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We report on simulations of QCD with many flavors of degenerate quarks, the DBW2 gauge ac-
tion and naive staggered fermions, using the rational hybrid Monte Carlo algorithm. We primarily
focus on eight degenerate quark flavors where a variety of values of the coupling constant and
quark mass have been used in the simulations. The scaling behavior of the hadron spectrum and
the string tension of the heavy quark potential is studied, to probe whether the zero temperature,
continuum limit of the theory breaks chiral symmetry.
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1. Introduction

It is well known that vector-like gauge theories lose asymptotic freedom if the number of
massless fermion species, N f , exceeds some critical value N∗f , where N∗f = 16.5 for QCD. For N f

large, but smaller than N∗f , a weak coupling, infrared fixed point exists in the two-loop beta func-
tion [1, 2], which indicates that as N f is increased from zero an interesting conformal phase may
exist [3] before N f becomes large enough to lose asymptotic freedom. The range of N f where such
a conformal phase may exist is referred to as the conformal window, and lattice simulations pro-
vide an ideal method to determine the location of this window. Using the Schrödinger functional
method, the running of the coupling constant can be measured on the lattice [4], which has given
evidence for a conformal window for QCD for 12 ≤ N f ≤ 16. Additional studies of the behav-
ior of the finite temperature phase transition as a function of N f can be used as a probe into the
conformal window [5]. In this paper, we investigate the question of whether N f = 8 QCD is in
the conventional, chirally broken phase of QCD, or in the conformal phase. Previous simulations
of eight flavor QCD [6] revealed lattice artifacts for the lattice spacings accessible at that time and
prevented a clear statement about the phase of the theory at a single lattice spacing, and no informa-
tion about the continuum limit. Here we use conventional, zero temperature lattice simulations to
measure the chiral condensate and light hadron spectrum for a variety of quark masses and lattice
spacings, so we can study the zero quark mass limit and the continuum limit.

2. Simulations and results

2.1 Choice of algorithm: RHMC

We chose the Rational Hybrid Monte Carlo (RHMC) algorithm [7, 8], because it is exact
within machine precision, its software implementation includes many optimizations. and it is ex-
tensively used for our other 2+1 flavor simulations with domain wall and staggered fermions. To
check it for our current task, we compared our results from a 4 flavor simulation, done as a 2+2
flavor RHMC simulation (which requires the square root of the staggered fermion determinant)
to previous results with Φ algorithm [9]. In Tab. 1, the plaquette, 〈ψ̄ψ〉, and masses of 4 meson
channels are compared.1 The plaquette values agree at the 1 σ level, while the masses differ by 2 to
3 standard deviations, making it likely that there are long autocorrelation times in the simulations
which are not under good control.

2.2 Choice of lattice action: Staggered fermions with DBW2 gauge

In this exploratory work, we seek to understand the basic properties of N f = 8 QCD at zero
temperature, in the chiral and continuum limits, which requires simulations at many different pa-
rameter values. We have chosen to use the naïve staggered fermion action for its remnant chiral
symmetry and its simulation speed. To help control the finite lattice spacing artifacts of staggered
fermions, we have used the DBW2 gauge action, which produces smoother gauge fields at the lat-
tice scale, for a given low energy physical scale, than other gauge actions. This smoothing of the
gauge field might be expected to decrease the lattice artifacts, which we will address shortly.

1In this paper, all numeric values of dimensionful quantities are in lattice unit unless explicitly shown.

2



Lattice QCD with Eight Degenerate Quark Flavors Xiao-Yong Jin

Algorithm Φ RHMC

Run Length 1000∼ 4760 1290∼ 3840
Acceptance Rate 0.87 0.60

Measurement Interval 5 10
Plaquette 0.560130(14) 0.560072(39)
〈ψ̄ψ〉 0.0404(1) 0.04105(35)

mπ 0.3210(40) 0.3127(30)
mπ2 0.3543(35) 0.3495(41)
mρ 0.4763(59) 0.4610(31)
mρ2 0.4777(84) 0.4561(37)

Table 1: A comparison between RHMC and Φ algorithm results using naive staggered fermions and the
Wilson gauge action for N f = 4, mq = 0.015, β = 5.4.
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Figure 1: A comparison of taste symmetry breaking. Left: compare N f = 2 DBW2 results with quenched
results from [10], where the chiral limit has been taken. Right: compare N f = 2 DBW2 results with N f = 2
results from [11, 12] at mπ/mρ = 0.55. Here, except for the “DBW2” points, all labels refer to the type of
valence quark used on a fixed dynamical ensemble.

Additionally, using the DBW2 gauge action should help to compensate for the coarsening of
the gauge fields that comes from adding more fermions. From asymptotic freedom, we know that
adding more fermions to a lattice theory with a fixed low energy scale produces a larger coupling
at the lattice cutoff, and hence coarser gauge fields. These coarse fields, in turn, make any lattice
fermion formulation a poorer approximation to the continuum.

2.3 Measuring taste symmetry breaking

We have measured the taste symmetry breaking between the Goldstone pion and the local,
non-Goldstone pion for our DBW2 simulations with naïve staggered fermions and 2 dynamical fla-
vors. In Fig. 1, our results are compared with results from improved staggered actions in quenched
[10] and 2 flavor (“Staple+Naik” sea quarks with Symanzik improved gauge action) [11, 12] simu-
lations. Although the comparisons are at different lattice spacings, it appears that the DBW2 gauge
action has reduced the splittings seen with naive staggered fermions and the Wilson gauge action.

2.4 Results with eight flavors

We report on simulations of QCD with 8 degenerate quark flavors with three different values of
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β Size mq Trajectories 〈ψ̄ψ〉 mρ r0 a−1/GeV

0.58 163×32 0.025 1330∼ 2760 0.09973(27) 0.812(11) 4.39(56) 1.73(22)
0.015 880∼ 1950 0.06582(13) 0.619(13) 5.05(78) 1.99(31)

243×32 0.025 1060∼ 3390 0.100381(67) 0.7832(30) 4.126(96) 1.628(38)
0.015 960∼ 2930 0.06652(11) 0.6126(28) 5.10(11) 2.014(45)

0.56 163×32 0.024 970∼ 4920 0.13643(20) 0.9431(38) 3.19(18) 1.259(70)
0.016 1040∼ 3730 0.10147(26) 0.803(12) 3.68(15) 1.451(58)

243×32 0.024 1010∼ 3340 0.13668(14) 0.9693(69) 3.120(48) 1.231(19)
0.016 1040∼ 3190 0.10208(12) 0.8085(93) 3.793(97) 1.497(38)
0.008 1000∼ 2970 0.06148(16) 0.6022(73) 4.716(92) 1.861(36)

0.54 163×32 0.03 1010∼ 6220 0.23100(20) 1.258(17) 2.197(52) 0.867(21)
0.02 990∼ 5300 0.19646(28) 1.176(19) 2.350(47) 0.927(19)
0.01 1030∼ 5520 0.14464(37) 0.993(14) 2.849(51) 1.124(20)

243×32 0.01 1070∼ 2860 0.14393(39) 1.022(17) 2.830(48) 1.117(19)

Table 2: A brief summary of our simulation parameters and results. The value of a−1 is determined from
measuring r0 and assuming r0 for N f = 8 has a physical value of 0.5fm.

the coupling: β = 0.58, β = 0.56, β = 0.54; 2 different lattice sizes: 163×32 and 243×32; and 2
or 3 different values of the quark mass for each coupling. Details can be found in Tab. 2, where the
trajectory numbers shown are those trajectories where measurements are done. The length of each
trajectory is 0.5 molecular dynamics time units, and measurements are done every 10 trajectories.
The jackknife re-sampling method is used throughout our analysis and all the errors we present in
this paper are only statistical errors.

For all three β values, we start our RHMC simulations from both ordered and disordered
configurations. In Fig. 2 we show the evolutions of 〈ψ̄ψ〉 for β = 0.58 and β = 0.54. We see
that ordered and disordered starts have values of 〈ψ̄ψ〉 which agree after thermalization. The
metastability for eight flavor simulations with the Wilson gauge action seen in [6] does not appear in
our current work. In addition to the change in action, the earlier work used the inexact R algorithm,
while here we use the exact RHMC. While we have not fully investigated what is responsible
for the disappearance of metastability, it is very helpful to see that it is not present in the current
simulations.

The heavy quark potential is measured on our ensembles using the method in [13], and we fit
the potential to the form

V (r) = V0−
α

r
+σr. (2.1)

Fig. 3 shows the heavy quark potential for the ensemble with β = 0.56, mq = 0.008 on a 243×32
lattice. The red curve is the fit to Eq. (2.1) over the range of data points denoted by triangle symbols,
and the data points shown as diamond symbols are left out of the fit. We can clearly see confining
behavior from the shape of the potential. Values of r0 and r1 are obtained from the fit and we
extrapolate them linearly to the zero quark mass limit as shown in Fig. 4.

It is important to check whether N f = 8 QCD has dynamical chiral symmetry breaking, which
gives 〈ψ̄ψ〉 a non-zero value in the zero quark mass limit. In Fig. 5, we show linear extrapolations
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Figure 2: Evolution of 〈ψ̄ψ〉. Left: β = 0.58, mq = 0.015. Right: β = 0.54, mq = 0.01. In both plots, the
data is binned in blocks of 50 trajectories. Black diamonds and red crosses represents ordered and disordered
starts, respectively, with a lattice size of 163× 32. Blue squares in the right plot are from an ordered start
with a lattice size of 243×32.
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Figure 3: Heavy quark potential measured on ensemble of β = 0.56, mq = 0.008, with lattice size of
243×32.
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Figure 4: Extrapolation to the chiral limit of r0 and r1.
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Figure 5: The chiral limit extrapolation of the chiral condensate (left panel), and the continuum limit of the
chiral limit values. 〈ψ̄ψ〉 is not renormalized.
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Figure 6: Chiral extrapolation of pion mass. Left: Goldstone Pion mass. Right: Non-Goldstone Pion mass
– Scalar channel which corresponds to rσsσ123 = 1++, of the meson propagators.

of 〈ψ̄ψ〉 to mq = 0 (left panel) and the scaling behavior of 〈ψ̄ψ〉(mq = 0) versus a2 (right panel).
The data clearly support a non-zero chiral condensate in the continuum limit.

If N f = 8 QCD is in a phase with broken chiral symmetry, there should be a pseudo-Goldstone
boson whose mass vanishes in the chiral limit. Since staggered fermions have a remnant chiral
symmetry, we should be able to see this Goldstone particle in our simulations. We have measured
the masses for both the Goldstone pion (π) and the local non-Goldstone pion (π2) in our simula-
tions. In Fig. 6, the left panel shows a linear extrapolation of m2

π versus mq. (Clearly there are chiral
logarithm corrections to a simple linear extrapolation, but the coefficient of the chiral log term in
the continuum goes as 1/N f , which may make the effects harder to see here than in physical QCD.
There are also taste breaking effects in the chiral limit. We have not attempted to include any NLO
chiral terms of this kind.) The extrapolated Goldstone mass is consistent with zero, supporting the
conclusion that N f = 8 QCD is in the chirally broken phase. The right panel of Fig. 6 shows the
extrapolation of m2

π2
to the chiral limit, which is clearly non-zero for our coarsest lattice. For the

finer lattices, the taste-symmetry breaking is much smaller.

We have done a linear extrapolation of our measured values for mρ to the chiral limit, and then
extrapolated these to the continuum limit, where we find a non-zero value for mρ(mq = 0).
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3. Conclusions and outlook

We have shown data from lattice simulations of QCD with 8 degenerate quark flavors that
supports, in the chiral and continuum limits, a non-zero value for r0 and r1 from the heavy quark
potential, a non-zero value for 〈ψ̄ψ〉, a massless π and a massive ρ . This argues that the conformal
phase for QCD with N f fermions in the fundamental representation must begin with N f > 8.

Having presented arguments for the behavior of 8 flavor QCD in the chiral and continuum
limits, we are considering looking for evidence of a zero temperature conformal phase in low
energy QCD observables with more flavors.
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