
ar
X

iv
:0

80
4.

41
06

v2
  [

m
at

h-
ph

] 
 8

 M
ay

 2
00

8

Correlation function of the Schur process

with a fixed final partition

T. Imamura ∗ and T. Sasamoto †

∗Institute of Industrial Science, University of Tokyo,

Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan

†Department of Mathematics and Informatics,

Chiba University,
Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan

Abstract

We consider a generalization of the Schur process in which a partition evolves

from the empty partition into an arbitrary fixed final partition. We obtain a double

integral representation of the correlation kernel. For a special final partition with

only one row, the edge scaling limit is also discussed by the use of the saddle point

analysis. If we appropriately scale the length of the row, the limiting correlation

kernel changes from the extended Airy kernel.
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1 Introduction

Recently in nonequilibrium stochastic models which belong to the one-dimensional Kardar-
Parisi-Zhang(KPZ) universality class [1], remarkable progress has been made on the under-
standing of the scaling function. The exact form of the function is obtained and its relation
to the random matrix theory is revealed [2, 3, 4, 5, 6]. The common mathematical structure
among many of these models is that certain “correlation functions” can be expressed as
a determinant of a correlation kernel. This structure makes it possible to exactly analyze
the function. The process having the structure is called determinantal process.

The Schur process, which was introduced in [7], is the typical process of the determi-
nantal processes. Let λ be a partition, i.e. λ = (λ1, λ2, · · · ) where λi ∈ {0, 1, 2, · · · } and
λ1 ≥ λ2 ≥ · · · . For a set of partitions {λ(1), λ(2), · · · , λ(4N−1)}, the measure is defined as

sλ(1)(a(1))

(
2N−1∏

j=1

sλ(2j−1)/λ(2j)(a(2j))sλ(2j+1)/λ(2j)(a(2j+1))

)

sλ(4N−1)(a(4N)), (1.1)

where sλ/µ(a
(i)) is the skew Schur function of shape λ/µ in the variables a(i) = (a

(i)
1 , a

(i)
2 , · · · ).

(For the definition of the Schur function, see (2.10).) Like the equation above, probability
measures described by the Schur function appear in various fields in statistical mechanics.
It has been known that the Schur function is useful for studying the problems of many-
body nonintersecting random walk and Brownian motion due to its determinant structure
and the relation to the combinatorics of the Young diagram [8, 9, 10, 11, 12, 13]. Fur-
thermore the weight (1.1) and its variant appear in analyses of various nonequilibrium
processes such as the polynuclear growth(PNG) model [14], melting in three-dimensional
crystal [15], random tiling process [16], asymmetric exclusion process [17] and so on.

In order to visualize this model, we explain many-body random walk interpretation of
the process introduced in [7]. At t = 0 and t = 4N , the random walker labeled i (i =
1, 2, · · · ) is on the position 1− i on one dimensional lattice Z = {· · · ,−2,−1, 0, 1, 2, · · · }.
We regard λ

(n)
i − i + 1 as the position of the ith walker, at time n. Here λ

(n)
i is the ith

element of the partition λ(n) = (λ
(n)
1 , λ

(n)
2 , · · · , 0, 0, · · · ). On the other hand, the Schur

function sλ(n+1)/λ(n)(a(n)) is interpreted as the transition weight of the walkers from the

position {λ(n)i − i+ 1}i=1,2,··· at time n to {λ(n+1)
i − i+ 1}i=1,2,··· at time n + 1. Note that

the variables a(n) characterize the transition weight at each time step.
Due to the property λ

(n)
1 > λ

(n)
2 − 1 > · · · > λ

(n)
i − i + 1 > λ

(n)
i+1 − i > · · · , the walk-

ers do not intersect. Note that the transition weight (the Schur function) has the Slater
determinant like structure (2.10). Thus, this nonintersecting random walk has the free
fermionic feature and we find that (1.1) describes the (free fermionic) model of nonin-
tersecting random walkers which depart from the positions (0,−1,−2, · · · ) at time 0 and

arrive at the same positions at time 4N by way of the positions {λ(n)i − i+1}i=1,2,··· at time
n = 1, 2, · · · , 4N − 1, as depicted in Fig. 1.

This type of nonintersecting random walk is closely related to the PNG model. In [14,
18], the authors introduced the same type of the random walk model called the multilayer
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PNG model in order to discuss the equal-time multipoint correlations of height fluctuations.
In this model, the position of the first walker λ

(n)
1 at time n, (n = 1, · · · , 4N) represents

the height at position n and at some fixed time. Note that in order to find the dynamics
of the first walker, we need the information about the correlation among the first walker
and the other walkers. Thus, we focus on the correlation function (see (2.4)) of the Schur
process in this paper. We are also interested in seeing how the initial or final configurations
of the walkers affect the dynamical behavior. In the study of the PNG model with an
external source [19, 20, 21], it has been known that the property of the height fluctuation
changes if the external source is larger than a critical value. As we discussed in [21], the
external source in the PNG model may be related to the initial or final configurations of
the nonintersecting random walk model.

In order to discuss the problem, we investigate the following process in this paper:

sλ(1)(a(1))

(
2N−1∏

j=1

sλ(2j−1)/λ(2j)(a(2j))sλ(2j+1)/λ(2j)(a(2j+1))

)

sλ(4N−1)/µ(4N)(a(4N)). (1.2)

Here the partition µ(4N) = (µ
(4N)
1 , µ

(4N)
2 , · · · , µ(4N)

n , 0, 0, · · · ) is arbitrary but fixed. Notice
that the weight (1.2) is reduced to (1.1) if we choose µ(4N) = φ := (0, 0, · · · ). In the
interpretation of nonintersecting random walk, the partition µ(4N) corresponds to the final
configuration {µ(4N)

i −i+1}i=1,2,···. Thus, the weight (1.2) is a natural extension of the Schur
process. Fig. 2 illustrates the situation. In this paper, we obtain the double integral formula
of the correlation kernel of the (dynamical) correlation function (see (2.5)). Furthermore,
by the use of the formula, we discuss the asymptotic limit of the correlation function. It
will be shown that if we appropriately scale the partition µ(4N), the scaling limit changes
from case (1.1).

In [7], Okounkov and Reshetikhin originally derived determinant structure of the cor-
relation function and the integral representation of the correlation kernel in the Schur
process (1.1) by the method of using the fermion operators. This method was first de-
veloped in their previous article [22]. In [14], Johansson considered the height fluctuation
property of the (multilayer) PNG model which is essentially the same as process (1.1) and
discussed the derivation of the integral formula by using a property of a Toeplitz matrix.
Furthermore, the edge scaling limit(see Sec. 2.3) of the correlation kernel is also obtained.
A simple linear algebraic proof of the integral formula along the approach in [14] and its
Pfaffian analog were discussed by Borodin and Rains [23]. In the noncolliding Brownian
motion, which we can regard as the continuum version of Fig.1, the correlation function and
its asymptotic form have been discussed in the similar situation to Fig. 1 where Brownian
particles start and end at one point. It is found that the process is closely related to the
random matrix theory and orthogonal polynomials [12, 24, 25]. The connection between
the dynamics of the first particle and Painlevé equation is also revealed [26, 27].

In case (1.2), on the other hand, the asymptotics of the correlation function has not
been discussed yet since an integral representation of the correlation kernel has not been
obtained. In this paper, we discuss the generalization of the method in [14] in order to
obtain the integral formula for the correlation kernel in process (1.2) although we could
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consider the generalization of the methods in [7, 23]. In the similar situation of noncolliding
Brownian motion where the particles start from one initial point and converge to fixed
final points at the end, it is revealed that the process is related to the random matrix
model with external source and due to the properties of multiple orthogonal polynomials,
its asymptotic limit can also be obtained [28, 21]. Recently a partial differential equation
describing the dynamics of the first particle is also obtained in this situation [29]. However,
process (1.2) includes the parameters a(i) by which we can change the transition weight
every time step. Therefore, (1.2) is a more general process in the sense that it includes
both a(i) describing the temporary inhomogeneity and boundary parameter µ(4N).

This paper is arranged as follows. In Sec. 2, we discuss the background of this study
especially the result about the process defined by products of determinant [14] and give
our main results: the double integral formula of the correlation kernel (Theorem 2.1) and
its edge scaling limit (Theorem 2.2). The double integral formula of the correlation kernel
is derived in Sec. 3. In Sec. 4, we discuss the edge scaling limit of the correlation kernel
applying the saddle point method to the integral formula. The Concluding remark is given
in Sec. 5.

2 Correlation function

2.1 Determinant representation of correlation function

The determinantal structure of correlation function has been derived for various stochastic
processes such as the Schur process (1.1) [7] and random matrices [30]. For later discussion,
we consider a class of general measures which contains the above measures and describe the
result obtained in [14]. This is obtained by generalizing the discussion about the random
matrix theory in [31].

For the set {x(i)}i=1,··· ,4N−1, where x
(i) = (x

(i)
1 , x

(i)
2 , · · · , x

(i)
M ), we consider the weight

defined by the products of determinants,

wM,4N({x(i)}i=1,··· ,4N−1) =
4N−1∏

r=0

det
(

φr,r+1(x
(r)
i , x

(r+1)
j )

)M

i,j=1
, (2.1)

where {φr,r+1(x, y)}r=1,··· ,4N are some functions on Z
2 and we fix x(0) and x(4N) such that

x
(k)
1 > x

(k)
2 > · · · > x

(k)
M , k = 0, 4N. (2.2)

(In [14], some condition is assumed for the function φr,r+1(x, y) such that all objects that
appear in the discussion converge.)

By using Lindström-Gessel-Viennot’s method [32, 33] (see also [34]), we find that under
condition (2.2), the weights assigned for all configurations but those satisfying

x
(i)
1 > x

(i)
2 > · · · > x

(i)
M (2.3)
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vanish. Namely, when we interpret x
(j)
i as the position of the particle labeled i at time j

as in the previous section, the weight does not vanish only in the case where the particles
do not intersect.

The correlation function of the measure (2.1) R(x
(1)
1 , · · · , x(1)k1

, · · · , x(4N−1)
1 , · · · , x(4N−1)

k4N−1
)

is defined as

R(x
(1)
1 , · · · , x(1)k1

, · · · , x(4N−1)
1 , · · · , x(4N−1)

k4N−1
)

=
1

Z






4N−1∏

i=1

∞∑

x
(i)
ki+1,··· ,x

(i)
M =−∞




wM,4N({x(i)}i=1,··· ,4N−1), (2.4)

where Z =
∏4N−1

i=1

∑∞

x
(i)
1 ,··· ,x

(i)
M =−∞

wM,4N({x(i)}i=1,··· ,4N−1) is the normalization constant.

In [14], Johansson showed that it can be represented as the determinant,

R(x
(1)
1 , · · · , x(1)k1

, · · · , x(4N−1)
1 , · · · , x(4N−1)

k4N−1
)

= det
(

K(r, x
(r)
jr
; s, x

(s)
js
)
)

1≤r,s≤4N−1,0≤jr≤kr,0≤js≤ks
. (2.5)

The correlation kernel K(r1, x1; r2, x2) is expressed as

K(r1, x1; r2, x2) = K̃(r1, x1; r2, x2)− φr1,r2(x1, x2). (2.6)

Here,

φr,s(x, y) =

{∑∞
xr+1=−∞ · · ·

∑∞
xs−1=−∞ φr,r+1(x, xr+1) · · ·φs−1,s(xs−1, y), for r < s,

0, for r ≥ s,
(2.7)

K̃(r1, x1; r2, x2) =

M∑

i,j=1

φr1,4N (x1, x
(4N)
i )(A−1)i,jφ0,r2(x

(0)
j , x2), (2.8)

Aij = φ0,4N(x
(0)
i , x

(4N)
j ). (2.9)

Hence, we find that in general class of measures, which is described by products of deter-
minant, the correlation function is represented as the determinant.

Noticing the Jacobi-Trudi identity [35],

sλ/µ(a) = det
(
hλi−µj+j−i(a)

)
, (2.10)

where hk(a) is the kth complete symmetric polynomial in variables a = (a1, a2, · · · ),

hk(a) =
∑

i1≤···≤ik

ai1 · · ·aik , (2.11)
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we easily find that the weight (1.2) has the form of (2.1), i.e., products of determinants
under the following identification:

x(0) = (0,−1,−2, · · · ), (2.12)

x(4N) = (m1, m2, · · · , mn,−n,−n− 1, · · · ), (2.13)

mi = µ
(4N)
i − i+ 1, (2.14)

x(j) = (λ
(j)
1 , λ

(j)
2 − 1, λ

(j)
3 − 2, · · · ), for j = 1, · · · , 4N − 1, (2.15)

φr,r+1(x
(r)
i , x

(r+1)
j ) =







h
x
(r+1)
i −x

(r)
j
(a(r+1)), for r even,

h
x
(r)
i −x

(r+1)
j

(a(r+1)), for r odd.
(2.16)

Note that in (2.10), the rank of the determinant can be infinite (infinitely many walkers
can move); hence, in this case, M in (2.1) and (2.8) is infinity. Thus, under this identifica-
tion (2.12)-(2.16) with M → ∞, the result (2.5)-(2.9) is applicable to case (1.2).

2.2 Double integral formula

One of the purposes of this paper is to obtain a double integral formula of the correlation
kernel in case (1.2), which is useful for the analysis of the scaling limit as N goes to infinity.
In case of the Schur process (1.1), the integral formula was first obtained in [7] by using the
fermion operators. In this paper, however, for considering the case (1.2), we generalize the
approach in [14] of calculating the inverse of the matrix A in (2.8) in case (2.12)–(2.16). In
the case of the Schur process (1.1), i.e., the case µ = φ in (2.14), the matrix A is a Toeplitz
matrix and its inverse A−1 can be estimated by using the Wiener-Hopf factorization [14].
However, in case (1.2), where µ(4N) is general, we cannot apply the method because A is
not a Toeplitz matrix anymore, which is the main difficulty of this problem.

In this paper, we develop the method of estimating A−1 in the case of the weight (1.2)
and give the double integral formula for the correlation kernel. In the following theorem,
we consider the situation

a(i) = (a
(i)
1 , a

(i)
2 , · · · , a(i)p , 0, 0, 0, · · · ), (2.17)

where 0 < a
(i)
j < 1 for i = 1, · · · , 4N − 1 and j = 1, · · · , p. We can easily find that the

conditions above ensures the convergence of the partition function Z in (2.4).
The theorem is summarized as follows. The proof is given in the next section.

Theorem 2.1. In the case (2.12)–(2.17) and ri = 2ui (i = 1, 2) in (2.6), K̃(2u1, x1; 2u2, x2)
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and φ2u1,2u2(x1, x2) in the correlation kernel (2.6) become

K̃(2u1, x1; 2u2, x2)

=
1

(2πi)2

∫

Cr1

dz1

z1+x1
1

∫

Cr2

dz2

z1−x2
2

p
∏

m=1

∏u1

i=1(1− a
(2i−1)
m /z1)

∏2N
j=u2+1(1− a

(2j)
m z2)

∏2N
k=u1+1(1− a

(2k)
m z1)

∏u2

ℓ=1(1− a
(2ℓ−1)
m /z2)

×
(

z1
z1 − z2

+
1

sµ(4N)(a)

n∑

j=1

mj−1
∑

ℓ′=0

hℓ′(a)z
mj−ℓ′

1

n∑

b=1

(−1)j+bzb−1
2 sµ̃(j)/ν(b)(a)

)

, (2.18)

φ2u1,2u2(x1, x2) =
1

2πi

∫

C1

dz

z1+x2−x1

p
∏

k=1

u2−1∏

i=u1

1

1− a
(2i+1)
k z

u2∏

i=u1+1

1

1− a
(2i)
k /z

, (2.19)

where Cri denotes the contour with radius ri satisfying r1 > r2, hm(a) is the mth complete
symmetric polynomial (2.11) in variables

a = (a
(1)
1 , a

(3)
1 , a

(5)
1 , · · · , a(4N−1)

1 , a
(1)
2 , a

(3)
2 , a

(5)
2 , · · · , a(4N−1)

2 , · · · , a(1)p , a(3)p , a(5)p , · · · , a(4N−1)
p ),

(2.20)
and

µ(4N) = (µ
(4N)
1 , µ

(4N)
2 , · · · , µ(4N)

n ) = (m1, m2 + 1, · · · , mn + n− 1), (2.21)

µ̃(j) = (µ
(4N)
1 + 1, · · · , µ(4N)

j−1 + 1, µ
(4N)
j+1 , · · · , µ(4N)

n ), (2.22)

ν(b) = (1, 1, · · · , 1
︸ ︷︷ ︸

b−1

, 0, · · · , 0
︸ ︷︷ ︸

n−b+1

). (2.23)

As was discussed in [14, 23], the condition (2.17) can be relaxed such that the product
∏p

m=1

Qu1
i=1(1−a

(2i−1)
m /z1)

Q2N
j=u2+1(1−a

(2j)
m z2)

Q2N
k=u1+1(1−a

(2k)
m z1)

Qu2
ℓ=1(1−a

(2ℓ−1)
m /z2)

converges. Note that in case mi = 0(the Schur

process), the second term in (2.18) vanishes and it reduces to the integral formula in [7].

2.3 Edge scaling limit

The benefit of the representation (2.18) is that we can take an asymptotic limit of the
correlation kernel. In this paper, we consider the edge scaling limit of the correlation
kernel in the special situation

x(4N) = (m,−1,−2, · · · ), (2.24)

a(1) = · · · = a(4N) = (α, 0, 0, · · · ). (2.25)

In (2.24) with m = 0, the scaling limit of the correlation function was analyzed in [14]
in order to study the height fluctuation of the PNG model. We discuss how the scaling
behavior depends on the value of m.
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It has been known that in the case m = 0, the trace of the first particle x
(t)
1 , t =

0, · · · , 4N, behaves asymptotically like

lim
N→∞

x
(t)
1

N
= A(t) :=

2α2

1− α2
+

α

1− α2

√

4t/N − (t/N)2. (2.26)

This represents a semi-circle centered at t = 2N . We focus our attention on the fluctuation
of the walkers’ positions xi, i = 1, 2, · · · , around the above limiting value at t = 2N . The
scaling limit is called the edge scaling limit. Precisely, xi and 2ui in (2.18) and (2.19) are
scaled as follows:

xi = A(2ui)N +DN1/3ξi, (2.27)

2ui = 2N + 2CN2/3τi, (2.28)

where A(t) is defined in (2.26) and

D =
α1/3

1− α2
(1 + α)4/3, C =

(1 + α)2/3

α1/3
. (2.29)

The exponent 1/3 (resp.2/3) in (2.27) (resp. (2.28)) characterizes the one-dimensional KPZ
universality [2, 3, 4, 5, 6]. We also scale m in (2.24) as

m = A(2N)N +BN2/3ω, (2.30)

where

B =
2α2/3

(1− α)(1 + α)1/3
. (2.31)

Our result of the scaling limit is summarized as follows. The proof will be given in
Section 4.

Theorem 2.2. In the situation (2.24)–(2.31), the correlation kernel has the following
scaling limit

lim
N→∞

K(2u1, x1; 2u2, x2)
DN1/3

P

=







K2(τ1, ξ1; τ2, ξ2) +
∫∞

0
dλeλ(τ1+ω)Ai(ξ1 − λ)Ai(ξ2), τ1 + ω ≤ 0,

K2(τ1, ξ1; τ2, ξ2)−
∫∞

0
dλe−λ(τ1+ω)Ai(ξ1 + λ)Ai(ξ2)

+Ai(ξ2) exp
(

− (τ1+ω)3

3
+ ξ1(τ1 + ω)

)

, τ1 + ω > 0,

(2.32)

where D is defined in (2.29), P (see (4.4)) is a factor which does not contribute the deter-
minant in (2.5), and

K2(τ1, ξ1; τ2, ξ2) =

{∫∞

0
dνe−ν(τ1−τ2)Ai(ξ1 + ν)Ai(ξ2 + ν), τ1 ≥ τ2,

−
∫ 0

−∞
dνe−ν(τ1−τ2)Ai(ξ1 + ν)Ai(ξ2 + ν), τ1 < τ2.

(2.33)
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When m = 0 in (2.24), which corresponds to case (1.1)(µ(4N) = φ), only the term
K2(τ1, ξ1; τ2, ξ2) is left since this case corresponds to ω → −∞. The correlation kernel
K2(τ1, ξ1; τ2, ξ2) is called the extended Airy kernel, which appeared in the random matrix
theory [36, 37, 38, 39] and the PNG model [14, 18]. Recently, the correlation kernel (2.32)
has also appeared in various fields such as the random matrix with external source (in-
cluding the noncolliding Brownian motion with pinned initial or final condition) [21, 29],
the PNG model with an external source [40, 20], statistics [41], and so on.

3 Integral representation for the correlation kernel

In this section, we give the proof of Theorem 2.1. First, we represent φr,r+1(x, y) (2.16)
in terms of the vertex operators defined in (A.5). The analysis of the Schur process using
the vertex operators were developed in [7, 22]. However, note that in our analysis, we
adopt the one-particle basis whereas in [7, 22], infinitely-many particle state is chosen as
a basis. Basic properties of the vertex operators and symmetric functions are summarized
in Appendix A.

First, we prove (2.19). From (2.10) and (A.13), we have

φr,r+1(x, y) =

{

〈y|H+(s
(r+1))|x〉, for r even,

〈y|H−(s
(r+1))|x〉, for r odd.

(3.1)

Here, the parameter s(j) = (s
(j)
1 , s

(j)
2 , · · · ) is connected to a(j) in (1.2) as

s
(j)
k =

1

k

p
∑

i=1

a
(j)k
i . (3.2)

By using (3.1) and (A.9), we can express φ2u1,2u2 (2.7) as

φ2u1,2u2(x1, x2) = 〈x2|
u2−1∏

i=u1

H+(s
(2i+1))

u2∏

j=u1+1

H−(s
(2j))|x1〉. (3.3)

By applying (A.6) and (A.7) to this equation, we easily get (2.19).
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Next, we consider the integral form of K̃. Eq. (2.8) is written as

K̃(2u1, x1; 2u2, x2)

=
1

(2πi)2

∫

Cr1

dz1

z1+x1
1

∫

Cr2

dz2

z1−x2
2

z1
z2

∞∑

i,j=1

z
x
(4N)
i −1

1 A−1
ij z

x
(0)
j +1

2

(
∞∑

a=−∞

φ2u1,4N(a, x
(4N)
i )z

a−x
(4N)
i

1

)

×
(

∞∑

b=−∞

φ0,2u2(x
(0)
j , b)z

x
(0)
j −b

2

)

=
1

(2πi)2

∫

Cr1

dz1

z1+x1
1

∫

Cr2

dz2

z1−x2
2

z1
z2

∞∑

i,j=1

z
x
(4N)
i −1

1 A−1
ij z

j
2

×
2N−1∏

i=u1

γ(z−1
1 , s(2i+1))

2N∏

j=u1+1

γ(z1, s
(2j))

u2−1∏

k=0

γ(z−1
2 , s(2k+1))

u2∏

ℓ=1

γ(z2, s
(2ℓ)). (3.4)

Here, γ(z, s) is defined in (A.12) and Cri (i = 1, 2) denotes the contour centered at the
origin anticlockwise with radius ri satisfying r2 < r1. In the second equality, we use (3.3)
and (A.6)–(A.8).

Thus, what we have to do is to obtain an explicit form of the inverse of the (semi-infinite)

matrix A (2.9) in case (2.12)– (2.16) and calculate
∑∞

i,j=1 z
x
(4N)
i −1

1 A−1
ij z

j
2. From (3.3), the

matrix A in our case (2.12)–(2.16) can be expressed as

Aij = 〈xj |Λ+(s)Λ−(s
′)|1− i〉, (3.5)

where

xj(= x
(4N)
j ) =

{

mj , for 1 ≤ j ≤ n,

1− j, for n+ 1 ≤ j,
(3.6)

Λ+(s) =
2N∏

j=1

H+(s
(2j−1)), Λ−(s

′) =
2N∏

j=1

H−(s
(2j)), (3.7)

s = (s(1), s(3), · · · , s(4N−1)), s′ = (s(2), s(4), · · · , s(4N)). (3.8)

In order to get A−1, we introduce the following matrix:

A′
ij = 〈1− j|Λ−1

− (s′)P′Λ−1
+ (s)|xi〉, (3.9)

where P
′ is a deformed projection operator

P
′ =

∞∑

j=1

|1− j〉〈xj |. (3.10)

Note that when n = 0 in (3.6), P′ becomes an ordinary projection operator P defined as

P =
∞∑

j=1

|1− j〉〈1− j|. (3.11)
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By the use of P′ and P, we can express the product A′A as

(A′A)ik = 〈xk|Λ+(s)Λ−(s
′)PΛ−1

− (s′)P′Λ−1
+ (s)|xi〉. (3.12)

Let us focus on the term

PΛ−1
− (s′)P′ =

∞∑

p=1

∞∑

p′=1

|1− p〉〈1− p|Λ−1
− (s′)|1− p′〉〈xp′|. (3.13)

Noticing 1 − p′ < 0 and < j|Λ−1
− (s′)|i >= 0 for j > i, which immediately follows from

definition (3.7), we have
PΛ−1

− (s′)P′ = Λ−1
− (s′)P′. (3.14)

Namely, we can change P into the identity operator in (3.13). Thus, we obtain

(A′A)ik = 〈xk|Λ+(s)P
′Λ−1

+ (s)|xi〉. (3.15)

Note that when n = 0, one can easily find that P
′(= P) can also be changed into the

identity operator in (3.15) from the similar discussion about (3.14). Thus, in the case
n = 0, A′A = 1 or, equivalently, A′ is nothing but A−1.

In the case of general n, we can represent the matrix A′A in terms of cj−k(s) and
dj−k(s) defined in (A.14) and (A.15) respectively, i.e.,

cj−k(s) = 〈j|Λ+(s)|k〉 = 〈k|Λ−(s)|j〉, dj−k(s) = 〈j|Λ−1
+ (s)|k〉 = 〈k|Λ−1

− (s)|j〉. (3.16)

By noting cj−k = dj−k = 0 for j − k < 0, we get

A′A =















a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann
an+11 an+12 · · · an+1n 1
...

...
... 1

...
...

...
. . .















, (3.17)

where the region after the n+ 1th column is equivalent to the unit matrix and

aik =

{∑i
j=1 dmj−mi

(s)cmk+j−1(s), 1 ≤ i ≤ n, 1 ≤ k ≤ n,
∑i

j=n+1 cmk+j−1(s)di−j(s) +
∑n

j=1 dmj+i−1(s)cmk+j−1(s), n + 1 ≤ i, 1 ≤ k ≤ n.

(3.18)
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Here, mi is defined in (2.14). Note that the matrix A′A is almost the unit matrix. We
easily find that the inverse of the matrix A′A has the following form:

B := (A′A)−1 =
1

b0















b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

bn1 bn2 · · · bnn
bn+11 bn+12 · · · bn+1n b0
...

...
... b0

...
...

...
. . .















. (3.19)

By introducing

A′′ := (aij)
n
i,j=1, Ã′′

(ji) : ji cofactor of A′′, (3.20)

C = (cmj+i−1(s))
n
i,j=1, (3.21)

we find that the elements b0 and bi,j can be expressed as

b0 = detA′′ = det C, (3.22)

bij =







Ã′′
(ji), 1 ≤ i ≤ n, 1 ≤ j ≤ n

− det

















a11 a12 . . . a1n
...

...
...

aj−11 aj−12 . . . aj−1n

ai1 ai2 . . . ain

aj+11 aj+12 . . . aj+1n

...
...

...

an1 an2 . . . ann

















= −
∑n

k=1 aikbkj , n + 1 ≤ i, 1 ≤ j ≤ n
.

(3.23)

Thus the inverse of the matrix A (2.9) is represented as

A−1 = BA′

=













1
b0

∑n
k=1 b1kA′

k1
1
b0

∑n
k=1 b1kA′

k2 . . .
...

...
1
b0

∑n
k=1 bnkA′

k1
1
b0

∑n
k=1 bnkA′

k2 . . .
1
b0

∑n
k=1 bn+1kA′

k1 +A′
n+1,1

1
b0

∑n
k=1 bn+1kA′

k2 +A′
n+1,2 . . .

1
b0

∑n
k=1 bn+2kA′

k1 +A′
n+2,1

1
b0

∑n
k=1 bn+2kA′

k2 +A′
n+2,2 . . .

...
...













. (3.24)
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By using this expression for A−1, we can represent
∑∞

i,j=1 z
x
(4N)
i −1

1 A−1
ij z

j
2 in (3.4) as

∞∑

i,j=1

zxi−1
1 (A−1)ijz

j
2 =

∞∑

i=n+1

∞∑

j=1

z−i
1 A′

ijz
j
2 +

1

b0

n∑

k=1

∞∑

i=n+1

z−i
1 bik

∞∑

j=1

A′
kjz

j
2

+
1

b0

n∑

k=1

n∑

i=1

zmi−1
1 bik

∞∑

j=1

A′
kjz

j
2. (3.25)

After quite lengthy calculations of this equation, we obtain the following expression

∞∑

i,j=1

zxi−1
1 (A−1)ijz

j
2 =

(
∞∑

k=1

(
z2
z1

)k

+
1

det C

n∑

j=1

mj−1
∑

ℓ′=0

cℓ′(s)z
mj−1−ℓ′

1

n∑

b=1

zb2C̃(bj)
)

×
2N∏

j=1

γ−1(z−1
1 , s(2j−1))γ−1(z2, s

(2j)), (3.26)

where C̃(bj) is the bj cofactor of matrix C. The proof of this equation is given in Appendix

B. By noticing (A.13) and (A.14), we can rewrite cℓ′(s), det C, and C̃(bj) as

cℓ′(s) = hℓ′(a), (3.27)

det C = sµ(4N)(a), (3.28)

C̃(bj) = (−1)j+bsµ̃(j)/ν(b)(a), (3.29)

where a, µ(4N), µ̃(j), and ν(b) are defined in (2.20)-(2.23), respectively.
By substituting (3.26)-(3.29) into (3.4) and noting (3.2) and (A.12), we get the desired

expression (2.18).

4 Asymptotic analysis

In this section, we give the proof of Theorem 2.2. We investigate the asymptotics of the
correlation kernel by the use of the saddle point analysis.

In case (2.24) and (2.25), the correlation kernel defined in (2.18) and (2.19) reduces to

K(2u1, x1; 2u2, x2) = K̃(2u1, x1; 2u2, x2)− φ2u1,2u2(x1, x2)

=
1

(2πi)2

∫

Cr1

dz1

z1+x1
1

∫

Cr2

dz2

z1−x2
2

z1
z1 − z2

(1− α/z1)
u1(1− αz2)

2N−u2

(1− αz1)2N−u1(1− α/z2)u2

+
1

2πi

∫

C1

dz

z1+x2−x1
(1− αz)u1−u2(1− α/z)u1−u2

+

m∑

j=1

hm−j(α
2N)

hm(α2N)

1

2πi

∫

C1

dz1

z1+x1−j
1

(1− α/z1)
u1

(1− αz1)2N−u1
× 1

2πi

∫

C1

dz2

z1−x2
2

(1− αz2)
2N−u2

(1− α/z2)u2
, (4.1)
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where Cr denotes the contour enclosing the origin anticlockwise with radius r and hj(α
2N)

is the jth complete symmetric polynomial (2.11) in variables

α2N = (α, α, · · · , α)
︸ ︷︷ ︸

2N

. (4.2)

In [14], it was shown that the first two terms of the correlation kernel above converge
to the extended Airy kernel in the edge scaling limits (2.27) and (2.28),

lim
N→∞

DN1/3

(2πi)2

∫

Cr1

dz1

z1+x1
1

∫

Cr2

dz2

z1−x2
2

z1
z1 − z2

(1− α/z1)
u1(1− αz2)

2N−u2

(1− αz1)2N−u1(1− α/z2)u2

+
DN1/3

2πi

∫

C1

dz

z1+x2−x1
(1− αz)u1−u2(1− α/z)u1−u2 = P ×K2(τ1, ξ1; τ2, ξ2), (4.3)

where K2(τ1, ξ1; τ2, ξ2) is defined in (2.33) and P is a prefactor which does not contribute
a determinant,

P = (1− α)
2(1+α)2/3N2/3(τ1−τ2)

α1/3 e(τ
3
1−τ32 )/3+ξ2τ2−ξ1τ1 . (4.4)

Thus, we only consider the asymptotics of the last term,

m∑

j=1

hm−j(α
2N)

hm(α2N)
ψ1(x1 − j)ψ2(x2), (4.5)

where

ψ1(x1 − j) =
1

2πi

∫

C1

dz1

z1+x1−j
1

(1− α/z1)
u1

(1− αz1)2N−u1
, (4.6)

ψ2(x2) =
1

2πi

∫

C1

dz2

z1−x2
2

(1− αz2)
2N−u2

(1− α/z2)u2
, (4.7)

under the scaling (2.27)–(2.31). We scale j as

j = DN1/3λ. (4.8)

Here, D is defined in (2.29). This scaling makes a dominant contribution to the asymptotic
limit of (4.5).

First, we consider the function ψ1(x1 − j) . By substituting (2.28) into (4.6), we have

ψ1(x1 − j) =
1

2πi

∫

C1

dz1

z1+x1−j−µN
1

exp(Nfβ,µ(z1)), (4.9)

where

fβ,µ(z) = (1 + β) log(z − α)− (1− β) log(1− αz)− (µ+ 1 + β) log z,

β = CN−1/3τ1, (4.10)
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and we fix µ as

µ =
2α

1− α2
(α +

√

1− β2) = A(2u1), (4.11)

where A(2u1) is defined in (2.26). In (4.10), C is defined in (2.29). We find that due
to (4.11), two saddle points of the function fβ,µ(z) merge to the double saddle point zc(β),

zc(β) =

√
1 + β + α

√
1− β√

1− β + α
√
1 + β

. (4.12)

We also have the relations

fβ,µ(zc(β))

dz
=
d2fβ,µ(zc(β))

dz2
= 0,

d3fβ,µ(zc(β))

dz3
=

2D3

z3c (β)
. (4.13)

Since the main contribution to the integral in (4.9) is given around z ∼ zc(β), z1 may be
transformed to

z1 = zc(β)

(

1− iw1

DN1/3

)

∼ 1 +
τ1 − iw1

DN1/3
. (4.14)

Then, we obtain the relations

exp(Nfβ,µ(z1)) ∼ exp

(

N

(

fβ,µ(zc(β)) +
f ′′′
β,µ(zc(β))

6
(z − zc(β))

3

))

= exp(Nfβ,µ(zc(β))) exp

(
i

3
w3

1

)

, (4.15)

1

zx1−j+1−µN
1

∼ exp((ξ1 − λ)(iw1 − τ1)). (4.16)

In (4.16), we used (2.27). By using (4.14)– (4.16), and

exp (Nfβ,µ(zc(β))) ∼ (1− α)
2(1+α)2/3τ1N

2/3

α1/3 exp(τ 31 /3), (4.17)

we get

DN1/3ψ1(x1 − j) ∼ (1− α)
2(1+α)2/3N2/3τ1

α1/3 exp
(
τ 31 /3− ξ1τ1 + τ1λ

)
× Ai(ξ1 − λ). (4.18)

Similarly ψ2(x2) becomes

DN1/3ψ2(x2) ∼ (1− α)
−2(1+α)2/3N2/3τ2

α1/3 exp
(
−τ 32 /3 + ξ2τ2

)
× Ai(ξ2). (4.19)

Here, in the equations above, we used the integral representation of the Airy function

Ai(x) =

∫ ∞

−∞

dλeixλ+
i
3
λ3

. (4.20)
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Next, we also apply the saddle point analysis to hm−j(α
2N)/hm(α

2N ) in (4.5) under
the scaling (2.30) and (4.8) as N → ∞ . From (A.12), (A.19), and (2.30), hm−j(α

2N) is
expressed as

hm−j(α
2N) =

1

2πi

∫

C1

e−Ng(z) dz

z−j+1
, (4.21)

where the contour C1 represents the unit circle surrounding the origin anticlockwise, and

g(z) = 2 log(1− αz) +

(
2α

1− α
+ δ

)

log z, δ =
Bω

N1/3
. (4.22)

The saddle point wc of g(z) is

wc =
2α + (1− α)δ

2α+ α(1− α)δ
. (4.23)

When we deform the path of z to

z = wc

(

1 +
1− α

α1/2N1/2
iw

)

∼ 1 +
ω

DN1/3
+

1− α

α1/2N1/2
iw, (4.24)

we find

exp (−Ng(z)) ∼ exp(−Ng(wc)− w2),
1

z−j+1
∼ eωλ. (4.25)

Therefore, the asymptotic form of hm−j(α
2N) becomes

hm−j(α
2N) ∼ N−1/2

2
√
π

1− α

α
(1− α)−2N exp

(

−α
1/3ω2N

1
3

(1 + α)2/3
+ ω3/3 + ωλ

)

. (4.26)

Thus, we get
hm−j(α

2N)

hm(α2N)
∼ exp(λω). (4.27)

From (4.18), (4.19), and (4.27), we obtain

DN1/3
m∑

j=1

hm−j(α
2N )

hm(α2N)
ψ1(x1 − j)ψ2(x2) ∼ P ×

∫ ∞

0

dλeλ(τ1+ω)Ai(ξ1 − λ)Ai(ξ2). (4.28)

Here the prefactor P is defined in (4.4). From (4.3) and (4.28) and noting that P does not
contribute to determinant calculation, we finally obtain the desired expression. However,
it is obvious that this expression is valid only for the case τi + ω < 0(i = 1, 2) because in
the case τi + ω > 0, the integration in (4.28) is divergent.
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In order to get the asymptotic form in the latter case, we need another expression
for (4.5). By using (A.19), we rewrite the term

∑m
j=1 hm−j(α

2N)z−j in (4.5),

m∑

j=1

hm−j(α
2N)zj =

zm

(1− α/z)2N
−

0∑

j=−∞

hm−j(α
2N)zj . (4.29)

Thus, we obtain

m∑

j=1

hm−j(α
2N)

hm(α2N )
ψ1(x1−j)ψ2(x2) =

1

hm(α2N)
ϕ(x1)ψ2(x2)−

0∑

j=−∞

hm−j(α
2N)

hm(α2N)
ψ1(x1−j)ψ2(x2),

(4.30)
where

ϕ(x1) =
1

2πi

∫

C1

dz1

z1+x1−m
1

(1− α/z1)
u1−2N(1− αz1)

u1−2N , (4.31)

and ψ1(x)(resp. ψ2(x)) is defined in (4.6) (resp. (4.7)).
We can easily get the asymptotic forms of ϕ(x) by using the saddle point analysis in a

manner similar to the derivation of (4.26). The result is

ϕ(x1)

∼ N−1/2

2π1/2

1− α

α
(1− 2N)−2N(1− α)

2(1+α)2/3τ1N
2/3

α1/3 exp

(

−α
1/3ω2N1/3

(1 + α)2/3
− τ 21ω − τ1ω

2 + ξ1ω

)

.

(4.32)

From (4.19), (4.26), and (4.32), we have

DN1/3 ϕ(x1)

hm(α2N)
ψ2(x2) ∼ P × e−(ω+τ1)3/3+ξ1(ω+τ1)Ai(ξ2). (4.33)

Analogous to the derivation of (4.28), we also have

−DN1/3

0∑

j=−∞

hm−j(α
2N)

hm(α2N)
ψ1(x1 − j)ψ2(x2) ∼ −P ×

∫ ∞

0

dλe−λ(τ1+ω)Ai(ξ1 + λ)Ai(ξ2).

(4.34)

From these two relations, we get the desired expression also in the case τi + ω > 0.

5 Conclusion

In this paper, we have studied the correlation function (2.4) of the process (1.2). This
process is the generalization of the Schur process (1.1) [7] in the sense that in the picture
of nonintersecting random walk, the walkers end at fixed sites, as depicted in Fig. 2. At
first, we have obtained the integral representation of the correlation kernel (Theorem 2.1).
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The result is the generalization of the one in the Schur process obtained in [7, 14, 23]. The
derivation is given in Sec. 3. The key technique is the calculation of the inverse of the matrix
A (2.9) with semi-infinite rank. This technique can be regarded as the generalization of
the one discussed in [14]. Next, by using the integral representation, we have obtained
the edge scaling limit of the correlation kernel in the special case (2.24) and (2.25). The
result is summarized as Theorem 2.2 and the proof is given in Sec. 4. We have found that
the limiting correlation kernel is equivalent to the one obtained in other determinantal
processes such as the random matrix with external source, the PNG model, and statistics.

We list the future problems as follows.

1. In this paper, we have discussed the asymptotics of the correlation kernel only in
the simple case (2.24) and (2.25), although the process (1.2) has many parameters
µ(4N) and {a(i)}i=1,··· ,4N . It would be interesting to investigate the limiting behavior
of the correlation kernel in a more general situation and how it depends on these
parameters.

2. The correlation kernel may be closely related to the orthogonal polynomials. In the
Schur process, the correlation kernel (the first term in (2.18)) can be represented in
terms of the Meixner polynomial in the single time case [42]. On the other hand, it
has been recently revealed that the correlation kernel corresponding to the random
Hermitian matrix with external source can be expressed in terms of the multiple
orthogonal polynomials [43]. In the discretized process (1.2), is the correlation kernel
related to any discrete analog of the multiple orthogonal polynomial?

3. In Theorem 2.1, the second term in (2.18), which is due to the partition µ(4N) in (1.2),
can be expressed by using the Schur function. This fact raises our hope that there
exists some deep connection between the process (1.2) and the theory of integrable
system and representation theory. In particular, it is interesting to view the problem
in perspective of the Kadomtsev-Petviashvili and Toda Lattice hierarchies [44, 45].
Recently, the relationship between the stochastic processes such as the random turn
walk and soliton theory has been discussed in [45]. This approach may be useful for
studying this topic.

A Vertex operators and symmetric functions

Let c†j and ci (i, j ∈ Z = (· · · ,−1, 0, 1, · · · )) be the creation and annihilation operators
that satisfy the fermion anticommutation relation

{ci, c†j} := cic
†
j + c†jci = δij, (A.1)

{ci, cj} = {c†i , c†j} = 0. (A.2)

One particle state |i〉 is defined as
|i〉 = c†i |Ω〉, (A.3)
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where |Ω〉 is the vacuum state without particle.
The mode operators c(z), c†(z) and the vertex operators H±(s), where s = (s1, s2, · · · ),

are defined as follows:

c†(z) =
∞∑

i=−∞

zic†i , c(z) =
∞∑

i=−∞

z−ici, (A.4)

H±(s) = exp

(
∞∑

n=1

snβ±n

)

, where β±n =
∞∑

k=−∞

c†k±nck, (n = 1, 2, · · · ). (A.5)

We summarize the basic properties of these operators, which are used for our discussion,

H±(s)|Ω〉 = |Ω〉, (A.6)

H±(s)c
†(z) = γ(z∓1, s)c†(z)H±(s), (A.7)

H±(s)c(z) = γ(z∓1, s)−1c(z)H±(s), where γ(z, s) = exp

(
∞∑

n=1

snz
n

)

, (A.8)

H+(s)H−(s
′)

〈j|·|i〉
= H−(s

′)H+(s), (A.9)

In (A.9), the symbol
〈j|·|i〉
= means an equality on one particle space. Note that (A.9) is

different from the ordinary one. As discussed in [7] when the product H+(s)H−(s
′) appears

in another vacuum state where infinitely many particles are occupied up to the origin, the
following relation holds:

H+(s)H−(s
′) = e

P

∞

n=1 sns
′

nH−(s
′)H+(s). (A.10)

When we set the variable s of the vertex operators,

sj =
1

j

n∑

i=1

aji , (A.11)

we find that γ(z, s) in (A.8) is given as the generating function of the complete symmetric
function hj(a),

γ(z, s) =
n∏

i=1

1

1− aiz
=
∑

j

hj(a)z
j . (A.12)

By using this and the properties (A.6)–(A.8), we can describe hj(a) as

hj−i(a) = 〈j|H+(s)|i〉 = 〈i|H−(s)|j〉, (A.13)

under the parameterization (A.11).
We also often use the following functions:

cj−k(v) = 〈j|Λ+(v)|k〉 = 〈k|Λ−(v)|j〉, (A.14)

dj−k(v) = 〈j|Λ−1
+ (v)|k〉 = 〈k|Λ−1

− (v)|j〉, (A.15)
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where

Λ±(v) =

2N∏

j=1

H±(v
(j)), (A.16)

v = (v(1), v(2), · · · , v(2N)). (A.17)

The properties that we often use are summarized as follows:

k∑

i=0

ci(v)dk−i(v) =

{

1, for k = 0,

0, for 1 ≤ k,
(A.18)

∞∑

i=0

ci(v)z
i =

2N∏

i=1

γ(z, v(i)),
∞∑

i=0

di(v)z
i =

2N∏

i=1

γ−1(z, v(i)). (A.19)

B Proof of (3.26)

In this appendix, we derive (3.26) by deforming the right hand side of (3.25). By noticing

A′
ij =

∞∑

k=1

dj−k(s
′)dxk−xi

(s) (B.1)

and (A.19), we rewrite the first term of (3.25) as

∞∑

i=n+1

∞∑

j=1

z−i
1 A′

ijz
j
2 =

∞∑

k=1

zk2

2N∏

j=1

γ−1(z2, s
(2j))

∞∑

i=n+1

dxk+i−1(s)z
−i
1

=

∞∑

k=n+1

(
z2
z1

)k 2N∏

j=1

γ−1(z−1
1 , s(2j−1))γ−1(z2, s

(2j))

+

n∑

k=1

zk2

∞∑

i=n+1

dxk+i−1(s)z
−i
1

2N∏

j=1

γ−1(z2, s
(2j)). (B.2)

We need a quite lengthy calculation for the second term of (3.25). At first, by using (3.18)
and (3.23), the part

∑∞
i=n+1 z

−ibik in the term can be represented as

∞∑

i=n+1

z−i
1 bik = −

n∑

j=1

bjk

∞∑

i=n+1

aijz
−i
1

= −
n∑

j=1

bjk

∞∑

i=n+1

(
i−n−1∑

ℓ=0

cmj+i−1−ℓ(s)dℓ(s) +

n∑

a=1

cmj+a−1(s)dma+i−1(s)

)

z−i
1 .

(B.3)
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In this equation, we notice that the term
∑∞

i=n+1

∑i−n−1
ℓ=0 cmj+i−1−ℓ(s)dℓ(s)z

−i
1 becomes

∞∑

i=n+1

i−n−1∑

ℓ=0

cmj+i−1−ℓ(s)dℓ(s)z
−i
1 = −

mj+n−1
∑

ℓ=0

cmj+n−1−ℓ(s)z
ℓ−n
1

2N∏

i=1

γ−1(z−1
1 , s(2i−1)) + z

mj−1
1 .

(B.4)
The derivation is given as follows. By noticing (A.18) and (A.19), one gets

∞∑

i=n+1

i−n−1∑

ℓ=0

cmj+i−1−ℓ(s)dℓ(s)z
−i
1

= −
∞∑

i=n+1

mj+i−1
∑

ℓ=i−n

cmj+i−1−ℓ(s)dℓ(s)z
−i
1 = −

∞∑

i=n+1

mj+n−1
∑

ℓ′=0

cmj+n−1−ℓ′(s)dℓ′+i−n(s)z
−i
1

= −
mj+n−1
∑

ℓ′=0

cmj+n−1−ℓ′(s)z
ℓ′−n
1

(
∞∑

i=n+1

dℓ′+i−n(s)z
−i−ℓ′+n
1

)

= −
mj+n−1
∑

ℓ′=0

cmj+n−1−ℓ′(s)z
ℓ′−n
1

(
2N∏

i=1

γ−1(z−1
1 , s(2i−1))−

ℓ′∑

i=0

di(s)z
−i
1

)

. (B.5)

By noting again (A.18), we find

mj+n−1
∑

ℓ′=0

cmj+n−1−ℓ′(s)
ℓ′∑

i=0

di(s)z
ℓ′−i−n
1 = z

mj−1
1 . (B.6)

Then, we eventually obtain (B.4). On the other hand, from (B.1), the other term
∑∞

i=1A′
kjz

j
2

in the second term in (3.25) is

∞∑

j=1

A′
kjz

j
2 =

k∑

b=1

dmb−mk
(s)zb2

2N∏

i=1

γ−1(z2, s
(2i)). (B.7)

Thus, from (B.3), (B.4), and (B.7), we get

1

b0

n∑

k=1

∞∑

i=n+1

z−i
1 bik

∞∑

j=1

A′
kjz

j
2

= − 1

b0

n∑

k=1

n∑

j=1

bjkz
mj−1
1

∞∑

c=1

A′
kcz

c
2

− 1

b0

n∑

k=1

n∑

j=1

bjk

∞∑

i=n+1

n∑

a=1

cmj+a−1(s)dma+i−1(s)z
−i
1

k∑

b=1

dmb−mk
(s)zb2

2N∏

i=1

γ−1(z2, s
(2i))

+
1

b0

n∑

k=1

n∑

j=1

(

bjk

mj+n−1
∑

ℓ=0

cmj+n−1(s)z
ℓ−n
1

k∑

b=1

dmb−mk
(s)zb2

)
2N∏

i=1

γ−1(z−1
1 , s(2i−1))γ−1(z2, s

(2i)).

(B.8)
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Note that the first term in this equation and the last one in (3.25) cancel each other. We
can also find that the second term in (B.8) cancels out the second one in (B.2) by the
following discussion. By using the properties

n∑

k=1

bjkdmb−mk
(s) = C̃(bj), (B.9)

n∑

j=1

cmj+a−1(s)C̃(bj) = δab det C = δabb0, (B.10)

where C̃(bj) is the bj cofactor of the matrix C (3.21), we have

− 1

b0

n∑

k=1

n∑

j=1

bjk

∞∑

i=n+1

n∑

a=1

cmj+a−1(s)dma+i−1(s)z
−i
1

k∑

b=1

dmb−mk
(s)zb2

2N∏

i=1

γ−1(z2, s
(2i))

= −
n∑

a=1

za2

∞∑

i=n+1

dma+i−1(s)z
−i
1

2N∏

i=1

γ−1(z2, s
(2i)). (B.11)

Furthermore, from relations (B.9) and (B.10), we can also rewrite the third term in (B.8)
as

1

b0

n∑

k=1

n∑

j=1

(

bjk

mj+n−1
∑

ℓ=0

cmj+n−1−ℓ(s)z
ℓ−n
1

k∑

b=1

dmb−mk
(s)zb2

)
2N∏

i=1

γ−1(z−1
1 , s(2i−1))γ−1(z2, s

(2i))

=

(

1

b0

n∑

j=1

mj−1
∑

ℓ′=0

cℓ′(s)z
mj−1−ℓ′

1

n∑

b=1

C̃(bj)zb2 +
n∑

b=1

(
z2
z1

)b
)

×
2N∏

i=1

γ−1(z−1
1 , s(2i−1))γ−1(z2, s

(2i)). (B.12)

From (B.8), (B.11), and (B.12), we get

1

b0

n∑

k=1

∞∑

i=n+1

z−i
1 bik

∞∑

j=1

A′
kjz

j
2

= − 1

b0

n∑

k=1

n∑

j=1

bjkz
mj−1
1

∞∑

c=1

A′
kcz

c
2 −

n∑

a=1

za2

∞∑

i=n+1

dma+i−1(s)z
−i
1

2N∏

i=1

γ−1(z2, s
(2i))

+

(

1

b0

n∑

j=1

mj−1
∑

ℓ′=0

cℓ′(s)z
mj−1−ℓ′

1

n∑

b=1

C̃(bj)zb2 +
n∑

b=1

(
z2
z1

)b
)

×
2N∏

i=1

γ−1(z−1
1 , s(2i−1))γ−1(z2, s

(2i)). (B.13)

Hence, from (3.25), (B.2), and (B.13), we finally obtain (3.26).
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Figure Captions

Fig. 1: The random walk interpretation of the weight (1.1). Note that the ith walker
starts at the point −i + 1 and returns to the initial point at the end by way of the
position λ

(n)
i − i + 1 at time n. In this example, the partitions λ(n) (n = 1, 2, 3) are

λ(1) = (4, 4, 2), λ(2) = (2, 1, 1), and λ(3) = (4, 4, 3, 2, 1), respectively.

Fig. 2: The random walk interpretation of the weight (1.2). In this case, the ith walker

starts at the point 1− i and ends at the point µ
(4N)
i − i+ 1, which is arbitrary but fixed.

27



Fig. 1

Fig. 2
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