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Interior of a Charged Distorted Black Hole
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We study interior of a charged, non-rotating distorted black hole. We consider static and axisym-
metric black holes, and focus on a special case when an electrically charged distorted solution is
obtained by the Harrison-Ernst transformation from an uncharged one. We demonstrate that the
Cauchy horizon of such black hole remains regular, provided the distortion is regular at the event
horizon. The shape and the inner geometry of both the outer and inner (Cauchy) horizons are stud-
ied. We demonstrate that there exists a duality between the properties of the horizons. Proper time
of a free fall of a test particle moving in the interior of the distorted black hole along the symmetry
axis is calculated. We also study the property of the curvature in the inner domain between the
horizons. Simple relations between the 4D curvature invariants and the Gaussian curvature of the
outer and inner horizon surfaces are found.

PACS numbers: 04.20.Dw, 04.20.Cv, 04.70.Bw Alberta-Thy-07-09

I. INTRODUCTION

In this paper we study how the distortion of a charged,
static black hole generated by axisymmetric, static mat-
ter distribution in its exterior region affects its interior.
This paper is a direct generalization of a similar study
for the distorted neutral black hole interior performed in
[1].

Structure and properties of the charged and/or rotat-
ing black hole interior is a subject that has attracted a
lot of interest during past 30 years (see e.g. [2] and ref-
erences therein). Analytic continuation of the Reissner-
Nordström (RN) and Kerr solutions results in the exis-
tence of infinitely many new ‘universes’ in the black holes
interior. However, the region containing these new ‘uni-
verses’ lies in the future of the Cauchy horizon, a null
hypersurface beyond which predictability breaks down.
A natural question is whether these ‘universes’ are acces-
sible to an observer traveling in the interior of the black
hole. That is why the issue of the Cauchy horizon sta-
bility is so important. Observers traveling along a time-
like world line receive an infinitely blue-shifted radiation
when they approach the horizon. Penrose [3] used these
facts to argue that small perturbations produced in the
black hole exterior grow infinitely near the Cauchy hori-
zon. The evolution of small perturbations inside charged
black holes was analyzed in [4], [5], [6]. These results
confirm Penrose’s intuitive arguments.

If one considers ingoing radiation only and neglects
backscattered radiation, then the resulting Cauchy hori-
zon singularity is weak. Namely, the Kretschmann invari-
ant calculated on the Cauchy horizon is finite. A freely
falling observer detects an infinite increase of energy den-
sity, but tidal forces remain finite as the observer crosses
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the Cauchy horizon [7], [8]. Such singularity is called the
whimper singularity. However, in a realistic situation,
when both incoming and outgoing radiation are present,
the curvature grows infinitely near the Cauchy horizon.
This was demonstrated by Poisson and Israel [9] who con-
sidered the outgoing and ingoing radiation simulated as
two non-interacting radial streams of ingoing and outgo-
ing lightlike particles following null geodesics. Poisson
and Israel showed that such radiation results in an in-
finite growth of the black hole internal mass parameter
and divergence of the Weyl scalar. They called this ef-
fect the mass inflation. Mass inflation for a slowly rotat-
ing, charged black hole was discussed in [10]. Later, Ori
constructed an exact, simplified solution describing this
effect [11]. Using his solution Ori showed that the mass

inflation singularity is weak enough. Namely, the tidal
forces calculated at the Cauchy horizon diverge in the
reference frame of a freely falling observer, but their in-
tegral along the world line of the observer remains finite.
It means that freely falling observers might in fact cross
the Cauchy horizon. For more detailed discussion see e.g.
[12]-[16]. Early numerical analysis of the Cauchy horizon
stability predicted its destruction as a result of classical
instability [17]. Later, analytical [18], [19], and numeri-
cal [20] discussions did not confirm this result. The mass
inflation phenomenon may shed light on the Cauchy hori-
zon stability problem. However, further investigation is
necessary.

Although rotating black holes are of real astrophysical
interest, charged black holes are often considered in the
publications. The reason for this is simple: a charged
black hole also has Cauchy horizon, but its spherical ge-
ometry makes an analysis easier. However, even in this
case such model is very simplified, for in the realistic
world there always exists some matter outside the black
hole. This matter distorts the gravitational field of the
black hole. What is important, that this distortion gen-
erated by the matter distribution in the exterior of the
black hole occurs not only outside the black hole, but
also affects its interior. Since the region near the Cauchy
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horizon is ‘fragile’ and ‘vulnerable’, it is interesting to
analyze how such external matter affects the properties
of the black hole Cauchy horizon. This is one of the
questions we address in our paper. We shall make sev-
eral assumptions simplifying the analysis. Namely, we
assume that the distortions of the black hole are static
and axisymmetric. Moreover, we consider a special class
of charged distorted black hole solutions which can be
generated by the Harrison-Ernst transformation [21], [22]
from a neutral distorted black hole metric. This class in-
cludes a large variety of solutions which can be presented
in an explicit form.

We always assume that in the vicinity of the black
hole and in its interior the Einstein-Maxwell equations
are satisfied, and the matter disturbing the black hole is
located in the black hole exterior. The matter sources
are described by the corresponding energy-momentum
tensor which has to be included in the Einstein-Maxwell
equations. To avoid this one can ‘move’ these sources
to infinity. The ‘price’ for this is that the correspond-
ing spacetime is not asymptotically flat anymore. In our
description of a distorted black hole we follow [23] and
adopt that approach.

Our main problem is to study how the black hole inte-
rior is distorted by the external fields. In particular, we
shall study distortion of the inner (Cauchy) horizon and
its relation to the distortion of the outer (event) horizon.
Let us emphasize that our consideration is completely
classical, and we do not consider quantum effects which
may play an important role in the charged black hole in-
terior. Discussion of these effects can be found e.g. in
[24]-[27].

It should be emphasized that the study of the black
hole interior is a dynamical problem. The geometry of
the black hole interior is similar to the geometry of a con-
tracting, anisotropic, homogeneous ‘universe’. To study
how the evolution of this ‘universe’ is modified by an ex-
ternal influence, one must study first the modification of
the external geometry of the black hole and use these
results to find the corresponding modification of the ge-
ometry of the event horizon. This gives the initial data
which determine the evolution of the black hole interior.
In this paper we study a simple case when the distortion
of the black hole in the exterior region is both station-
ary and axisymmetric. A similar problem for the neutral
black hole was studied earlier in [1].

This paper is organized as follows. Section II collects
the results concerning the charged distorted black hole
solution generated by the Harrison-Ernst transformation
technique. We remind these results mainly in order to fix
the notations we use in the main part of the paper. In
Section III we establish special duality relations between
properties of the inner and outer horizons for the charged
distorted black hole. In Sections IV and V we study the
Gaussian curvature of the horizon surfaces and present
their isometric embedding diagrams. In Section VI we
discuss how the black hole distortion affects the maximal
proper time of a free fall of a test particle moving along

the axis of symmetry in the black hole interior. In Section
VII we establish a relation between the spacetime curva-
ture invariants near the horizons and their Gaussian 2D
curvatures. We summarize and discuss our results in Sec-
tion XIII. Necessary details are included in the appendix.
In this paper we use the units where G = c = 1, and the
sign conventions adopted in [28].

II. METRIC OF A DISTORTED RN BLACK

HOLE

A. Static, axisymmetric Einstein-Maxwell

space-time

In this Section following [29], [30], [31] we present a
solution for static, axisymmetric distorted charged black
hole. This solution is obtained by applying the Harrison-
Ernst transformation [21], [22] to the Weyl metric of a
distorted vacuum black hole. Here we reproduce the basic
relations, mainly in order to explain notations we shall
use later.
The metric of charged distorted black hole is a special

solution of the Einstein-Maxwell equations

Rαβ = 8π Tαβ , (1)

∇βFαβ = 0 , ∇[αFβγ] = 0, (2)

8π Tαβ = 2F γ
α Fβγ −

1

2
gαβFγδF

γδ. (3)

Here, Fαβ = ∇αAβ −∇βAα, and Aα is the electromag-
netic 4-potential. The nabla stands for covariant deriva-
tive defined with respect to the metric gαβ.
Before we proceed with description of a charged dis-

torted black hole, let us make a few remarks about
charged black hole solution in the absence of distortions.
This is the well-known Reissner-Nordström solution (see
e.g. [34])

ds2 = −Fdt2 + F−1dr2 + r2(dθ2 + sin2 θdφ2), (4)

F = 1− 2M

r
+
Q2

r2
, Aα = −Φ0δ

t
α , Φ0 =

Q

r
. (5)

Here, M is the black hole mass, and Q is its electric
charge. We shall consider non-extremal black holes with
|Q| < M . The spacetime is static and asymptotically
flat. It has a timelike singularity at r = 0. The black hole

horizons are defined by r± =M ±
√

M2 −Q2, where the
upper sign stands for the event horizon, and the lower
sign stands for the Cauchy horizon. Correspondingly, we
denote these horizons as H(±).
It is convenient to make the following coordinate trans-

formation

r =M(1 + pη) , p =

√

M2 −Q2

M
, η ∈ (−1/p,∞), (6)

and to rewrite the Reissner-Nordström solution in the
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following form

ds2 = −p
2(η2 − 1)

(1 + pη)2
dt2 +M2(1 + pη)2

×
[

dη2

η2 − 1
+ dθ2 + sin2 θdφ2

]

, (7)

Φ0 =

√

1− p2
(1 + pη)

. (8)

In these new coordinates η = η± = ±1 corresponds to
the horizons of metric (7), and η = −1/p corresponds to
the black hole singularity.
The general form of static, axisymmetric metric in pro-

late spheroidal coordinates (η, cos θ) reads

ds2 = −e2Udt2 +M2p2e−2U

[

e2V (η2 − cos2 θ)

×
(

dη2

η2 − 1
+ dθ2

)

+ (η2 − 1) sin2 θdφ2
]

, (9)

where the metric functions U and V depend on (η, θ)
coordinates. The corresponding electrostatic 4-potential
is

Aα = −Φ(η, θ)δ t
α . (10)

B. The Harrison-Ernst transformation

The Einstein-Maxwell equations for U and Φ are the
Ernst equations [22], which in our case of static spacetime
(9) take the following form

∇
(

e−2U∇E
)

= 0 , ∇
(

e−2U∇Φ
)

= 0. (11)

Here, E = e2U − Φ2 is the Ernst potential, and ∇ is the
nabla operator defined with respect to the 3D flat metric

dl2 = (η2 − cos2 θ)

[

dη2

η2 − 1
+ dθ2

]

+ (η2 − 1) sin2 θdφ2.

(12)

There exists a special class of solutions where the Ernst
potential E is an analytic function of Φ. Under this as-
sumption equations (11) imply

d2E
dΦ2

= 0. (13)

If spacetime is asymptotically flat, we choose U = Φ = 0
at infinity. In this case a general solution of (13) can be
written as

E = 1− 2
√

1− p2
Φ. (14)

We shall keep this relation in our consideration. Follow-
ing [22] it is convenient to parametrize E and Φ as follows

E =
ξ − 1

ξ + 1
, Φ =

√

1− p2
ξ + 1

, (15)

where ξ is the auxiliary Ernst potential. Using (11) one
obtains the following equation for ξ

(ξ2 − p2)∇2ξ − 2ξ∇ξ · ∇ξ = 0. (16)

In the absence of electric field, Φ = 0, the Ernst equa-
tion (11) is

Ē∇2Ē = ∇Ē · ∇Ē , (17)

where Ē = e2Ū , and Ū corresponds to vacuum uncharged
solution. In this case one can also use parametrization
(15) which gives

Ē =
ξ̄ − 1

ξ̄ + 1
, (18)

and the Ernst equation (17) takes the form

(ξ̄2 − 1)∇2ξ̄ − 2ξ̄∇ξ̄ · ∇ξ̄ = 0. (19)

Comparing (16) and (19) we can derive the relation be-
tween the vacuum and the electrostatic Ernst potentials.
This is the Harrison-Ernst transformation:

ξ = pξ̄. (20)

Thus, if we know a solution to vacuum Einstein equations
Ū , we can apply (20) and (15) to obtain the correspond-
ing solution U , and the electrostatic potential Φ obeying
the Einstein-Maxwell equations. Namely, using expres-
sions (20), (18) and (15) we derive

e2U =
4p2e2Ū

[1 + p− (1− p)e2Ū ]2 , Φ =

√

1− p2(1− e2Ū )
1 + p− (1 − p)e2Ū .

(21)

These expressions determine the charged version of elec-
trically neutral, vacuum static solution. For exam-
ple, starting with the Schwarzschild black hole solution
we can derive the Reissner-Nordström black hole. If
Schwarzschild black hole is distorted by neutral exterior
matter, these expressions electrically charge both, the
black hole and the matter.
In the next subsection we apply this ‘charging’ proce-

dure to the Weyl static metric describing a vacuum, ax-
isymmetric distorted black hole, and obtain electrically
charged distorted black hole. We discuss the correspond-
ing metric in the next subsection.

C. Charged distorted black hole

Now we are ready to present a solution for a charged,
axisymmetric distorted black hole. Following to the pro-
cedure presented in the previous subsection we start with
the vacuum solution representing axisymmetric distorted
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Schwarzschild black hole which we write in the form [1],
[32]

ds2 = −e2Ūdt2 +M2e−2Ū

(

e2V̄ (η2 − cos2 θ)

×
[

dη2

η2 − 1
+ dθ2

]

+ (η2 − 1) sin2 θdφ2
)

. (22)

e2Ū =
η − 1

η + 1
e2Û , e2V̄ =

η2 − 1

η2 − cos2 θ
e2V̂ . (23)

For undistorted Schwarzschild solution Û = V̂ = 0. For
the distorted metric the vacuum Einstein equations for
Û and V̂ distortion fields imply

(η2 − 1)Û,ηη + 2ηÛ,η + Û,θθ + cot θÛ,θ = 0, (24)

V̂,η = N
(

η[(η2 − 1)Û2
,η − Û2

,θ] + 2(η2 − 1) cot θÛ,ηÛ,θ

+ 2ηÛ,η + 2 cot θÛ,θ

)

, (25)

V̂,θ = −N
(

(η2 − 1) cot θ[(η2 − 1)Û2
,η − Û2

,θ]

− 2η(η2 − 1)Û,ηÛ,θ + 2(η2 − 1)Û,η − 2ηÛ,θ

)

. (26)

Here, N = sin2 θ(η2− cos2 θ)−1, and comma stands for a
partial derivative. Once the solution to equation (24) is

found, V̂ can be determined by integration of (25), (26).

Details of derivation of Û can be found for example in
[34], [1]. Regularity of the distorted black hole horizon

implies that Û can be decomposed over the Legendre
polynomials of the first kind

Û =
∑

n>0

anPn(η)Pn(cos θ). (27)

Thus, Û and its derivatives are everywhere regular. Using
this decomposition one can write the distortion field in
equivalent form [29], [30]

Û =
∑

n>0

cnR
nPn, (28)

Pn = Pn (η cos θ/R) , R = (η2 − sin2 θ)1/2 . (29)

Here, the constant coefficients cn’s define the distortion
field. We call these coefficients the multipole moments

[35]. The multipole moments uniquely characterize the
distortion. Later we discuss some examples illustrating
nature of distortion defined by the lowest multipole mo-
ments.

The distortion field V̂ can be written in a closed form
as a sum of two terms V̂ = V̂1 + V̂2 (see e.g. [29, 30]).

The first term, V̂1, is linear, and the second one, V̂2, is

quadratic in cn’s

V̂1 =
∑

n>1

cn

n−1
∑

l=0

[

cos θ − η − (−1)n−l(η + cos θ)
]

RlPl,

(30)

V̂2 =
∑

n,k>1

nkcnck
n+ k

Rn+k(PnPk − Pn−1Pk−1). (31)

An equilibrium of the black hole with respect to the dis-
tortion fields means that the distortion field Û takes the
same values at the points of the symmetry axis on the
black hole outer horizon (see e.g. [23]),

Û(η = 1, θ = 0) = Û(η = 1, θ = π) ≡ u0. (32)

We can rewrite this condition in terms of the multipole
moments. Using (28), (29) and the property of the Leg-
endre polynomials,

Pn(±1) = (±1)n, (33)

the equilibrium condition reads

∑

n>0

c2n+1 = 0, (34)

and one has

u0 =
∑

n>0

cn =
∑

n>0

c2n . (35)

Thus, a static, axisymmetric, distorted black hole is at
equilibrium if the sum of odd multipole moments of the
distortion vanishes. The equilibrium condition implies
the local flatness (absence of conical singularities) along
the symmetry axis of the black hole. Namely,

V̂ (η, θ = 0) = V̂ (η, θ = π) = 0. (36)

To obtain a charged version of the distorted black hole
it is sufficient to derive U and Φ from Ū (see (23), (28))
using the Harrison-Ernst transformation (21). We have:

e2U =
4p2(η2 − 1)e2Û

[(1 + p)(η + 1)− (1− p)(η − 1)e2Û ]2
, (37)

Φ =

√

1− p2[η + 1− (η − 1)e2Û ]

(1 + p)(η + 1)− (1− p)(η − 1)e2Û
. (38)

Remarkably, the Harrison-Ernst transformation does
not alter equations (25) and (26). Thus, U and Φ, given
by (37), (38), and V̄ , which is determined by (23), (30)
and (31), solve the corresponding Einstein-Maxwell equa-
tions. The axisymmetric distorted RN solution is given
by (9), (10) with (37), (38) and V = V̄ . A more general
case of distorted, electrically charged, rotating black hole
is considered in [30].
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D. Dimensionless form of the metric

The black hole metric contains only one essential di-
mensional parameter, say its mass, while all other pa-
rameters can be presented in dimensionless form. It is
convenient to write metric (9) in the following dimen-
sionless form adopted to the black hole horizons H(±):

ds2 = Ω2
±dS

2
±, (39)

dS2
± = −η

2 − 1

∆±
e2UdT 2

± +
∆±

η2 − 1
e−2U+2V̂ dη2

+ ∆±e
−2U

(

e2V̂ dθ2 + sin2 θdφ2
)

, (40)

Ω± = M(1± p)e∓u0 =M ′(1 ± p′). (41)

For dS2
±, T± = κ±t, and κ± is the surface gravity

κ± =
(1 + p′)eu0 − (1− p′)e−u0

2M ′(1 ± p′)2 . (42)

We also use the following expressions for the metric func-
tions ∆± and U

∆± =
δ±1

4δ

[

η + 1− δe2U(η − 1)
]2
, (43)

U = Û − u0 , δ = δ0e
2u0 =

1− p
1 + p

e2u0 =
1− p′
1 + p′

.

(44)

Together with the original parametersM and p it is con-
venient to use the related parameters

M ′ =
M

2

[

(1 + p)e−u0 + (1− p)eu0

]

, (45)

p′ =

√

M ′2 −Q2

M ′
. (46)

In the absence of distortion M ′ =M is the Komar mass
of RN black hole measured at asymptotic infinity. In
the case Q = 0, M ′ is the local mass of a distorted
Schwarzschild black hole defined in [23].
The coordinate η changes from η =∞ (a spatial infin-

ity) to the region of η < −1 where the spacetime singu-
larity is located (see subsection E). As in the case of RN
black hole (7), the horizons of metric (40) are defined by
η = η± = ±1. As we mentioned earlier, we shall use the
notation H(±) for the outer (+), and for the inner (−)
horizons. To indicate that a dimensional quantity (. . .) is
calculated at the black hole horizons H(±), we shall use a
superscript (±), and denote this quantity as (. . .)(±) [36].
As we shall see in the next section, the form of metric

(39) is convenient for the analysis and comparison of the
properties of the inner and outer black hole horizons. 2D
metrics on the horizon surfaces can be obtained by taking
T = const., and η = η± = ±1 in the metric. In the
next Section we show that the surface area of the outer
(event) horizon calculated for the dimensionless metric
dS2

+ is equal to 4π. Similarly, the surface area of the

inner (Cauchy) horizon calculated for the metric dS2
− is

also equal 4π. These normalization conditions specify
the form of the conformal factor Ω± in (39). The ‘real’
(dimensional) areas of the horizon surfaces are

A(±) = 4πΩ2
± , (47)

and the ratio of these areas is

A(+)/A(−) = (Ω+/Ω−)
2 =

(

1 + p′

1− p′
)2

≡ δ−2 . (48)

In what follows, we shall discuss different geometrical
objects, such as the Kretschmann invariant K, the Weyl
scalar C2,

K = RαβγδR
αβγδ , C2 = CαβγδC

αβγδ , (49)

and the Gaussian curvature of the 2D horizon surface K.
We shall use the same notations with an index ± for an
object calculated for the metric dS2

±. One has

K = Ω−4
± K± , C2 = Ω−4

± C2± , K = Ω−2
± K± . (50)

To study the interior region we can use any of these two
forms of the dimensionless metric dS2

±. Certainly, the
‘physical’ result, calculated for the metric ds2 will be the
same.
The dimensionless electrostatic potential for metric

(40) is given by

Φ± =

√
δ∆

−1/2
±

(e2u0 − δ)
[

η + 1− (η − 1)e2U+2u0

]

. (51)

It is related to electrostatic potential (38) as follows

Φ = Ω±κ± Φ±. (52)

The non-vanishing dimensionless components of the elec-
tromagnetic field Fµν are defined by

F±T±η = Φ±,η =
δ±1/2

∆±
e2U [(1− η2)U,η − 1] , (53)

F±T±θ = Φ±,θ =
δ±1/2

∆±
e2U (1− η2)U,θ . (54)

E. Singularities

In this paper we mainly focus on study of the hori-
zons H(±), and the inner domain located between the
horizons. Since one cannot trust the metric obtained by
the analytical continuation of the exterior metric beyond
the inner (Cauchy) horizon, it is reasonable to postpone
study of the regions close to the spacetime singularity, un-
til the classical and quantum (in)stability will be proved.
For this reason we give only a couple of remarks about
properties of the singularities in the analytic continuation
of the charged distorted black hole solution.
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The curvature and the electromagnetic field invariants
diverge for ∆± = 0, i.e. for

η = −1 + δ0e
2Û

1− δ0e2Û
, (55)

indicating the spacetime singularity. For RN black hole
the singularity is located at η = −1/p, p ∈ (0, 1], corre-
sponding to r = 0. Analyzing expression (55) we see that

for Û 6 0 the singularity is located in the region η < −1,
whereas for Û > 0 the space-time singularity is naked
and located outside the outer horizon, η > 1. Thus, if
the distortion field Û satisfies the strong energy condi-
tions, i.e. Û 6 0, the spacetime outside the black hole
outer horizon is regular, and the singularity is located
behind the inner (Cauchy) horizon.

III. DUALITY RELATIONS BETWEEN THE

INNER AND OUTER HORIZONS

In this Section we describe special symmetry relations
between the inner and outer horizons. Consider a 2D
subspace T± = const., φ = const. orthogonal to the cor-
responding Killing vectors. In the coordinates

η = cosψ , ψ ∈ [0, π] (56)

the subspace metric is

dΣ2
± = ∆±e

−2U+2V̂
[

−dψ2 + dθ2
]

. (57)

Fig. 1 illustrates the Carter-Penrose diagram for these
metrics. Lines ψ ± θ = const. are null rays propagating
from the outer to the inner horizon within the 2D sub-
space. One of such null rays is shown in the figure. It
starts at point A on the outer horizonH(+), goes through
the “north pole” at θ = π, and reaches point B at the
inner horizon H(−).

FIG. 1: The Carter-Penrose diagram for (ψ, θ) subspace of the
charged distorted black hole interior. The arrows illustrate
propagation of future directed null rays. Points A and B are
symmetric with respect to the central point C(π/2, π/2).

Consider a transformation RC representing the reflec-
tion of coordinates (ψ, θ) with respect to the ‘central
point’ C in the interior region

RC : (ψ, θ)→ (π − ψ, π − θ). (58)

This transformation determines a map R∗
C between func-

tions defined in the inner domain and on its boundaries

f∗ = R∗
C(f) , f∗(ψ, θ) = f(π − ψ, π − θ) . (59)

Using the relations (28), (29), (30) and (31) we obtain

U∗(ψ, θ) ≡ U(π − ψ, π − θ) = U(ψ, θ), (60)

V̂ ∗
1 (ψ, θ) ≡ V̂1(π − ψ, π − θ) = −V̂1(ψ, θ) , (61)

V̂ ∗
2 (ψ, θ) ≡ V̂2(π − ψ, π − θ) = V̂2(ψ, θ) . (62)

It is easy to see that the points A and B connected
by a null ray (see Fig. 1) are related by the reflection
RC . Thus, the transformation R∗

C determines a map
between functions on the inner and outer horizons. Now
we demonstrate that for U and V̂ this is a symmetry
transformation. In other words, the values of U and V̂
on the inner horizon, ψ = π, are determined by their
values on the outer horizon, ψ = 0.
Using (60), (28), (29) and the properties of the Legen-

dre polynomials (33) we derive

U(π, π − θ) = U(0, θ) =
∑

n≥0

cn cos
n θ − u0. (63)

Expressions (29), (30), (31) and (33) give

V̂1(0, θ) = −(1− cos θ)
∑

n>1

cn

n−1
∑

l=0

cosl θ

−(1 + cos θ)
∑

n>1

(−1)ncn
n−1
∑

l=0

(− cos θ)l = 2U(0, θ),

V̂2(0, θ) = 0. (64)

Thus, using (61) and (62) we have

V̂ (π, π − θ) = −V̂ (0, θ) = −2U(0, θ). (65)

The above expressions (63) and (65) allow one to estab-
lish special symmetry relations between the geometric
properties of the inner and outer horizons. We call rela-
tions (63), (65) the duality relations.
Let us denote

u±(θ) =
∑

n≥0

(±1)ncn cosn θ − u0. (66)

As we shall see below, this function defines boundary
values of the distortion fields, and as a result, the metric
on the black hole horizons. It is easy to check that

u±(θ) = u∓(π − θ) , u±(0) = u±(π) = 0. (67)
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Expression (66) implies that the functions u+(θ) and
u−(θ) transform into each other under reflection with re-
spect to the point θ = π/2. This transformation property
is directly related to the properties of the distortion field
U . Namely, using (63), (67), and (28), (29) we derive the
following boundary values of U

U(0, θ) = u+(θ) , U(π, θ) = u−(θ), (68)

U(ψ, 0) = u+(ψ) , U(ψ, π) = u−(ψ). (69)

Analogously, using (65), (68), (67) and (36) we derive the

boundary values of V̂

V̂ (0, θ) = 2u+(θ) , V̂ (π, θ) = −2u−(θ), (70)

V̂ (ψ, 0) = 0 , V̂ (ψ, π) = 0. (71)

Thus, the distortion fields calculated on the inner horizon
are expressed through those calculated on the outer hori-
zon. This fact allows one to make important conclusions
about the distortion of the Cauchy horizon.
The boundary values of the distortion fields U and V̂

define symmetry properties of the metrics on the black
hole horizon surfaces. The surface of the outer and the in-
ner horizon is defined by T± = const. and η = η± = ±1,
respectively. The corresponding dimensionless metrics
derived from metric (40) by applying (56) and the bound-
ary conditions (68) and (70) are

dσ2
± = e±2u±dθ2 + e∓2u± sin2 θdφ2. (72)

The dimensional metrics on the horizon surfaces are (see
(39))

dσ(±)2 = Ω2
±dσ

2
±. (73)

Here, and in what follows u± ≡ u±(θ). The metric dσ2
+

coincides with the metric on the distorted Schwarzschild
black hole horizon surface [1]. The dimensionless areas
of the horizon surfaces are

A(+) = A(−) = 4π. (74)

The metrics dσ2
+ and dσ2

− are related to each other by
the transformation

u+ ←→ −u−, (75)

which according to (66) implies the following duality re-

lations between the outer and the inner horizons

c2n ←→ −c2n , c2n+1 ←→ c2n+1. (76)

Thus, the metrics dS2
± are identical for distortions which

have only odd multipole moments. The derived dual-
ity relations imply in particular that the inner (Cauchy)
horizon of a distorted charged black hole solution ob-
tained by the Harrison-Ernst transformation is regular,
if the outer horizon is regular. This conclusion and its
generalization to the case of rotating and charged black
holes was proven recently in [41], [42].

IV. GAUSSIAN CURVATURE

In this section we discuss geometry of the distorted
horizon surfaces. Gaussian curvature is a natural mea-
sure of intrinsic curvature of a 2D surface. It is equal
to 1/2 of its scalar curvature. Gaussian curvature of a
horizon surface was studied by several authors (e.g. [43]-
[46]). For the metric (72) the Gaussian curvature is given
by

K± = e∓2u±
[

1± u±,θθ ± 3 cot θu±,θ − 2u2±,θ
]

. (77)

The dimensional Gaussian curvatures associated with
metrics (73) are

K(±) = Ω−2
± K±. (78)

We shall illustrate our analysis of the charged distorted
black hole considering simple examples of the lowest or-
der multipole distortions. Namely, we shall consider
quadrupole and octupole distortions for which the cor-
responding functions u± read

u± = −c2 sin2 θ , u± = ∓c3 sin2 θ cos θ. (79)

Here, c2 and c3 are the quadrupole and the octupole mo-
ments, respectively.

a b

FIG. 2: Regions of positive and negative Gaussian curvature
for the outer horizon surface. Plot (a) illustrates the regions
for different values of the quadrupole moment. Plot (b) illus-
trates the regions for different values of the octupole moment.
Curves separating these regions correspond to zero Gaussian
curvature.

Regions of positive and negative Gaussian curvature
for different values of the quadrupole and octupole mo-
ments, for the outer horizon surface, are presented in Fig.
2. From the figure we see that for the quadrupole dis-
tortion regions of negative Gaussian curvature near the
black hole poles (θ = 0, π) correspond to high positive
values of c2, and near its equator (θ = π/2) to high neg-
ative values of c2. Using (77), (35) and the auxiliary
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expressions

u±,θ(θ) = −
∑

n≥0

(±1)ncnn sin θ cosn−1 θ, (80)

u±,θθ(θ) =
∑

n≥0

(±1)ncnn cosn−2 θ[n sin2 θ − 1], (81)

we derive

K±|θ=0 = 1± 4u
(2)
± , K±|θ=π = 1± 4u

(2)
∓ , (82)

K±|θ=π/2 = e±2(u0−c0)(1± 2c2 − 2c23). (83)

Here,

u
(2)
± = −

∑

n≥0

(±1)ncnn. (84)

Thus, the sign of the Gaussian curvature strictly depends
on the distortion field. Using these expressions we derive
that for the quadrupole distortion Gaussian curvature of
the outer horizon surface is positive at the poles for c2 <
1/8, and on the equator for c2 > −1/2. According to
the duality relations (76) regions of positive and negative
Gaussian curvature of the inner horizon surface can be
constructed by mirror reflection of Fig. 2 with respect to
the line c2 = 0.

a b

FIG. 3: Dimensionless Gaussian curvature K+ of the outer
horizon surface. (a) The quadrupole distortion: c2 = −2/3
(line 1), c2 = 2/3 (line 2), and c2 = 1/9 (line 3). (b) The
octupole distortion: c3 = −2/3 (line 1), and c3 = 1/9 (line
2). Dashed horizontal lines ofK+ = 1 correspond to RN black
hole.

Fig. 2b illustrates that there is a symmetry between
the regions of positive and negative Gaussian curvature
and signs of the octupole moment. Namely, the trans-
formation c3 → −c3, θ → π/2 − θ leave the figure un-
changed. Using (82) we derive that for c3 > 1/8 Gaussian
curvature is negative on the “north” pole and positive on
the “south” pole, whereas for c3 < −1/8 it is negative
on the south pole and positive on the north. In addi-
tion, there are the regions of negative Gaussian curvature
near the “tropics” (±23◦26′22′′ from the equator), i.e.
near θ− ≈ 1.165 (corresponding to ≈ 23◦16′39′′ from the

equator) for c3 < −0.333, and θ+ ≈ 1.977 (correspond-
ing to ≈ −23◦16′39′′ from the equator) for c3 > 0.333.
According to the duality relations (76) Gaussian curva-
ture of the inner horizon surface is identical to that of
the outer horizon surface. Dimensionless Gaussian cur-
vature of the outer horizon surface for certain values of
the quadrupole and octupole moments is plotted in Fig.
3.
As we shall see in Section VII, the curvature and

the electromagnetic field invariants calculated on and at
the vicinity of the black hole horizons are expressed in
terms of the corresponding Gaussian curvatures and their
derivatives.

V. EMBEDDING

To visualize the distorted horizon surfaces we present
their isometric embedding into a flat 3D space. To con-
struct the embedding we consider an axisymmetric 2D
surface parametrized as follows

ρ = ρ(θ) , z = z(θ). (85)

Let us embed this surface into a flat 3D space with the
metric in cylindrical coordinates (z, ρ, φ):

dl2 = ǫdz2 + dρ2 + ρ2dφ2, (86)

where for Euclidean space ǫ = 1, and for pseudo-
Euclidean space ǫ = −1 [48]. The geometry induced on
the surface is given by

dl2 = (ǫz2,θ + ρ2,θ)dθ
2 + ρ2dφ2. (87)

Matching metrics (72) and (87) we derive the following
embedding map

ρ = e∓u± sin θ , z =

∫ π/2

θ

Z dθ, (88)

Z2 = ǫe±2u± [1− e∓4u±(cos θ ∓ u±,θ sin θ)2]. (89)

From (89) we see that if the expression in the square
brackets is negative, an isometric embedding into 3D Eu-
clidean space is not possible, and we should take ǫ = −1.
According to the duality relations (76) it is enough

to consider embedding of the outer horizon surface only.
The shape curves of the outer horizon surface are pre-
sented in Fig. 4. The embedding diagrams for the outer
horizon surface can be obtained by rotation of the curves
around the vertical axis of symmetry lying in the plane of
the figure, parallel to z axis. Note, that the change in sign
from ‘+‘ to ‘−‘ of the quadrupole moment corresponds to
deformation of the rotational curve from oblate to prolate
and vice versa. This transformation corresponds to the
duality relations (76) between the outer and inner hori-
zon surfaces. The change in sign of the octupole moment
corresponds to overturn of the rotational curve preserv-
ing its shape.
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a b

FIG. 4: The shape of the outer horizon surface. The shape
curves are shown in (ρ, z) plane. (a) The quadrupole distor-
tion: c2 = −2/3 (line 1), c2 = 2/3 (line 2), and c2 = 1/9
(line 3). (b) The octupole distortion: c3 = −2/3 (line 1), and
c3 = 1/9 (line 2). Regions embedded into pseudo-Euclidian
space are illustrated by doted lines. Dashed circles of radius
1 correspond to RN black hole.

VI. FREE FALL FROM THE OUTER TO THE

INNER HORIZON

It is interesting to check how the distortion changes the
maximal proper time of a free fall of a test particle from
the outer to the inner horizon. Let us consider motion of
a test particle of zero angular momentum which moves
from the outer to the inner horizon along the axis of
symmetry. Free fall from the north pole corresponds to
θ = 0, and free fall from the south pole corresponds to
θ = π. We use metric (39) with dS2

+. Using (36) we
derive the proper time of the free fall:

τ(E) = Ω+

∫ +1

−1

∆
1/2
+ e−Udη

(Ω−2
+ ∆+e−2UE2 + 1− η2)1/2

∣

∣

∣

∣

∣

θ=0,π

,

(90)
where E is the energy of the particle,

E = Ω2
+

η2 − 1

∆+
e2U

dT+
dτ

. (91)

The maximal proper time corresponds to E = 0. Using
the coordinate transformation (56) and applying (69) we
derive the maximal proper time for the free fall

τmax = τ(0) = τ+Ω+, (92)

where the dimensionless time τ+ is

τ+ =

∫ π

0

dψ

2

[

(cosψ + 1)e−u(ψ) − δeu(ψ)(cosψ − 1)
]

.

(93)
Here, u(ψ) = u+(ψ) for the fall from the north pole, and
u(ψ) = u−(ψ) from the fall from the south pole. For RN
black hole we have τ+ = π/(1+p), and τmax = πM , that
is exactly the same as the maximal proper time for a free

fall from event horizon to the singularity of Schwarzschild
black hole of mass M ([28], p. 836).

a b

FIG. 5: The free fall along the axis of symmetry from
the outer to the inner horizon surface for p′ = 1/2. (a)
The dimensionless proper time τ+ for different values of the
quadrupole moment c2. Here, the minimal value of the
dimensionless proper time τ+min ≈ 1.907 corresponds to
c2min ≈ −0.734. (b) The dimensionless proper time τ+ for
different values of the octupole moment c3, for the fall from
the north pole. Here, the minimal value of the dimensionless
proper time τ+min ≈ 1.804 corresponds to c3min ≈ −2.292,
where c3min doesn’t depend on the value of p′. For RN black
hole τ+ = 2π/3 ≈ 2.094.

In the case of the quadrupole distortion (79) the inte-
gral in (93) can be calculated analytically:

τ+ =
π

2
I0(c2/2)[e

c2/2 + δe−c2/2], (94)

where I0(x) is the modified Bessel function. Note, that
because of the reflection symmetry of the horizon surfaces
with respect to the plane θ = π/2 the proper time is the
same for the fall from the north and south poles. For the
octupole distortion we evaluate the integral numerically.
From expressions (79) and (93) we see that change in
sign of the octupole moment corresponds to change of the
poles as the starting points of the fall. The dimensionless
proper time calculated for p′ = 1/2 is presented in Fig.
5

VII. THE SPACETIME INVARIANTS

For distorted vacuum black holes there exists a remark-
able relation between the Kretschmann scalar calculated
on the surface of the event horizon K(+) and the Gaus-
sian curvature of the horizonK(+) calculated at the same
point

K(+) = 12K(+)2 . (95)

The proof of this relation can be found in [1]. This
relation shows that the 4D curvature invariant of the
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spacetime calculated on the horizon is correlated with
the shape of the horizon surface. In a region where the
horizon is sharper the 4D curvature invariant is larger
than in a region where the horizon is smoothed out. In
order to prove the property (95) one uses the fact that
the horizon H(+) surface is a totally geodesic surface.
The general analysis by Boyer [49], and in particu-

lar his conclusion saying that a bifurcate Killing horizon
contains a totally geodesic 2D surface, which is in fact
independent of the field equations, can be applied to the
case of the charged distorted black hole. For this reason
one can expect the existence of a relation similar to (95)
and generalizing the latter. In this section we discuss this
problem.
First of all, let us emphasize that in the presence of

the electromagnetic field Fαβ there exist an additional
4D invariant F 2 = FαβF

αβ characterizing the strength
of the field. For the distorted black hole the calculations
give the following value of this invariant on the outer
horizon (see (53), (54), (52), (68), and (70))

F (+)2 = − 2

M ′2

(1− p′)
(1 + p′)3

. (96)

The minus sign on the right hand side reflects the fact
that we are dealing with an electric (not magnetic) field.
The Kretschmann scalar K and the Weyl invariant C2 are
related as follows

K = C2 + 2(F 2)2 . (97)

In the presence of matter, in order to characterize the
‘strength’ of the gravitational field, it is more convenient
to use the Weyl invariant. The calculations presented in
appendix give for the Weyl invariant on the event horizon
the following expression

C2(+)
= 12

[

K(+) − 1

2
F (+)2

]2

. (98)

It is evident that in vacuum, when F 2 vanishes and the
Kretschmann invariant coincides with the Weyl invari-
ant, this relation reduces to (95). The second term in
the square brackets is constant on the horizon (see ap-
pendix and Eq. (102) below). Hence, in the presence of
the electrostatic field the Gaussian curvature of the hori-
zon surface is, effectively, uniformly shifted by a positive
value.
Similar relations are valid for the inner horizon

F (−)2 = − 2

M ′2

(1 + p′)

(1− p′)3 , (99)

C2(−)
= 12

[

K(−) − 1

2
F (−)2

]2

. (100)

Using (97) we can calculate the ratio of the Kretschmann
invariants on the black hole horizons:

k =
K(+)

K(−)
= δ4

3(K+ + δ)2 + 2δ2

3(K− + δ−1)2 + 2δ−2
. (101)

This ratio calculated for p′ = 1/2 is presented on Fig. 6
below. The behavior of the curves is very similar to those
for the Gaussian curvature illustrated on Fig. 3.

a b

FIG. 6: The ratio k for p′ = 1/2. Plot (a) illustrates the ratio
for the quadrupole distortion of c2 = −2/3 (line 1), c2 = 2/3
(line 2) and c2 = 1/9 (line 3). Plot (b) illustrates the ratio for
the octupole distortion of c3 = −2/3 (line 1), and c3 = 1/9
(line 2). The dashed horizontal line correspond to RN black
hole.

Finally, we present the expressions for the curvature
and the electromagnetic field invariants at the vicinity
of the black hole horizons. We use the results of the
appendix (A42), (A38), and (A43). The expansion of
the electromagnetic field invariant near the black hole
horizons reads

F 2
± = −2δ±1± 4δ±1e±2u±(K±− δ±1)(η∓ 1)+ ... . (102)

The expansion of the Weyl invariant near the black
hole horizons is

C2± = 12K2
e± ∓ 4

(

3K2
e±[3K± − 2δ±1]e±2u± − 2[K±,θ]

2

+ 3Ke±[K±,θθ + cot θK±,θ]) (η ∓ 1) + ... , (103)

where Ke± = (K± − δ±1).

VIII. CONCLUSION

In this paper we studied interior of distorted, static,
axisymmetric, electrically charged black hole. The corre-
sponding metric was derived by the Harrison-Ernst trans-
formation applied to the metric of distorted, static, ax-
isymmetric vacuum black hole, whose interior was dis-
cussed in [1]. We established the special duality relations
between the properties of the inner and outer horizons of
the distorted charged black hole. These duality relations
allow one to make a conclusion about the inner (Cauchy)
horizon structure, which is based on the structure of the
outer (event) horizon of the black hole. In particular,
regions of positive and negative Gaussian curvature and
its values on the outer horizon surface are correlated with
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those on the inner horizon surface. There is a correlation
between the shapes of the horizon surfaces as well.

We derived expansion of the curvature and electromag-
netic field invariants near the black hole horizons which
is expressed in terms of the Gaussian curvature, electro-
static field and their derivatives calculated on the horizon
surfaces. Thus, the established duality relations show
that the spacetime geometry near the inner (Cauchy)
horizon is correlated with the spacetime geometry near
the outer (event) horizon. This implies that if the distor-
tion leaves the outer horizon regular, the inner horizon
remains regular as well.

The duality between the outer and inner horizons
seems important. Apparently, according to the mass in-
flation phenomenon [9] such duality breaks in the case of
dynamical perturbation of RN black hole. Namely, due to
presence of the outgoing flux the inner apparent horizon
and the Cauchy horizon become separated. The infinite
grow of the mass parameter induced by the blue-shift of
the ingoing flux on the Cauchy horizon is not canceled
by the red-shift of the ingoing flux on the apparent hori-
zon. As a result, the Cauchy horizon becomes singular.
This doesn’t happen in the case of static, axisymmet-
ric distortion. One may think of the static distortion in
the dynamical region between the black hole horizons as
represented by standing waves. According to the dual-
ity relations between the horizons, initial and boundary
values of the waves should be dual as well.

Quite possibly, the axisymmetric, static distortion due
to remote charged masses and fields can not affect much
interior of the charged black hole. In such situation noth-
ing enters, or leaves (through the Cauchy horizon into
other “universes”) the black hole. Thus, the black hole
inner horizon remains regular due to such type of distor-
tion. Nevertheless, as our analysis shows, such “serene”
distortion can in fact deform interior of the black hole
to create regions of high local curvature. Moreover, the
distortion noticeably affects the maximal proper time of
a free fall of a test particle moving along the axis of sym-
metry in the black hole interior. An important question
if the Cauchy horizon of electrically charged black hole
is regular for an arbitrary static, external distortion re-
mains open.
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APPENDIX A: CALCULATION OF THE

SPACETIME INVARIANTS NEAR THE BLACK

HOLE HORIZONS

In this appendix we obtain expressions for the curva-
ture and electromagnetic field invariants near the black
hole horizons. We start our construction in the regions
where the Killing vector is timelike, namely outside of
the horizons. Final expressions of the invariants will be
valid in the region between the horizons as well.
The simplest curvature invariant is the Kretschmann

scalar, which for Einstein-Maxwell 4D spacetime admits
the following decomposition

K = RαβγδR
αβγδ = C2 + 2RαβR

αβ , (A1)

where C2 = CαβγδC
αβγδ is the Weyl scalar. The Weyl in-

variant characterizes properties of a ‘pure’ gravitational
field, while the square of the Ricci tensor RαβR

αβ is de-
termined in our case by the electrostatic field. In this
appendix we derive an expansion of these invariants near
the black hole horizons for an arbitrary static, charged
distorted black hole. In the main text of the paper we
shall use these results for a special case, when the static
spacetime is axisymmetric. A similar analysis for a vac-
uum distorted black hole can be found in [50].
It is convenient to start with form of the metric pro-

posed in [51]. Namely, we consider static spacetime and
denote timelike, hypersurface orthogonal Killing vector
by ξ. We assume that in the region under consideration
∇α(ξ2) does not vanish. Following [51] we write our met-
ric, gαβ (α, β, . . . = 0, . . . , 3) in this region in the form

ds2 = −k2dt2 + dγ2 , dγ2 = γABdy
AdyB (A2)

= κ−2(k, θc)dk2 + hab(k, θ
c)dθadθb .

Here, k = (−ξαξα)1/2; A,B, . . . = 1, 2, 3; a, b, c, . . . =
2, 3 ,

κ2 = −1

2
(∇βξα)(∇βξα) , (A3)

and hab is the metric on ‘equipotential’ 2D surfaces k =
const. spanned by θa coordinates. At the horizon of a
static black hole, that is for k = 0, κ coincides with the
surface gravity. In a static spacetime the Weyl invariant
can be written as follows [52]

C2 ≡ CαβγδC
αβγδ = 8ΠαβΠ

αβ + 8ΠαβΛ
αβ

+ 4ΛαβΛ
αβ − (Π + Λ)2 − 2RαβR

αβ , (A4)

where

Παβ = Rαγδβζ
γδ , Π ≡ Π α

α = −ζαβRαβ , (A5)

Λαβ = Rαβ + ζαβΠ , Λ ≡ Λ α
α = R +Π . (A6)

Here ζγδ = −ξγξδ/ξ2. For a static spacetime Π00 =
Π0A = 0. To calculate C2 it is convenient to use the
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Gauss-Codazzi equations

RABCD = RABCD + ε[SADSBC − SACSBD] , (A7)

nαRαBCD = SBC|D − SBD|C , (A8)

kRAγδBn
γnδ = −kΠAB

= γACS C
B ,t + εk|AB + kSACS C

B . (A9)

Here nα = ξα/k is the unit normal to hypersurface t =
const., ε = n2 = −1, SAB is the extrinsic 3D curvature
of a hypersurface t = const., RABCD is its 3D intrinsic
curvature defined with respect to the metric dγ2, while
R is the 3D scalar curvature. The stroke stands for a
covariant derivative with respect to this metric.
Relations (A7)-(A9) imply

2Gαβn
αnβ = −εR− SABSAB + S2 , (A10)

Rαβn
αnβ = −SABSAB − εk−1k

|A
|A − k−1S,t , (A11)

GαBn
α = RαBn

α = −S,B + S C
B |C , (A12)

RAB = RAB − εSSAB − k−1k|AB − εk−1γACS C
B ,t .

(A13)

Here S = γABSAB is twice the mean curvature. Since
metric (A2) is static, the extrinsic curvature defined as

SAB =
1

2
k−1γAB,t (A14)

vanishes. Thus, (A7)-(A13) imply

ΠAB = k−1k|AB , Π = k−1k
|A

|A , (A15)

ΛAB = RAB − k−1k|AB , Λ = R− k−1k
|A

|A , (A16)

Λ00 = 0 , Λ0A = 0 . (A17)

The Einstein equations Gαβ = 8πTαβ give

R = 16k−2πT00 , T0A = 0,

GAB = 8πTAB + k−1k|AB − k−1γABk
|A

|A . (A18)

Thus, the Weyl invariant (A4) written in terms of 3D
objects related to hypersurface t = const. is

C2 = 2k−2
(

k|ABk
|AB − 3k

|A
|A k

|B
|B

)

+ 2
(

RAB + 2k−1k|AB
)

RAB . (A19)

The next step is a (2 + 1)-decomposition. We use the
following expression for the 3D metric

dγ2 = κ−2(k, θc)dk2 + hab(k, θ
c)dθadθb . (A20)

We denote a covariant derivative with respect to the 2D-
metric hab as (. . .):a. A unit vector orthogonal to equipo-
tential 2D surface k = const. is nA = κδAk, ε = n2 = 1.
The extrinsic curvature of the surface is

Sab =
κ

2
hab,k. (A21)

Using (A20) we derive

k|kk = κ−1κ,k , k|ka = κ−1κ:a , k|ab = κSab,

k
|A

|A = κS + κκ,k , S = habSab. (A22)

To project the Einstein equations on the 2D surface we
have to define the stress-energy tensor of the electrostatic
field. The electrostatic potential is given by Φ = Φ(k, θa).
The corresponding electric field vector defined with re-
spect to Schwarzschild time t on hypersurface t = const.
reads

EA = −k−1F0A = −k−1Φ,A. (A23)

We are interested in deformation of equipotential 2D sur-
faces. Thus, it is convenient to define orthogonal to the
surfaces component of the electric field vector separately.
The electric field vector components in an orthonormal
frame are

Ek̂ = −κ k−1Φ,k , Ea = k−1Φ:a . (A24)

Thus, in our notations

~E2 = E2
k̂
+ k−2Φ:aΦ

:a. (A25)

The energy momentum tensor of the field is

8πTαβ = 2ξαξβk
−2 ~E2 − 2EαEβ + gαβ ~E

2. (A26)

Using relations (A10)-(A13) for metric (A20) together
with (A18) we derive the Einstein equations projected
onto 2D equipotential surfaces:

κ3 S b
a ,k = κ2[K − E2

k̂
− k−2Φ:cΦ

:c]δ ba − κ3k−1S b
a

+ κκ :b
:a − 2κ:aκ

:b − κ2SS b
a + 2κ2k−2Φ:aΦ

:b,

(A27)

κ3 S,k = κ2
[

κk−1S − S b
a S

a
b − 2k−2Φ:aΦ

:a
]

+ κκ :a
:a − 2κ:aκ

:a, (A28)

k−1κκ,k = −κk−1S + E2
k̂
+ k−2Φ:aΦ

:a, (A29)

κ2Ek̂ ,k = −κSEk̂ − κ:ak−1Φ:a + κ k−1Φ :a
:a . (A30)

The corresponding constraints are

0 = S2 − S b
a S

a
b − 2K + 2[κk−1S + E2

k̂
− k−2Φ:aΦ

:a],

(A31)

0 = [S:a − S b
a :b]k + 2Ek̂Φ:a + κ:a. (A32)

Here, K is the Gaussian curvature of a 2D equipotential
surface k = const.
The square of the Ricci tensor RαβR

αβ is equal to the
squared electromagnetic field invariant

RαβR
αβ = (F 2)2 = (FαβF

αβ)2. (A33)

According to (A23) and (A25) F 2 has the following form

F 2 = −2 ~E2 = −2[E2
k̂
+ k−2Φ:aΦ

:a]. (A34)
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Using expressions (A18), (A24)-(A30) we derive

Rkk = k−1κ−1κ:k + κ−2[ ~E2 − 2E2
k̂
],

Rak = k−1κ−1[κ:a + 2Ek̂Φ:a],

Rab = k−1κSab + hab ~E
2 − 2k−2Φ:aΦ:b,

R = 2 ~E2 = 2k−1κ[S + κ:k]. (A35)

Using (A19), (A1), (A34) and expressions (A22) and
(A35) we have

1

8
C2 = [κ2S b

a S
a
b + 2κ:aκ

:a + κ2S2 + 2 ~E2Φ:aΦ
:a]k−2

+ 4Ek̂κ:aΦ
:ak−2 − 2κ [S b

a Φ:b + SΦ:a]Φ
:ak−3.

(A36)

The hypersurface orthogonal Killing vector field ξα by
definition is null on Killing horizon which is bifurcate
(κ 6= 0). A bifurcate Killing horizon contains 2D space-
like, totally geodesic surface [49]. In our coordinates
this equipotential surface is defined by t = const. and
k = 0. On the other side, a necessary and sufficient
condition that a hypersurface is totally geodesic is its
vanishing extrinsic curvature defined in the correspond-
ing enveloping space [53]. Thus, for the equipotential
surfaces t = const., k = 0 we have Sab = 0. For a regu-
lar horizon its 2D surface has everywhere finite Gaussian
curvature, and the electrostatic field on the surface is fi-
nite as well. Thus, we can deduce from the constraints
(A31), (A32) that on the horizon Φ:a = κ:a = 0. Hence,
the electrostatic field potential Φ and the surface gravity
κ are constant on the horizon, as it has to be for a static
black hole. This is nothing but the zeroth law of black
hole thermodynamics [54].
Projecting the first (A27), and the second (A28) of

the Einstein equations on the horizon, and using the first
constraint (A31) we derive

2κS b
a k

−1
∣

∣

H
= δ ba [K − E2

k̂
]
∣

∣

∣

H
. (A37)

Here and below (...)|H means calculated on the horizon.
Thus, from (A33), (A34) and (A36) we derive the follow-
ing expressions for the spacetime invariants calculated on
the horizon

F 4
∣

∣

H
= RαβR

αβ
∣

∣

H
= 4E4

k̂

∣

∣

∣

H
, (A38)

and

C2
∣

∣

H
= 12[K − E2

k̂
]2
∣

∣

∣

H
. (A39)

This expression generalizes the relation between Gaus-
sian curvature and the Kretschmann scalar calculated

on the event horizon surface of an arbitrary distorted
Schwarzschild black hole [1], [50].

We can expand the metric and the electrostatic field in
series near the horizon and substituting these expansions
into (A34) and (A36) derive expressions of the space-
time invariants near the horizon. There are two types
of quantities, even and odd in k, which we denote by
A = {κ, hab,K,Φ, Ek̂, F 2, C2} and B = {S b

a , S}, respec-
tively. The series expansions of A and B read

A =
∑

n>0

A[2n]k2n , B =
∑

n>0

B[2n+1]k2n+1. (A40)

The first term in A gives its value on the horizon. We
can express higher order coefficients in the expressions
in terms of these on the horizon substituting (A40) into
the Einstein equations (A27)-(A32). The necessary coef-
ficients to calculate the first order expansion of the space-
time invariants are the following

κ[2] =
1

2κ[0]
[2E

[0]2

k̂
−K [0]] , Φ[2] = −

E
[0]

k̂

2κ[0]
,

S b[1]
a =

δ ba
2κ[0]

[K [0] − E[0]2

k̂
] , S[1] =

1

κ[0]
[K [0] − E[0]2

k̂
],

S b[3]
a =

1

8κ[0]2
[2κ[2]:b:a + κ[2]:a:a δ ba − κ[0]S[1]2δ ba ]

+
1

16κ[0]3
[2E

[0]

k̂:a
E

[0]:b

k̂
− 3E

[0]

k̂:c
E

[0]:c

k̂
δ ba ],

S[3] =
1

4κ[0]2
[2κ[2]:a:a − κ[0]S[1]2]− 1

4κ[0]3
E

[0]

k̂:a
E

[0]:a

k̂
,

E
[3]

k̂
= − 1

4κ[0]2
[2κ[0]S[1]E

[0]

k̂
+ E

[0]:a

k̂:a
]. (A41)

Finally, we derive the first order expansions of the space-
time invariants near the horizon:

F 2 ≈ − 2E2
k̂

∣

∣

∣

H
+

1

2κ2

[

4KeE
2
k̂
+ E2 :a

k̂:a
− 3Ek̂:aE

:a
k̂

]

∣

∣

∣

∣

H

k2,

(A42)

C2 ≈ 12K2
e

∣

∣

H
− 1

κ2

[

6K2
e [3Ke − 2E2

k̂
]− [2Ke − E2

k̂
]:a

× [2Ke − E2
k̂
]:a + 6Ke[K

:a
e:a − 2Ek̂E

:a
k̂:a

]
]
∣

∣

∣

H
k2,

(A43)

where Ke|H = [K − E2
k̂
]|H .
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