models in Proposition 3.1. Then we ex-
plained how to diagonalize these reduced Hamiltonians in principle, and have characterized their
spectra explicitly in Theorem 5.3 for certain special cases associated with G = SU(N). These
special cases were obtained by using the symmetric tensorial powers of the defining representa-
tion of SU(N) in the definition of the reduction, and we also presented ‘oscillator realizations’
of the resulting Hamiltonians in Propositions 5.1 and 5.2.

The classical analogues of the twisted spin Sutherland models have been investigated in [20].
Further related studies of classical Hamiltonian reduction can be found in [19, 21] and refer-
ences therein. A comparison between the outcomes of the classical and quantum Hamiltonian
reductions under polar actions in general was given in [11].
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The reduced systems that feature in Proposition 2.1 possess a hidden generalized Weyl group
symmetry, as was pointed out in Remark 2.3. The structure of the generalized Weyl group
belonging to the twisted conjugations (3.12) has been clarified in [23, 24], and we outline this
in Appendix B giving an explicit description in the SU(N) cases. The other two appendices
contain some technical details relegated from the main text.

There remain several open problems requiring future work. First, it would be interesting
to find the eigenfunctions for the models studied in Chapter 5. We note that generalized spin
Sutherland models with similar interaction potentials, but different spin variables, have been
constructed by Finkel et al [36, 37] by means of the differential-difference operator technique. It
would be desirable to better understand the relationship between our models and those in [36, 37]
(see also [38]). A relevant fact in this respect is that if θ is an involution of a classical Lie algebra,
then the ‘twisted Weyl group’ (3.31) contains a standard Weyl group of B-type as a subgroup
(see Appendix B). It appears worthwhile to enquire about the use of the twisted Weyl groups
in constructing Dunkl type operators. Second, it is a natural task to describe the full family of
spin Sutherland models, and in particular all spinless special cases, that can be associated with
the Hermann actions (3.2). These include also non-compact Riemannian manifolds as starting
points, and the scattering theory of the associated many-body models with spin appears worth
investigating. Third, the assumptions made in Chapter 2 can be weakened and modified in
various ways. For example, one should extend the formalism to pseudo-Riemannian manifolds,
such as semisimple group manifolds of non-compact type (see [18]). The strong conditions that
we required in the definition of a ‘section’ for convenience should be relaxed, as is done in some
works in the theory of polar actions, since there exist examples for which these assumptions are
not valid. Finally, it is a challenge to understand whether an infinite dimensional analogue of
the formalism of polar actions can play a role in describing Calogero type models with elliptic
interaction potentials.

Acknowledgements. We thank J. Balog for useful comments on the manuscript. B.G.P. is
also grateful to J. Harnad for hospitality in Montréal. The work of L.F. was supported in part
by the Hungarian Scientific Research Fund (OTKA grant T049495) and by the EU network
‘ENIGMA’ (contract number MRTN-CT-2004-5652).

A On the ‘twisted measure factor’ in equation (3.28)

In this appendix we explain that the second term (the so-called ‘measure factor’) appearing in
the formula (2.17) of the reduced Laplace-Beltrami operator gives just a constant for the twisted
spin Sutherland models as stated by equation (3.28). In the non-twisted cases the analogous
result is well-known [16, 14], and it turns out that the ‘twisted measure factors’ can be traced
back to the non-twisted ones. The density function associated with twisted conjugations was
also calculated in [22], and our arguments below follow from those in this reference.

Keeping the notations introduced in Chapter 3, consider the real Cartan subalgebra Hr of a
complex simple Lie algebra A with scalar product 〈 , 〉 and associated root system Φ. Denote
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by ∆Hr the Laplace-Beltrami operator of (Hr, 〈 , 〉), using the restricted scalar product4. Define
̺G := 1

2

∑

α∈Φ+
α, where G is the compact real form and ̺G = ̺

id
G in the notation of (3.29).

Introduce the standard ‘density function’ δ
1
2
Φ+

: Hr → R by

δ
1
2
Φ+

(q) :=
∏

α∈Φ+

sin

(

α(q)

2

)

. (A.1)

It is well-known [16, 14] that the following identity holds,

∆Hrδ
1
2
Φ+

= −〈̺G ,̺G〉δ
1
2
Φ+
. (A.2)

This identity is independent of the normalization of 〈 , 〉, and the value of the constant can be
found from Freudenthal’s strange formula

gG dim(G) = 12〈̺G ,̺G〉0, (A.3)

where gG is the dual Coxeter number of G and 〈 , 〉0 is the scalar product normalized so that
the length of the long roots is

√
2. Since the expressions in (3.25) and (A.1) are equal if θ = id,

(A.2) yields the measure factor for the non-twisted spin Sutherland models.

To handle the twisted cases based on the non-trivial involutive diagram automorphisms of
the classical Lie algebras, one may show by case-by-case inspection that the ‘twisted density
function’ (3.25) satisfies

δ
1
2 (eiq) =

∏

α∈R+

sin

(

α(q)

2

)

∏

λ∈W+

cos

(

λ(q)

2

)

= C
∏

ϕ∈P+

sin

(

ϕ(q)

2

)

, (A.4)

where C is a constant and the set P+ is given in terms of a corresponding root systems as follows:

P+ =







Φ+(Cn) if A = Dn+1,
2Φ+(Bn) if A = A2n−1,
2Φ+(Cn) if A = A2n.

(A.5)

This formula, which is equivalent to the formula of the density function given in [22], is obtained
from (3.25) by using that sin(2x) = 2 sin(x) cos(x). Referring to (3.29) and P+ in (A.5), it is
also readily verified that

̺
θ
G =

1

2

∑

α∈R+

α+
1

2

∑

λ∈W+

λ =
1

2

∑

ϕ∈P+

ϕ. (A.6)

Equations (A.4) and (A.5) show that the twisted density function can be cast into a non-twisted
form. Since the non-twisted measure factors are constants, one may conclude that the twisted
measure factors are constants, too. As P+ appears both in (A.4) and in (A.6), one obtains the
identity (3.28) from (A.2) applied to (A+,H+

r ). With the scalar product (5.2), in the twisted

4 In coordinates qi of q ∈ Hr with respect to an orthonormal basis of Hr, ∆Hr
=
∑

i ∂
2
i , similarly to (3.27).
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G = su(N) cases the values of the constants on the right-hand side of (3.28) are found from the
relations

6〈̺θ
G ,̺

θ
G〉 =

{

n(2n− 1)(2n+ 1) if G = su(2n),
2n(n+ 1)(2n+ 1) if G = su(2n+ 1).

(A.7)

These relations can be checked by explicit calculation or by application of the strange formula
(A.3) taking care of the normalizations involved.

The measure factors are constants for all diagram automorphisms of E6 and D4 as well. In
fact, the non-twisted form of the density function is established in [22] in these cases, too.

B Generalized Weyl groups for twisted conjugations

For completeness, we here recall from [22, 23, 24] the structure of the generalized Weyl group
associated with the twisted conjugation action (3.12). As in the main text, we assume that G is
simply connected and Θ is involutive.

In this case (2.18) becomes the ‘twisted Weyl group’ W (G, TΘ,Θ) in (3.31). Let NG(T )
denote the normalizer of T in G defined in the usual manner, i.e. NG(T

Θ, IΘ) in (3.32) yields
NG(T ) for Θ = id, and consider also NGΘ(TΘ), where GΘ is the (connected) fixed point subgroup
of Θ in G. According to [23], the twisted Weyl group is given by the semidirect product

W (G, TΘ,Θ) ∼= W (GΘ, TΘ)⋉ (T/TΘ)Θ. (B.1)

Here W (GΘ, TΘ) = NGΘ(TΘ)/TΘ and the finite Abelian group (T/TΘ)Θ is formed by the fixed
points of the induced action of Θ on (T/TΘ). Note that W (GΘ, TΘ) acts by automorphisms of
(T/TΘ)Θ naturally as

(gTΘ).(tTΘ) = gtg−1TΘ for any gTΘ ∈ W (GΘ, TΘ), tTΘ ∈ (T/TΘ)Θ. (B.2)

This is well-defined since NGΘ(TΘ) < NG(T ), which follows from the fact [31] that TΘ contains a
regular element of G (whose centralizer is T ). As induced from the IΘ action (3.12), the subgroup
W (GΘ, TΘ) in (B.1) acts on TΘ by its ordinary Weyl group action. The map S : (T/TΘ)Θ → TΘ

defined by
S : tTΘ 7→ S(tTΘ) := Θ(t)t−1 (B.3)

is an injective homomorphism, and the normal subgroup (T/TΘ)Θ in (B.1) acts on the ‘section’
TΘ by the translations generated by its image in TΘ:

(tTΘ).t0 = S(tTΘ)t0 for any tTΘ ∈ (T/TΘ)Θ, t0 ∈ TΘ. (B.4)

Correspondingly, (B.1) can be rewritten in the form

W (G, TΘ,Θ) ∼= W (GΘ, TΘ)⋉ S((T/TΘ)Θ), (B.5)

where W (GΘ, TΘ) acts naturally on the finite subgroup S((T/TΘ)Θ) < TΘ.
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To proceed further, let us introduce the lattices

L := Ker (exp |T ) := {X ∈ T | exp(X) = e} < T and Lθ := L ∩ T θ, (B.6)

where now T θ denotes the fixed point set of θ in T . Note that T ∼= T /L and TΘ ∼= T θ/Lθ. Let
p : T → T θ be the orthogonal projection with respect to the Killing form. Then [24] one has
yet another natural isomorphism:

S((T/TΘ)Θ) ∼= p(L)/Lθ. (B.7)

To understand this, first notice that if θ(X−) = −X−, then Θ(exp(1
2
X−)T

Θ) = exp(1
2
X−)T

Θ is
equivalent to exp(−X−) ∈ TΘ, which requires that exp(−X−) = exp(X+) for some X+ ∈ T θ.
Next, if X = (X+ +X−) ∈ L with X+ = p(X) ∈ Lθ, then exp(1

2
X−)T

Θ ∈ (T/TΘ)Θ and

S(exp(
1

2
X−)T

Θ) = exp(−X−) = exp(X+) ∈ p(L)/Lθ < TΘ ∼= T θ/Lθ. (B.8)

Every element of p(L)/Lθ corresponds by (B.8) to a unique element of S((T/TΘ)Θ). Taking into
account (B.7), the semidirect product

W (G, TΘ,Θ) ∼= W (GΘ, TΘ)⋉ p(L)/Lθ (B.9)

can be ‘lifted’ to yield the infinite group

W (GΘ, TΘ)⋉ p(L), (B.10)

which can be identified [22, 24] as the Weyl group of the twisted affine Lie algebra associated
with the pair (A, θ). The twisted conjugacy classes in G are parametrized by the orbits of the
twisted Weyl group in the section TΘ, i.e., they form the (stratified) space

[T θ/Lθ]/[W (GΘ, TΘ)⋉ p(L)/Lθ] ∼= T θ/[W (GΘ, TΘ)⋉ p(L)]. (B.11)

The set on the right hand side of (B.11) is the space of orbits for the twisted affine Weyl
group acting on T θ, which is described in [31]. By using this, Mohrdieck and Wendt [24] gave
parametrizations for the twisted conjugacy classes of any simply connected, connected G. In our
cases of interest, this is equivalently given by the domains listed at the end of Chapter 3.

Let us display the twisted Weyl groups in the picture (B.5) for G = SU(N). The fixed point
sets TΘ

N in the maximal torus TN of SU(N) are

TΘ
2n = {t | t = diag(t1, . . . , tn, t

−1
n , . . . , t−1

1 ), |ti| = 1, 1 ≤ i ≤ n},
TΘ
2n+1 = {t | t = diag(t1, . . . , tn, 1, t

−1
n , . . . , t−1

1 ), |ti| = 1, 1 ≤ i ≤ n}. (B.12)

In both cases
W (SU(N)Θ, TΘ

N ) ∼= WBn
∼= Sn ⋉ (Z2)

×n. (B.13)
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The symmetric group Sn permutes the components t1, . . . , tn of t ∈ TΘ
N and, for any fixed

1 ≤ i ≤ n, the generator τi ∈ (Z2)
×n exchanges the components ti and t−1

i of t. It is easy to
compute that S((TN/T

Θ
N )Θ) consists of the elements σ of the form

σ = diag(σ1, . . . , σn, σn, . . . , σ1) with σi ∈ {±1},
n
∏

i=1

σi = 1 if N = 2n,

σ = diag(σ1, . . . , σn, 1, σn, . . . , σ1) with σi ∈ {±1} if N = (2n+ 1). (B.14)

Thus we see that

W (SU(2n)Θ, TΘ
2n,Θ) ∼= WBn

⋉ (Z2)
×(n−1),

W (SU(2n+ 1)Θ, TΘ
2n+1,Θ) ∼= WBn

⋉ (Z2)
×n. (B.15)

The Sn subgroup of WBn
acts by permuting the components σi of σ ∈ S((TN/T

Θ
N )Θ), while the

generators τi act trivially on S((TN/T
Θ
N )Θ).

Finally, let us remark that one may introduce (physically and mathematically different)
‘extended versions’ of the twisted spin Sutherland models of Proposition 3.1 by postulating the
dense open subset (exp |T )−1 (T̂Θ) ⊂ T θ to be the configuration space, instead of the alcove Ť θ.
For suitable domains of the formal Hamiltonian obtained from (3.30), these extended models
possess the twisted affine Weyl group (B.10) as a symmetry group.

C On the derivation of Propositions 5.1 and 5.2

We here sketch how we obtained the explicit formulae (5.19) and (5.20) for the oscillator re-
alizations of the reduced Hamiltonian operators in the twisted SU(N) cases. By applying the
conventions of Chapter 3, we first note that both for ϕ ∈ R+ and for ϕ ∈ W+ we have

ρ′(Y ±
ϕ )2 + ρ′(Z±

ϕ )
2 = −ρ′(X±

ϕ )ρ
′(X±

−ϕ)− ρ′(X±
−ϕ)ρ

′(X±
ϕ ). (C.1)

To spell out ∆red (3.30) in terms of the oscillators in (5.6), we need matrix realizations for the
generators X±

ϕ and K−
j . The involution θ (5.11) preserves the Cartan subalgebra H spanned

by diagonal matrices, while the root and weight vectors in (C.1) are off-diagonal matrices. It is
enough to list the latter base elements for positive ϕ, since X±

−ϕ = (X±
ϕ )

T holds.

When N is even, N = 2n, H+
r consists of the elements (3.36) and in H−

r we define an
orthonormal basis {K−

j }n−1
j=1 by the matrices

K−
j :=

1
√

2j(j + 1)

(

j
∑

i=1

(Ei,i + E2n+1−i,2n+1−i)− j(Ej+1,j+1 + E2n−j,2n−j)

)

. (C.2)

As one can easily verify, the following off-diagonal matrices

X+
2ek

:= Ek,2n+1−k (1 ≤ k ≤ n),

X±
ek−el

:=
1√
2

(

Ek,l ∓ (−1)k+lE2n+1−l,2n+1−k

)

(1 ≤ k < l ≤ n),

X±
ek+el

:=
1√
2

(

Ek,2n+1−l ± (−1)k+lEl,2n+1−k

)

(1 ≤ k < l ≤ n) (C.3)
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provide root and weight vectors satisfying the conventions of subsection 3.1, using the scalar
product (5.2).

When N is odd, N = 2n+1, H+
r is parametrized according to (3.39) and in H−

r we introduce
dual bases {Lj}nj=1, {Lj}nj=1 defined by

Lj := Ej,j + E2n+2−j,2n+2−j − 2En+1,n+1, Lj :=
1

2
Lj −

1

2n+ 1

n
∑

i=1

Li. (C.4)

These permit to evaluate the third term of (3.30) by means of the relation

∑

j

ρ′(iK−
j )

2 = −
∑

j

ρ′(Lj)ρ′(Lj). (C.5)

The normalized root and weight vectors in sl(2n+ 1,C) are furnished by the matrices

X−
2ek

:= Ek,2n+2−k (1 ≤ k ≤ n),

X±
ek

:=
1√
2

(

Ek,n+1 ± (−1)k+nEn+1,2n+2−k

)

(1 ≤ k ≤ n),

X±
ek−el

:=
1√
2

(

Ek,l ∓ (−1)k+lE2n+2−l,2n+2−k

)

(1 ≤ k < l ≤ n),

X±
ek+el

:=
1√
2

(

Ek,2n+2−l ∓ (−1)k+lEl,2n+2−k

)

(1 ≤ k < l ≤ n). (C.6)

Based on the above introduced generators and equation (5.6), the explicit formulae displayed
in Propositions 5.1 and 5.2 follow by straightforward calculation.
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