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“Whatever nature has in store for mankind, unpleasant as it may be, men must accept,
for ignorance is never better than knowledge.”

Enrico Fermi

Summary. — We compare and contrast the different points of view of rotation
in general relativity, put forward by Mach, Thirring and Lense, and Gödel. Our
analysis relies on two tools: (i) the Sagnac effect which allows us to measure rotations
of a coordinate system or induced by the curvature of spacetime, and (ii) computer
visualizations which bring out the alien features of the Gödel Universe. In order to
keep the paper self-contained, we summarize in several appendices crucial ingredients
of the mathematical tools used in general relativity. In this way, our lecture notes
should be accessible to researchers familiar with the basic elements of tensor calculus
and general relativity.

1. – Introduction

For centuries, physicists have been intrigued by the concepts of rotation. Galileo
Galilei, Vincenzo Viviani, Isaac Newton, Jean Bernard Léon Foucault, Ernst Mach, Al-
bert Einstein, George Sagnac, Hans Thirring, Josef Lense, Hermann Weyl and Kurt
Gödel form an impressive line of researchers trying to gain insight into this problem.
Key ideas such as inertial forces, Mach’s principle, frame dragging, gravito-magnetism,
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compass of inertia and rotating universes are intimately connected with these pioneers.
Even today, there are still many open questions. One of them is related to the meaning
of Mach’s principle and best described by the following quote from James A. Isenberg
and John A. Wheeler [1]:

“Mystic and murky is the measure many make of the meaning of Mach”.

The present lecture notes start from a brief historical development of the notion of
rotation and then focus on the Sagnac effect as a tool to measure rotations. Moreover,
we bring out some of the alien features of the Gödel Universe by presenting computer
visualizations of two scenarios.

1.1. Concepts of rotation from Foucault to Gödel . – During a service in the great
Cathedral of Pisa Galilei made a remarkable discovery watching the chandeliers swinging
in the wind. The period of a pendulum is independent of the amplitude of its oscillation.
As a clock, he used his pulse. Had the church service lasted longer, he might have noticed
what his student Viviani mentioned later [2]:

“... all pendulums hanging on one thread deviate from the initial vertical plane,
and always in the same direction.”

Contained in this cryptic remark is the by now familiar fact that the Coriolis force
causes the plane of oscillation of a pendulum to slowly drift. Viviani’s observation was
rediscovered by Foucault in 1851. He was the first to interpret this phenomenon as a
consequence of the rotation of the Earth relative to the absolute space of Newton.

A new era in the investigation of rotation was ushered in by the development of general
relativity. Stimulated by Mach’s criticism of Newton’s rotating bucket argument [3], the
question whether rotations should be considered as absolute or relative motions was one
of the principles guiding Einstein in his formulation of general relativity [4]. However,
he was not the first to be inspired by Mach’s ideas. For the contributions of the brothers
Benedikt and Immanuel Friedländer we refer to [5].

Einstein’s theory of general relativity made it possible for the first time to ana-
lyze Mach’s principle in a mathematically rigorous way. Thirring and his coworker
Lense [6, 7] performed this task in 1918 and addressed the questions: Are there Coriolis-
and centrifugal-like forces in the center of a rotating hollow sphere? And, does the ro-
tation of a solid sphere influence the motion of a nearby body by “dragging forces” not
present in Newton’s theory? According to general relativity the answer to both ques-
tions is yes. However, the expected effects were experimentally not accessible at that
time. Nevertheless, there were early experiments aiming at the measurement of “drag-
ging forces” in Arnold Sommerfeld’s institute in Munich. According to Otto Scherzer [8],
a former assistant of Sommerfeld, an experiment was set up to measure the influence of a
heavy, rotating sphere on a Foucault pendulum. Unfortunately, the mass, which weighed
a few tons, fell off the device driving the rotation, and started running around in the lab.
The experiment was aborted.

We emphasize that the results of Thirring and Lense did not imply that Mach’s
principle is fully incorporated in the theory of general relativity, as e.g. discussed by
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Hermann Weyl [9]. Due to the intriguing, but vague formulation of Mach’s principle, the
controversy is still ongoing [10,11].

In 1949 a new issue in the study of rotation within general relativity emerged from a
remarkable discovery by the ingenious mathematician Gödel. Trying to explain (1) the
observed statistical distribution of the angular momenta of galaxies [14] (2), Gödel found
an exact cosmological solution of Einstein’s field equations [15] whose energy-momentum
tensor corresponds to a homogeneous and rotating ideal fluid. Today, we refer to this
solution as Gödel’s Universe. Gödel soon recognized that his solution exhibits a very
puzzling property, namely the existence of closed timelike world lines. This feature which
is incompatible with the common notion of causality forced him and many others to a
“in-depth reconsideration of the nature of time and causality in general relativity” [16].
Until this fateful discovery it had been tacitly assumed, that Einstein’s field equations
might automatically prevent themselves from pathologies of this kind. Moreover, Gödel
noticed that his solution was not in agreement with cosmological observations. Indeed,
it could not explain the expansion of the universe, which was commonly accepted after
the discovery of Hubble’s law [17] in 1929. This disagreement caused him to search
for a cosmological solution which exhibits both features: rotation and expansion. Only
one year later, Gödel published a new solution [18] which satisfied both requirements.
George F. R. Ellis [16] described the influence of Gödel’s contributions to the progress of
general relativity as follows:

“These papers stimulated many investigations leading to fruitful developments.
This may partly have been due to the enigmatic style in which they were written: for
decades after, much effort was invested in giving proofs for results stated without proof
by Gödel.”

This is neither the place nor the time to mention further developments stimulated by
Gödel’s articles [19,20]. Instead, we will focus in this paper on Gödel’s first solution [15]
– mainly because it still allows an analytical approach to most questions and therefore
provides a suitable first encounter with the subject of rotating universes.

1.2. Space-based research. – Today, we are in the unique position of being able to
observe the Lense-Thirring field [21-25]. The present proceedings represent a living tes-
timony to the outstanding experimental progress in tests of general relativity. Three
domains of physics come to mind: (i) solid state devices are at the very heart of the
Gravity Probe B experiment [26], (ii) laser technology is put to use in the laser ranging
to the LAGEOS satellites [27,28], and (iii) modern astronomy made the recent observa-
tion of the relativistic spin precession in a double pulsar possible [29]. Indeed, Gravity

(1) This statement is unsourced but most likely correct, see [12,13] and references therein.
(2) Rotation curves of galaxies depict the velocity of stars or gas orbiting the center of a galaxy
against the distance of the stars from the center. It is interesting to note, that investigations
of rotation curves of galaxies made in the seventies of the last century, are nowadays widely
accepted as evidence for the existence of dark matter.
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Probe B utilizes for the readout of the rotation axes of the mechanical gyroscopes the
London moment of the spinning superconducting layer on the balls. The LAGEOS ex-
periment relies on the precession of the nodal lines of the trajectories of the two satellites.
In this case, the readout takes advantage of modern laser physics. Finally, the impressive
confirmation [29] of the prediction of relativistic spin precession [30,31] in a double pulsar
falls into this category of outstanding experiments on this subject.

Now is the time to dream of future projects in space [32-36]. The development of
optical clocks [37, 38], frequency combs [39, 40], and atom interferometers [41, 42] has
opened new avenues to measure rotation. Matter wave gyroscopes and accelerometers
[43, 44] have reached an unprecedented accuracy, which might allow us to perform new
tests of gravito-magnetic forces. Such ideas have a long tradition. Indeed, a few decades
ago there were already proposals to search for preferred frames [45-48] and probe the
Lense-Thirring effect using ring laser gyroscopes [49]. Today’s discussions of matter
wave gyroscopes can build on and take advantage of these results obtained for light
waves. Here the Sagnac effect [50] plays a central role. With its help we can measure
the rotation of a coordinate system and catch a glimpse of the curvature of spacetime.

1.3. Goal of the paper . – In these lecture notes we study the influence of rotation on
the propagation of light. Here we focus on two main themes: (i) the Sagnac effect, and
(ii) visualizations of scenarios in the Gödel Universe.

Motivated by the important role of the Sagnac effect in today’s discussions of tests
of general relativity using light or matter waves, we dedicate the first part of our lecture
notes to a thorough analysis of rotation in general relativity. In this context we introduce
an operational approach towards Sagnac interferometry based on light. Our approach is
stimulated by the following passage from the introduction of the seminal article [47] by
Scully et al.

“The proposed experiment provides but one example of the possible applications of
quantum optics to the study of gravitation physics. In order to make the analysis clear
and understandable to readers with backgrounds in quantum optics, we have avoided the
use of esoteric techniques (e.g., Fermi–Walker transport) and have instead carried out
an explicit general relativistic analysis in order to obtain the necessary representation of
the metric in the ring interferometer laboratory.”

Our intention is to make these “esoteric techniques” accessible to the quantum optics
community and to point out their advantages in the description of local satellite experi-
ments. Indeed, local and conceptually simple experiments provide a necessary counter-
part to the sophisticated tests of general relativity based on cosmological observations
and their intricate theoretical foundations. Therefore, our first aim is to develop a mea-
surement procedure relying solely on local measurements which properly separates the
different sources of rotation. Throughout our analysis, we concentrate on a description
which is geared towards a one-satellite-experiment. We assume that all the necessary
Sagnac interferometers are contained within a single satellite, so that we can locally ex-
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pand the metric around its world line (3). Moreover, we will restrict ourselves to the
proper time delay between two counter-propagating light rays, since it provides the fun-
damental quantity necessary for the description of the Sagnac effect within the framework
of general relativity. Other measurement outcomes such as the interference fringes, which
are due to the phase shift between the two counter-propagating light rays, are intimately
related to this proper time delay.

1.4. Outline. – Our lecture notes are organized as follows: In sect. 2 we introduce
an elementary version of the Sagnac effect within the framework of general relativity.
For this purpose we first briefly recall in 2.1 the original experiment of Sagnac and then
proceed in 2.2 with the derivation of the Sagnac time delay for a stationary metric.

The aim of sect. 3 is to provide suitable coordinates for local measurements in a
single satellite. After a short motivation in 3.1, we define in 3.2 the local coordinates of
a proper reference frame attached to an accelerating and rotating observer. They provide
us with a valuable power-series expansion of the metric coefficients around the world line
of the observer. With the help of this expansion, we establish in sect. 4 the two dominant
terms in the Sagnac time delay. Moreover, we briefly discuss a measurement strategy for
separating the rotation of the observer from the influence of the curvature of spacetime.

We conclude our discussion of the Sagnac effect by applying these results to two
very different situations. In sect. 5 we introduce the metric coefficients of a rotating
reference frame in Minkowski spacetime, study the light cone diagram and then analyze
the resulting Sagnac time delay. In sect. 6 we address the Gödel Universe and follow
a similar path. We start with a brief historic motivation and then present the metric.
We continue with the exploration of some of its peculiar features such as time travel
by considering the corresponding light cone diagram. Finally, we investigate the Sagnac
time delay and compare it to the results obtained for the rotating reference frame.

The second part of these lectures is mainly devoted to the question: How does the
inherent rotation of the ideal fluid in Gödel’s Universe affect the visual perception of
an observer? In sect. 7 we answer this question by visualizing two scenarios in Gödel’s
Universe. In order to keep the notes self-contained, we give in 7.1 a short introduction
into the world of computer graphics. Here we discuss a fundamental version of ray tracing,
which is a simple yet powerful technique to render realistic images of a given scenario.

(3) The authors of [47] derive their expressions for the Sagnac effect using the weak field ap-
proximation gµν(xσ) = ηµν + hµν(xσ) with hµν being a small, global perturbation of the flat
spacetime metric ηµν . However, we can apply this approximation only when the underlying
spacetime is nearly flat everywhere. Otherwise, some peculiarities concerning the coordinates
might occur. In order to illustrate this point, we take the two-dimensional surface of a sphere
with the usual metric induced by its embedding in the three-dimensional Euclidean space. In
this case no coordinates can cover the whole surface and allow for a decomposition of the metric
into a dominant flat Euclidean part and a small correction to it. Such a decomposition only
exists, when we restrict the coordinates to a small region on the surface using e.g. Riemann
normal coordinates. Thus, in order to keep our considerations of the Sagnac effect as general as
possible, we pursue in sect. 4 an approach which does not rely on a background metric.
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Moreover, we also point out the changes necessary for the successful application of those
techniques to obtain visualizations of relativistic models such as the Gödel Universe.
We then devote 7.2 to a thorough analysis of these visualizations. In the first scenario,
discussed in 7.2.1, we consider an observer located inside a hollow sphere. Its inner
checkered surface appears warped due to the peculiar propagation of light in Gödel’s
Universe. Moreover, we point out the existence of an optical horizon which restricts the
view of any observer to a limited spatial region. The second scenario, highlighted in
7.2.2, visualizes the view of an observer on a small terrestrial globe. We emphasize that
in general small objects in Gödel’s Universe enjoy two images.

In order to lay the foundations of the individual sections, we summarize several im-
portant concepts of general relativity in the appendices A, B and C. For example, in
appendix A we analyze the transformation of a metric to its Minkowski form at a fixed
point in spacetime. We discuss symmetries and Killing vectors as well as world lines
and geodesics of test particles and of light. A comparison between parallel transport
and Fermi-Walker transport concludes this introduction into some important aspects of
general relativity. Appendix B provides insight into the concept of orthonormal tetrads
and their orthonormal transport. Here, special attention is devoted to the Fermi-Walker
transport and to a natural generalization of it, the so-called proper transport. Ap-
pendix C establishes Riemann normal coordinates and proper reference frame coordinates
together with the leading-order contributions in the corresponding metric expansions. In
appendix D we provide a series expansion of the Sagnac time delay in proper reference
frame coordinates and derive the explicit expressions for the first two leading-order con-
tributions. Finally, we briefly sketch the analytical solution of the geodesic equation for
light rays which emanate from the origin in Gödel’s Universe in appendix E.

1.5. Notation and conventions. – In this article we use (1,−1,−1,−1) as signature
for any metric. Greek indices denote both space and time components of tensors and
will run from 0 to 3, whereas Latin indices indicate only the spatial components and
therefore just take on the values 1,2 and 3. Throughout the paper, we retain the speed
of light c in all our calculations. In table I we summarize several fundamental equations
of tensor calculus and general relativity.

2. – Formulation of the general relativistic Sagnac effect

The goal of the present section is to derive an exact expression for the Sagnac time
delay measured in a reference frame corresponding to a time independent metric. We
start with a brief discussion of Sagnac’s original experiment and then continue with the
derivation of the Sagnac time delay within the framework of general relativity.

2.1. Sagnac’s original experiment. – In 1913 George Sagnac performed the experiment
[51, 52] summarized by the left picture of fig. 1: On a horizontal platform which carries
all optical components, including a mercury arc lamp L and a fine-grained photographic
plate P , a light ray is split at the separator B into a clockwise and a counterclockwise-
propagating beam. Both beams are then reflected successively by four mirrors M and
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Table I. – Definitions and basic equations of differential geometry and general relativity. The
curve parameters of massive particles and of light are the proper time τ and the evolution pa-
rameter λ, respectively. Newton’s gravitational constant G and the speed of light c define the
constant κ = 8πG/c4. Moreover, Λ, ρ and p denote the cosmological constant, the mass density
and the pressure of the ideal fluid, respectively.

Metric of Minkowski spacetime (ηµν) ≡ diag(1,−1,−1,−1)
Line element and proper time ds2 = gµν dxµ dxν ≡ c2 dτ2

Christoffel symbols Γµαβ ≡
1
2
gµν (gνα,β + gνβ,α − gαβ,ν)

Curvature tensor Rµαβγ ≡ Γµαγ,β − Γµαβ,γ + ΓµρβΓραγ − ΓµργΓραβ
Ricci tensor and scalar curvature Rαβ ≡ Rµαµβ and R ≡ Rµµ

Covariant derivative of a contravariant vector V α;β ≡ V α,β + ΓαµβV
µ

Covariant derivative of a covariant vector Vα;β ≡ Vα,β − ΓµαβVµ

Four-velocity of massive particles and light uµ(τ) ≡ dxµ
dτ

and uµ(λ) ≡ dxµ
dλ

Geodesic equation d2
xµ

dλ2 + Γµαβ
dxα
dλ

dxβ
dλ
≡ uµ;νuν = 0

Constraint for particles and light gµνu
µuν = c2 and gµνu

µuν = 0

Einstein’s field equations Rµν − 1
2
gµνR = κTµν + Λgµν

Energy-momentum tensor for an ideal fluid Tµν ≡
`
ρ+ p

c2

´
uµuν − pgµν

travel around a circuit with enclosed area A = |A|. They recombine again at the beam
splitter which superimposes them on the photographic plate P , leading to interference
fringes.

Once the platform is in rotation, a difference ∆t in the arrival times of the clockwise
and counterclockwise-propagating beams arises, which translates into a shift of the fringes
at the photographic plate. By comparing the fringe positions corresponding to rotations
in clockwise or counter-clockwise direction with approximately the same rate, Sagnac

Fig. 1. – Sagnac’s original experiment (left) and the measurement of the angular velocity vector
Ω of the Earth (right) with the help of three Sagnac interferometers with area vectors Ai.
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observed that ∆t is proportional to the area A enclosed by the light beams and to the
angular velocity Ω of the rotating platform. The classical expression

(1) ∆t =
4
c2

A ·Ω

for the Sagnac time delay constitutes a very good approximation of the relativistic expres-
sion derived in 5.3 in the limit of small rotation rates. Furthermore Sagnac established,
that eq. (1) is independent of the location of the center of rotation and of the shape of
the enclosed area.

From today’s perspective it is interesting to note that Sagnac’s interpretation of his
results points towards the existence of the luminiferous either [52]:

“The observed interference effect is clearly the optical whirling effect due to the
movement of the system in relation to the ether and directly manifests the existence of
the ether, supporting necessarily the light waves of Huygens and of Fresnel.”

When lasers found their way into Sagnac interferometry in form of ring-laser gyros,
they provided such an enormous increase in sensitivity [49, 50] that the Sagnac effect is
nowadays a backbone of modern navigation systems. Moreover, it can be used for mea-
surements of geophysical interest [53], e.g. when one is looking for the time dependence
of magnitude and direction of the angular velocity vector of the Earth [54]. Equation (1)
suggests that one needs at least three Sagnac interferometers with linearly independent
area vectors Ai to recover all three components of the angular velocity vector Ω of the
Earth as illustrated in the right picture of fig. 1. Finally, further improvements of earth-
bound Sagnac interferometers may allow a direct measurement of the Lense-Thirring
effect in a not too far future [55].

2.2. Sagnac time delay for a stationary metric . – In this subsection, we present an
elementary derivation of the Sagnac time delay within the framework of general relativity
for the case of a stationary spacetime. Since many roads lead to Rome, we also want to
draw attention to several other approaches. In [47, 48] the authors analyze the Sagnac
effect in the limit of weak gravitational fields, whereas [56] provides a general derivation
of the Sagnac time delay for stationary spacetimes. Investigations based on arbitrary
spacetimes without any restriction to certain symmetry properties of the spacetime can
be found in [57,58].

2.2.1. Mathematical description of the arrangement. Our derivation of the Sagnac
time delay requires a reference frame for our observer and his experimental setup in
which the components gµν of our stationary metric do not depend on time. We denote
the coordinates of this reference frame by xµ = (t, x, y, z) and suppose that the observer
is located at the fixed spatial point qi = (x0, y0, z0), as shown in the left picture of
fig. 2. From there, he sends out two light rays in opposite directions which, forced by
an appropriately arranged set of mirrors, travel along the null curves that correspond to
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Fig. 2. – Propagation of light in a Sagnac interferometer depicted in space (left) and in space-
time (right). In the latter we suppressed the z-coordinate. In the spatial diagram (left), light
propagates from the observer located at the fixed position qi = (x0, y0, z0) in clockwise (cw)
and counter-clockwise (ccw) direction along the closed spatial curve S described by si(φ). The
spacetime diagram (right) shows the definition of the Sagnac time delay ∆τS in terms of the
proper time difference between the arrivals of the two light rays measured along the world line
of the observer at rest.

the closed spatial curve S. For simplicity, we assume that S is spacelike and that we can
parameterize the curve S uniquely by the angle φ ∈ [0, 2π), thereby using the notation
sµ(φ) = (0, si(φ)) = (0, x(φ), y(φ), z(φ)). We denote the position of the observer at rest
by qi = si(φ0) with the corresponding curve parameter φ0.

2.2.2. Null curves of the counter-propagating beams. As indicated by the spacetime
diagram on the right of fig. 2, the light rays arrive after one circulation at different
coordinate times at the observer, thus giving rise to the Sagnac proper time delay ∆τS
along the observer’s world line. In order to derive an explicit formula for this proper
time delay, we parameterize the counter-propagating light beams on S by the null curve
xµ(φ) = (t(φ), si(φ)), which have to satisfy the condition

(2) gµν
∣∣
S

dxµ

dφ
dxν

dφ
= g00

∣∣
S

(
dt
dφ

)2

+ 2 g0i

∣∣
S

dsi

dφ
dt
dφ

+ gik
∣∣
S

dsi

dφ
dsk

dφ
= 0 .

Since the metric does not depend on time in our chosen reference frame, we have in-
troduced the abbreviation gµν(xµ(φ)) ≡ gµν(si(φ)) ≡ gµν

∣∣
S to indicate that the metric

coefficients have to be taken along the spacelike curve S.
The two solutions of the quadratic equation (2) for (dt/dφ) read

(3)
(

dt
dφ

)
±

= − g0i

g00

∣∣∣∣
S

dsi

dφ
±

√
γik
g00

∣∣∣∣
S

dsi

dφ
dsk

dφ
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with

γik ≡
g0ig0k

g00
− gik .

At this point we have to impose a further restriction: In order to guarantee the existence
of two solutions (dt/dφ)± the spacelike curve S must be contained in a region R of
spacetime where the conditions

(4) g00

∣∣
S > 0 , S ⊂ R

and

(5) γik

∣∣∣∣
S

dsi

dφ
dsk

dφ
> 0 , S ⊂ R

are satisfied for all points in S.
The first condition, given by eq. (4), implies that the spacetime curve xµ(λ) = (λ, si0)

is timelike for any fixed spatial point si0 = const on S. Only in this case it is possible
to relate the coordinate time t with the physically measured proper time τ of a fixed
observer at si0 ∈ S. Since this requirement means physically that all mirrors defining S
have to move on timelike curves, this condition is a priori fulfilled.

Concerning the second condition, eq. (5), we would like to mention that the quantities
γik constitute the components of the local spatial metric, as specified in [59]. In case
the chosen reference frame is realized by material objects, the coefficients γik represent
a positive definite matrix and condition (5) is automatically fulfilled.

Since we have presumed that S is a spacelike curve which satisfies

gµν
∣∣
S

dsµ

dφ
dsν

dφ
= gik

∣∣
S

dsi

dφ
dsk

dφ
< 0 ,

it directly follows from the eqs. (3), (4) and (5) that the two solutions possess opposite
signs, where (dt/dφ)+ > 0 and (dt/dφ)− < 0. Being only interested in solutions which
are located on the future light cone and for which the coordinate time t(φ) increases
with increasing angle φ, we conclude that the solution (dt/dφ)+ > 0 corresponds to the
counterclockwise (ccw)-propagating beam. Since we have to reverse the direction of
rotation for (dt/dφ)− < 0, we can identifying the second solution with the clockwise
(cw)-propagating beam.

2.2.3. Final expression for the time delay. When we integrate the time coordinate t(φ)
along the opposite paths of the beams, we find the expression

(6) t± =
∫ φ0±2π

φ0

(
dt
dφ

)
±

dφ = ±
∫ 2π

0

(
dt
dφ

)
±

dφ
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for the arrival coordinate times t± after one circulation. Here we have used the time
independence of the metric coefficients, as well as their periodicity in the angular coor-
dinate φ.

Hence, the difference ∆t = t+ − t− between the arrival times of the ccw- and the
cw-propagating beams reads

∆t =
∫ 2π

0

(
dt
dφ

)
+

+
(

dt
dφ

)
−

dφ .

When we insert eq. (3), we arrive at

∆t = −2
∫ 2π

0

g0i

g00

∣∣∣∣
S

dsi

dφ
dφ .

The connection

∆τ =
1
c

√
g00(qr) ∆t ,

between the coordinate time difference ∆t and the corresponding proper time difference
∆τ measured by the observer along his world line qσ(τ) = (cτ, qi) allows us to cast the
Sagnac time delay ∆τS into the form

∆τS = −2
c

√
g00(qr)

∫ 2π

0

g0i

g00

∣∣∣∣
S

dsi

dφ
dφ .

Thus, the spatial line integral

(7) ∆τS = −2
c

√
g00(qr)

∮
S

g0i

g00
dsi

relates the Sagnac proper time delay ∆τS of two counter-propagating light rays to the
metric coefficients g00 and g0i evaluated along the spacelike curve S. We note that for
∆τS > 0 the cw-beam arrives before the ccw-beam. The opposite situation occurs for
negative Sagnac time delays ∆τS < 0.

2.2.4. Form invariance. It is not difficult to show that the Sagnac time delay, given
by eq. (7), is form invariant(4) under the special class of coordinate transformations

(8) x′0 = x′0(x0, xk) , x′i = x′i(xk) ,

(4) We can understand this form invariance on a deeper level by making use of the geometrical
derivation of the Sagnac time delay provided by Ashtekar and Magnon in [56] together with
the three-dimensional formalism of Geroch [60] for spacetimes endowed with a Killing vector
field ξµ(xσ). In our derivation of the Sagnac time delay, we started from a stationary metric
and utilized adapted coordinates in which this metric is time independent. In this case, the
corresponding Killing vector field reads ξµ(xσ) = (1, 0, 0, 0), see appendix A

.
3.
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which also satisfy the additional condition

(9)
∂x0

∂x′0

∣∣∣∣
S

= const > 0 ∀ xi(φ) ∈ S .

These coordinate transformations neither change the frame of reference nor the direction
of the arrow of time. In particular, purely spatial coordinate transformations belong to
this class.

3. – Coordinates appropriate for local satellite experiments

In the preceding section we derived an expression for the Sagnac time delay ∆τS in
terms of the metric coefficients. Two different physical effects contribute to ∆τS : inertia
and gravitation. Purely inertial effects depend only on the acceleration and rotation of the
chosen reference frame of the observer and can in principle be completely eliminated by
performing the measurement in an appropriately adapted reference frame. Gravitational
terms on the other hand originate from the curvature of spacetime itself and cannot
be globally removed by choosing a different frame of reference. In order to identify
the origin of these different effects, we choose a certain class of local coordinates that
define the so-called proper reference frame of the observer. In the present section we lay
the foundations for the subsequent analysis of the Sagnac effect by establishing proper
reference frame coordinates and the corresponding metric expansion.

3.1. Motivation. – The Earth has approximately the shape of an oblate ellipsoid and
despite its curvature, Euclidean geometry works quite well for distance measurements on
its surface as long as they are restricted to sufficiently small regions. The same property
holds true also for curved spacetime. Indeed, in a sufficiently small region around a
fixed point P in spacetime the metric appears to be flat and all laws of nature can be
reduced to their special-relativistic form. Riemann developed the adequate mathematical
formalism [61] and thereby established the so-called Riemann normal coordinates [62-65].
They constitute a first step towards the definition of the proper reference frame. For the
sake of completeness, we provide an introduction to Riemann normal coordinates in
appendix C.

The second important step was initiated by the development of general relativity.
According to the equivalence principle all physical experiments performed by a freely
falling and non-rotating observer in his local spatial neighborhood should lead to the
same outcome as if they would have been performed in flat Minkowski spacetime. Thus,
physical intuition suggests that it should always be possible to introduce coordinates,
such that the transformed metric reduces to a flat spacetime metric for all points on
the geodesic of the freely falling observer. However, Riemann normal coordinates just
guarantee a flat spacetime metric in a sufficiently small region around a single spacetime
point P and not along the whole geodesic. For this reason it was not obvious in the
early days of general relativity, whether the intuitive notion of the equivalence principle
mentioned above could be put on a rigorous mathematical footing.
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It was the young Enrico Fermi [66, 67] who made the next important contribution
by showing that it is always possible to introduce local coordinates around any given
spacetime curve in such a way, that the Christoffel symbols vanish along this curve and
the metric takes its Minkowski form there. Inspired by his work, many investigations
followed, in particular the seminal article by Manasse and Misner [68, 69]. In order to
deal with the freely falling observer they specialized earlier ideas of Fermi and Synge [63]
to what they called “Fermi normal coordinates”. These coordinates can be regarded as
a natural generalization of Riemann normal coordinates. However, they also correspond
to a limiting case of proper reference frame coordinates, as will be seen later.

Since our ultimate goal is the theoretical description of the Sagnac time delay mea-
sured in a satellite based experiment it is necessary to extend these considerations to a
non-geodesic motion and to allow for a possible rotation of the observer. The coordi-
nates most suitable for such a situation have been established by Ehlers [70], and Misner,
Thorne and Wheeler [71]. They are called the local coordinates of the “proper reference
frame”. With their help it is possible to identify the different contributions which arise
in the Sagnac time delay, eq. (7). We now define these coordinates and present the
corresponding expansion of the metric around the world line of the observer in these
coordinates [72-76].

3.2. Construction of coordinates . – Following Ehlers [70], and Misner, Thorne and
Wheeler [71], we now introduce the local coordinates of the proper reference frame(5)
for an observer moving along an arbitrary world line and carrying with him “spatial
coordinate axes” which rotate.

3.2.1. Building blocks. We denote the world line of the observer by pµ(τ) and use his
proper time τ as curve parameter, giving rise to the four-velocity

uµ(τ) =
dpµ

dτ

and to the four-acceleration

aµ(τ) = uµ;ν u
ν .

In order to identify spatial directions, the observer carries with him three spacelike
vectors eµ(i)(τ), where (i) ∈ {1, 2, 3} labels the individual basis vector. It is reasonable to
attach the timelike tangent vector

(10) eµ(0)(τ) =
1
c
uµ(τ)

to the latter, which completes the four-tetrad eµ(α)(τ) with (α) ∈ {0, 1, 2, 3}. For a brief
introduction to the tetrad formalism we refer to appendix B.1.

(5) Unfortunately the name of these coordinates varies in the literature. For example, in [75,76]
they are called “Fermi coordinates”.
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In order to ensure the uniqueness of the construction of the coordinates, we need to
add (i) the relativistic orthogonality condition

(11) eµ(α)(τ) eν(β)(τ) gµν(pσ(τ)) = η(αβ)

for all pµ(τ), and (ii) the transport law

(12) eµ(α);ν u
ν = −Ωµν e

ν
(α)

introduced in appendix B.2. The diagonal matrix η(αβ) = diag(1,−1,−1,−1) in eq. (11)
resembles the Minkowski metric with invariant tetrad indices. The first term in the
antisymmetric transport matrix

(13) Ωµν = − 1
c2

(aµuν − aνuµ) +
1
c
uρ ωσ ε

ρσµν

entering eq. (12) contains the four-velocity uµ(τ) and the four-acceleration aµ(τ) of the
observer and represents the Fermi-Walker transport of the tetrad along pµ(τ). The second
expression uρ ωσ ε

ρσµν/c characterizes the rotation of the spatial tetrad vectors eµ(i)(τ)
in the subspace orthogonal to the four-velocity uµ(τ). Therefore, the identity (10) is
automatically preserved by the transport eq. (12) for all points on the world line.

The transport law (12) constitutes a natural generalization of the Fermi-Walker trans-
port. In order to highlight its significance in the definition of proper reference frame
coordinates, we call eq. (12) the proper transport law.

3.2.2. Exploration of the spatial neighborhood with spacelike geodesics. We now pro-
ceed with the explicit construction of proper reference frame coordinates x(α) shown in
fig. 3. We define the time coordinate x(0) = c τ as in terms of the proper time τ mea-
sured by the clock of the accelerated observer along pµ(τ). In order to define the spatial
coordinates x(i) we introduce the tangent vector

vµ(τ) = v(i)(τ) eµ(i)(τ)

with the additional normalization condition

(v(1))2 + (v(2))2 + (v(3))2 = 1 .

By construction, this tangent vector is orthogonal to the four-velocity uµ(τ) = c eµ(0)(τ)
of the observer at pµ(τ).

When we now draw spacelike geodesics xµ = xµ(τ, v(i)s) from the initial point pµ(τ)
in all spacelike directions vµ(τ) orthogonal to uµ(τ), we are able to explore the spatial
neighborhood of the point pµ(τ). We employ the arclength s as curve parameter of the
spacelike geodesics. For a sufficiently small spatial neighborhood around pµ(τ), there
exists a one-to-one correspondence between the tetrad components v(i)(τ) s of the scaled
initial tangent vector vµ(τ) s and the spacetime point xµ, which we would like to express
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Fig. 3. – Construction of proper reference frame coordinates x(σ) for the neighborhood of the
world line pµ(τ) of an accelerating and rotating observer with proper time τ . The initial tetrad
eµ(α)(τ0) at the point P0 is properly transported according to eq. (12) along pµ(τ) to P1, resulting
in the tetrad eµ(α)(τ1). The “infinitesimal” light cones at P0 and P1 illustrate the timelike and
spacelike regions of the tangent space attached to these points. We now define proper reference
frame coordinates geometrically in two steps: (i) we follow the world line from pµ(τ0) to pµ(τ1)
and (ii) draw a unique spacelike geodesic xµ = xµ(τ, v(i)s) from the point pµ(τ1) to xµ such
that the initial tangent vector vµ(τ1) is orthogonal to the four-velocity uµ(τ1). For τ0 = 0, the
proper reference frame coordinates x(α) which correspond to the spacetime point xµ are given
by the proper time x(0) = c τ1 and by the scaled tetrad components of the initial tangent vector
x(i) = v(i)(τ1) s.

in proper reference frame coordinates. Hence, the simplest idea is to identify the spatial
coordinates x(i) of the proper reference frame with the tetrad components v(i) s of the
initial tangent vector. According to this construction, the connection between proper
reference frame coordinates x(α) and the original coordinates xµ is established by inserting
x(0) = c τ and x(i) = v(i)s into the spacelike geodesics

(14) xµ = xµ(τ, v(i)s) = xµ(x(0)/c , x(i)) .

Appendix C.3 explores this coordinate transformation in more detail by making use of a
formal expression for the spacelike geodesic given by eq. (14).

We conclude by briefly recapitulating this geometrical construction using fig. 3. Sup-
pose, we want to assign local coordinates to the point xµ in the spatial neighborhood of
P1. For simplicity, we take the origin of our proper reference frame coordinates to be
the initial point P0, which implies τ0 = 0. From P0 we follow the world line pµ(τ) until
we are able to draw a unique, spacelike geodesic xµ = xµ(τ, v(i)s) from a point on the
world line to xµ. In fig. 3 this point is represented by P1 with coordinates pµ(τ1) and
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the initial tangent vector vµ(τ1) of the spacelike geodesic is assumed to be orthogonal to
the four-velocity uµ(τ1). Then, the local coordinate time corresponding to the point xµ

reads x(0) = c τ1. On the other hand, the spatial coordinates x(i) correspond to the tetrad
components v(i)(τ1) s of the scaled initial tangent vector vµ(τ1) s = (v(i)(τ1) s) eµ(i)(τ1).

3.2.3. Caveat emptor. We note, that these local coordinates are only valid within a suf-
ficiently small region D around the world line pµ(τ) of the observer. This region ensures
the one-to-one correspondence between the coordinates of the spacetime point xµ ∈ D
and the tetrad components of the scaled, initial tangent vector v(i)(τ1) s at pµ(τ). How-
ever, the curvature of spacetime can cause two spacelike geodesics with different initial
conditions to coincide in a spacetime point yµ. In this case, the one-to-one correspon-
dence breaks down and yµ /∈ D. For the sake of simplicity, we restrict ourselves for the
remainder of these notes to spacetime points xµ ∈ D.

Moreover, as already pointed out by L. Synge [63], a spacelike geodesic is a somewhat
artificial object when considered from the operational point of view. Indeed, spacelike
geodesics are not immediately linked to physically accessible objects such as light rays or
timelike world lines of massive particles – disregarding the conceptional difficulties which
arise due to the idealization one usually makes in the descriptions of light rays and world
lines. However, the analysis of lightlike or timelike geodesics in proper reference frame
coordinates offers a possibility to establish such a relation between spacelike geodesics
and physically accessible objects. Appendix C.3.3 therefore provides an approximate
solution to the geodesic equation in the spatial neighborhood of the observer’s world
line.

3.3. Metric expansion. – We now return to the discussion on the suitability of proper
reference frame coordinates for local satellite experiments, alluded to already at the end
of the motivation in 3.1. In particular, we provide the power-series expansion of the
metric coefficients around the world line of the observer which in proper reference frame
coordinates reads p(σ)(τ) = (c τ, 0, 0, 0).

3.3.1. Leading-order contributions. The power-series expansion of the metric coeffi-
cients for the spatial neighborhood around the world line p(σ)(τ) is then carried out in
terms of the spatial coordinates x(i), and takes the form

(15) g(µν)(x(σ)) = g(µν)(p(σ)) +
∞∑
n=1

1
n!
g(µν),(i1),...,(in)(p(σ))x(i1) · . . . · x(in) .

We emphasize, that the expansion coefficients g(µν),(i1),...,(in)(p(σ)) still depend on the
coordinate time x(0) through p(σ) = p(σ)(τ).

The acceleration and the rotation of the observer crucially affect the outcome of
local experiments within the satellite. In Newtonian mechanics these effect arise from
fictitious, inertial forces. However, in general relativity inertial forces are treated on the
same footing as gravitation – they are both absorbed in the metric of spacetime. But since
we are dealing with a metric expansion in the rest frame of our accelerating and rotating
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observer using proper reference frame coordinates, we expect the four-acceleration a(µ)

and the tetrad rotation vector ω(µ) to enter the expansion coefficients g(µν),(i1)(p(σ)) and
g(µν),(i1),(i2)(p(σ)). As discussed in appendix C.3, the zeroth components of the four-
acceleration a(µ) and of the four-vector ω(µ) vanish, that is a(0) = 0 and ω(0) = 0.
As a consequence, the spatial components a(i) and ω(i) are the only parameters which
characterize the acceleration and rotation of the observer in the metric expansion.

For the purpose of Sagnac interferometry within a satellite, it suffices to focus on the
first two leading terms in eq. (15). In appendix C.3 we derive the expressions

g(00)(x(σ)) =1− 2
c2
a(i1)x

(i1) +R(0)(i1)(i2)(0)(p(σ))x(i1)x(i2)(16)

+
1
c2

(
1
c2
a(i1)a(i2) + ω(i1)ω(i2) − ω(l)ω(l) η(i1i2)

)
x(i1)x(i2) +O(x3) ,

g(0k)(x(σ)) =
1
c
ε(0kli1) ω

(l)x(i1) +
2
3
R(0)(i1)(i2)(k)(p(σ))x(i1)x(i2) +O(x3) ,

g(jk)(x(σ)) =− δ(jk) +
1
3
R(j)(i1)(i2)(k)(p(σ))x(i1)x(i2) +O(x3) .

We briefly illustrate the notation by two examples. For this purpose, we first note that
the spatial co- and contravariant components of ω(i)(τ) and ω(i)(τ) differ by a minus sign,
since the raising and lowering of the indices is carried out by the Minkowski metric η(αβ)

along the observer’s world line. As a consequence, we find the relations

ω(l)ω(l) η(i1i2) = −ω(l)ω(l) δ(i1i2) = ω2 δ(i1i2) and ε(0kli1) ω
(l)x(i1) = −(ω × x)(k)

by identifying the spatial coordinates x(i) and the non-vanishing vector components ω(i)

with x and ω. In the second expression, we have made use of the correspondence (B.12)
between the covariant components of the antisymmetric tensor ε(αβγδ) in proper reference
frame coordinates and the Levi-Civita symbol ∆αβγδ.

3.3.2. Special cases of proper reference frame coordinates. Before we proceed, we
briefly review three examples of proper reference frame coordinates:

(i) An observer moving along a geodesic and carrying with him a the Fermi-Walker-
transported tetrad eµ(α)(τ) represents the most elementary case. Indeed, we know from
the geodesic equation and from the definition of the Fermi-Walker transport, discussed in
appendix (B.2), that the four-acceleration and the spatial rotation of the tetrad vanish,
that is a(i) = 0 and ω(i) = 0. Hence, all first-order contributions in the expansion of
the metric, eq. (16), disappear, which implies that proper reference frame coordinates
constitute the local coordinates of a freely falling, inertial observer in this case. The
only correction to the metric of flat spacetime originates from the components of the
curvature tensor in the second-order. In particular, these terms represent the gravita-
tional field gradients acting in the neighborhood of the inertial observer. This special
case corresponds to the so-called Fermi normal coordinates of [68].
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(ii) We now consider an accelerated observer whose tetrad is still Fermi-Walker trans-
ported giving rise to a(i) 6= 0 and ω(i) = 0. In this case we obtain a first-order contri-
bution −2 a(i1)x

(i1)/c2 to the metric coefficient g(00)(x(σ)), as well a second-order term.
The first-order expression is the major contribution to the gravitational frequency shift
measured between a light source and an accelerated observer along his world line. Here
we refer to the familiar red shift experiments [77] using the Mössbauer effect in the
accelerated frame of an earth-bound laboratory.

(iii) Finally, for an observer who is accelerating as well as rotating, that is a(i) 6= 0
and ω(i) 6= 0, we also encounter the first-order terms ε(0kli1) ω

(l)x(i1)/c in the metric
coefficients g(0k)(x(σ)). As shown in the next section, these terms account for the leading-
order contribution of the Sagnac time delay between two counter-propagating light rays.
For this reason, the standard literature calls an observer non-rotating if his tetrad vectors
are Fermi-Walker transported along the world line such that ω(i) = 0.

We emphasize, that rotation as well as acceleration are in this way absolute quantities
[70] and not relative ones. Hence, they provide a coordinate independent characterization
of the observer’s state of motion, or equivalently, of the gravitational field acting in its
immediate local neighborhood. This fact expresses itself in coordinate independent values
of the tetrad rotation ω(i) and of the four-acceleration a(i). The question, how to use a
Sagnac interferometer to decide whether an observer is rotating or not, will be addressed
in the next section.

4. – Sagnac time delay in a proper reference frame

The expression for the Sagnac time delay, eq. (7), suffers from a dilemma frequently
encountered in general relativity. It contains an implicit dependence on the coordinates
used for the description of the experiment. Since coordinates have no immediate physical
meaning in general relativity – unless they are operationally defined – our formula for
the Sagnac time delay (7) does not provide a direct relationship between measurable
quantities on both sides of the equation. For this reason, it is necessary to perform
additional measurements which define the underlying coordinate system. Only under this
condition, a measurement of the Sagnac time delay is capable of determining unknown
parameters in the metric under consideration(6).

These arguments suggest the use of proper reference frame coordinates as a tool to
circumvent the problem of coordinate dependence. As discussed in the previous sec-
tion, they are defined in terms of (i) the proper time measured by the observer, and
(ii) spacelike geodesics which emerge from his world line. Due to their unique geometric
construction, these coordinates constitute invariants under general coordinate transfor-
mations. Consequently, the Sagnac time delay and the unknown parameters entering the
metric are connected in an invariant way. This invariant formulation stands out most
clearly when we restrict ourselves to a sufficiently small spatial region around the world

(6) This point is illustrated for the Sagnac time delay in Gödel’s Universe in [78].
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Fig. 4. – Measurement of the Sagnac time delay within a proper reference frame depicted in
space (left) and spacetime (right). In the spatial diagram (left), an observer located at the fixed
position q(r) emits two counter-propagating light rays along the spatial curve S, which enclose
an arbitrarily shaped surface A. The parameters u, v ∈ R span A by s(i)(u, v) giving rise to the
infinitesimal surface normal dσ(a). In the spacetime diagram (right), the first observer moves
along the world line p(σ)(x(0)) and defines the proper reference frame coordinates according to
the procedure discussed in 3

.
2. The proper time delay ∆τSq between the arrivals of the two light

rays is measured by the second observer along his world line q(σ)(x(0)) = (x(0), q(r)). Since both
observers are spatially separated, they have to take into account the redshift factor

p
g(00)(q(r))

when comparing their proper times τp and τq for a time independent metric.

line of the observer. Here we can take advantage of the power-series expansion of the
metric coefficients (16) in proper reference frame coordinates.

In this section, we first setup the machinery for the description of the Sagnac time
delay ∆τS , eq. (7), within a proper reference frame. We then discuss the first two leading
orders in the expansion of ∆τS and analyze the influence of inertial and gravitational
effects. We conclude with a comparison of some measurement schemes which allow for the
determination of the tetrad rotation vector ω(i) and several coefficients of the curvature
tensor.

4.1. Framework for the Sagnac time delay measurement . – As illustrated in the left
picture of fig. 4, we suppose that the counter-propagating light rays, which emerge from
the fixed position q(r), travel along the positively oriented, closed spatial curve S. We
parameterize S in proper reference frame coordinates by s(i)(φ). The surface A of arbi-
trary shape is bounded by S. We parameterize A in terms of the variables u, v ∈ R via
s(i)(u, v). In particular, the infinitesimal surface normal dσ(a), defined by the covariant
components

dσ(a) = ε(0amn)

∂s(m)

∂u

∂s(n)

∂v
dudv

obeys the right-hand rule with respect to the circulation resulting from s(i)(φ).
In general, we need two observers in order to measure the Sagnac time delay in
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an invariant way. Whereas the first one is responsible for the construction of proper
reference frame coordinates, the second one measures the Sagnac time delay ∆τSq. As
indicated in the right picture of fig. 4, we denote the world line of the first observer by
p(σ)(x(0)) = (x(0), 0, 0, 0). The coordinate time x(0) is related to his proper time τp by
x(0) = c τp. The second observer is at rest at the fixed spatial position q(r) and moves
along the world line q(σ)(x(0)) = (x(0), q(1), q(2), q(3)). He finds that his proper time τq is
related to the coordinate time x(0) by

(17) τq =
1
c

x(0)∫
0

√
g(00)(q(σ)) dq(0) ,

in contrast to the first observer who directly defines the global coordinate time x(0) by
his proper time τp.

The derivation of the Sagnac time delay presented in 2.2 assumes that the stationary
metric does not depend on the time coordinate in the underlying reference frame. For
this reason we have to make an important assumption concerning the first observer: his
acceleration a(i)(τp) and the rotation vector ω(i)(τp) of his spatial tetrad should not change
considerably during the time it takes to perform the Sagnac time delay measurement. In
this case, eq. (17) reduces to

(18) τq =
1
c

√
g(00)(q(r)) x(0) =

√
g(00)(q(r)) τp ,

which implies that the proper times τp and τq of both observers differ from each other
just by the redshift factor

√
g(00)(q(r)).

4.2. Leading-order contributions of the Sagnac time delay . – So far, we have illustrated
the measurement scheme for the Sagnac time delay. We now continue with a discussion
of the first two leading-order contributions of the Sagnac time delay in proper reference
frame coordinates. Since we want to focus on the essential results, we have moved the
detailed calculations to appendix D. In this appendix we derive a formally exact expres-
sion for ∆τSq as a series expansion in moments of “unit fluxes”, and partial derivatives
of the metric coefficients evaluated along the world line p(σ)(x(0)).

According to the original formula, eq. (1), the Sagnac time delay crucially depends
on the scalar product A ·Ω between the area vector and the angular velocity. In order to
establish an analogous expression within the framework of general relativity, we introduce
the zeroth and the first moments of the unit fluxes

A(a) =
∫∫
A

dσ(a) and A (i1)
(a) =

∫∫
A

s(i1)dσ(a) .

The definition of the corresponding higher-order moments A (i1)...(in)
(a) is straight forward.

In the general relativistic analogue for the Sagnac time delay the contravariant compo-
nents A(a) will replace the area vector A of the original eq. (1).
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The derivation of the first two leading-order contributions basically relies on (i) the
substitution of the metric expansion, eq. (16), into the Sagnac time delay, eq. (7), and (ii)
on the subsequent application of Stokes’ theorem. As shown in appendix D, we obtain
the invariant characterization of the Sagnac time delay

∆τSq =
4
c2

√
g(00)(q(r))

[
−ω(a)A(a) +

2c
3
ε(0ajk)R(0){(i1)(j)}(k)(p(r))A (i1)

(a)

+
1
c2
(
ω(l)a(l) δ

(a)
(i1) − 3ω(a)a(i1)

)
A (i1)

(a)

]
+O

(
A (i1)(i2)

(a)

)(19)

which provides an adequate generalization of the original expression, eq. (1), within the
framework of general relativity. Here we have added the additional subscript q to the
Sagnac time delay ∆τS given by eq. (7) to express the fact, that the measurement is
performed by the observer with world line q(σ)(x).

Clearly, the main contribution arises from the first term in the brackets. We call this
term the zeroth-order contribution due to its dependence on the zeroth moment of the
unit fluxes A(a). The additional factor

√
g(00)(q(r)) which is not present in the original

formula stems from the different proper times, eq. (18), measured by the two observers at
different positions. Moreover, we encounter several components of the curvature tensor,
as well as the traceless matrix ω(l)a(l) δ

(a)
(i1) − 3ω(a)a(i1) containing the acceleration a(i)

and the tetrad rotation vector ω(i). Both of these terms appear within the first-order
contribution corresponding to the first moments A (i1)

(a) .

4.3. Measurement strategies. – Despite of the mathematical machinery built up in
the preceding sections, we have not yet given an operational definition of rotation within
general relativity. In this subsection we show that the Sagnac time delay, eq. (19), enables
us to achieve this goal.

For this purpose let us first suppose that we have the ability to Fermi-Walker transport
the spatial tetrad vectors eµ(i)(τp) along the world line of the first observer. In this case the
tetrad rotation vector ω(i) vanishes. Nevertheless, eq. (19) still predicts a non-vanishing
time delay ∆τSq between the arrival times of the counter-propagating light rays. This
delay originates from the curvature of the spacetime itself, as well as from higher-order
corrections. But how can we then decide experimentally, whether the tetrads are Fermi-
Walker transported or not?

A first possibility is the method of the “bouncing photon” [63] introduced by John
L. Synge and reformulated by Felix A. E. Pirani [79,21], which uses light emitted by an
observer and reflected back from a mirror in the immediate neighborhood of the observer.
When the direction of the outgoing and incoming light ray coincide, the observer is not
rotating.

The measurement of the Sagnac time delay, eq. (19), using special surface configura-
tions of the Sagnac interferometer, constitutes another approach. In the present section
we pursue this idea. Moreover, we show how to change the experimental setup in order
to measure several components of the curvature tensor.
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Fig. 5. – Rotation sensor: measurement of the components ω(i) of the tetrad rotation vector using
Sagnac interferometers. On the left we show a single circular interferometer in the x(1)-x(2)-
plane, which allows us to measure the component ω(3). On the right we depict three orthogonal,
circular interferometers. Each one provides information about one component of ω(i).

4.3.1. Rotation sensor. We now apply eq. (19) to a specific experimental setup. We
assume that the spatial curve S, which encloses a planar surface with area A in the
x(1)-x(2)-plane, is symmetric under reflection with respect to the x(1)-x(3)- and x(2)-x(3)-
plane. In the left picture of fig. 5 this situation is exemplified with a circular path S. In
this case the contravariant components of the surface normal n read n(a) = (0, 0, 1), and
we obtain for the zeroth and the first moments of the unit fluxes

A(a) = An(a) and A (i1)
(a) = n(a)

∫∫
A

s(i1) ds(1)ds(2) = 0 .

We note that, according to the second identity, the first moments of the unit fluxes A (i1)
(a)

allow for a simple interpretation when A is planar. For if we suppose, that the area A is
filled with a homogeneous mass distribution, A (i1)

(a) would just correspond to the product
of the covariant components n(a) of the surface normal and the contravariant components
of the “center of mass” of A.

When we now insert the previous expressions into eq. (19), the Sagnac time delay
reduces to

(20) ∆τSq = − 4
c2

√
g(00)(q(r))ω(a)n(a)A+O

(
A (i1)(i2)

(a)

)
.

With the help of the identity −ω(a)n(a) = ω(3), we are thus able to determine the third
component of the tetrad rotation vector ω(i) from the Sagnac time delay ∆τSq, as far as
the enclosed area A is known and the higher-order contributions are negligible. Similarly,
by aligning the normal axis of the Sagnac interferometer along the x(1) and x(2)-axes, we
are able to find the remaining components ω(1) and ω(2). In summary, we can determine
the tetrad rotation vector by considering three Sagnac interferometers with normal vec-
tors aligned along the three coordinate axes, as depicted in the right part of fig. 5. In
what follows, we call such a collection of Sagnac interferometers briefly a rotation sensor.
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With this rotation sensor we are now in the position to provide an operational charac-
terization of the Fermi-Walker transport of an observer along his world line: the tetrad
of the observer undergoes Fermi-Walker transport when the Sagnac time delay ∆τSq
vanishes for all three orthogonal orientations of the interferometer. In other words, we
call the observer non-rotating only if all components of the tetrad rotation vector ω(i)

vanish for this measurement procedure. Needless to say, this statement is only correct
when we can confine ourselves to the first two leading orders of ∆τSq in eq. (19).

4.3.2. Curvature sensor. We now turn to the question, how to determine individual
components of the curvature tensor using Sagnac interferometry. For this purpose, it is
necessary to ensure that the tetrad is Fermi-Walker transported in order to eliminate all
contributions which arise from the tetrad rotation. According to the discussion of the
previous subsection, we can achieve this goal by measuring the Sagnac time delay induced
in the rotation sensor shown in fig. 5. Using dynamical feedback, we then appropriately
realign the tetrad vectors of the observer in order to maintain ω(i) = 0 along the world
line of the satellite.

Next, we use an additional interferometer with a closed curve S which runs through
the origin of the proper reference frame, as sketched in the left part of fig. 6. Moreover,
we restrict ourselves to a single observer located at the origin, who defines the coordinates
and measures the Sagnac time delay. In this case, we can identify the world line q(σ)(x(0))
with p(σ)(x(0)) giving rise to the redshift factor g(00)(q(r)) = 1. When we take the Fermi-
Walker transport of the tetrad into account, the Sagnac time delay (19) reduces to

(21) ∆τSp =
8
3c

ε(0ajk)R(0){(i1)(j)}(k)(p(r))A (i1)
(a) +O

(
A (i1)(i2)

(a)

)
.

Here we have added the subscript p to the Sagnac time delay ∆τS since in this case the
measurement is performed by the observer along the world line p(σ)(x(0)).

Expression (21) allows us to establish a direct connection between the Sagnac time
delay and several components of the curvature tensor. As in the previous subsection,
we first want to exemplify the idea by considering a spatial curve S which encloses a
planar area A in the x(1)-x(2)-plane. However, in the present case, we only require that
S is symmetric under reflection with respect to the x(1)-x(3)-plane as sketched on the
left of fig. 6. Due to this weakened symmetry condition, the first moments of the unit
fluxes A (i1)

(a) will no longer vanish. This feature is in contrast to the previously discussed
rotation sensor. As mentioned before, it is possible to relate the first moments of the
unit fluxes A (i1)

(a) to the “center of mass” of the planar area A, located at Mm(i). Here
we have introduced the unit vector m with components m(i) = (1, 0, 0), as well as the
separation M of the “center of mass” to the origin. Moreover, we again denote the
contravariant components of the unit surface normal n by n(a) = (0, 0, 1). With these
definitions we then obtain for the zeroth and the first moments of the unit fluxes

(22) A(a) = An(a) and A (i1)
(a) = n(a)

∫∫
A

s(i1) ds(1)ds(2) =Mn(a)m
(i1) .
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Fig. 6. – Curvature sensor: measurement of a single (left) and six independent components
(right) of the curvature tensor with the help of Sagnac interferometry. On the left we show an
interferometer with a single loop allowing us to obtain a single component of the curvature tensor.
This device requires only a single observer located at the origin. He defines the coordinates and
measures the Sagnac time delay. The corresponding tetrad basis is Fermi-Walker transported
with the help of the rotation sensor. The spatial curve S encloses a planar surface in the x(1)-
x(2)-plane with normal vector n(a) = (0, 0, 1). The curve is reflection symmetric with respect to
the x(1)-x(3)-plane. Moreover, the “center of mass” of the area A is located atMm(a), with m(a)

being the unit vector pointing towards the direction of the position of the “center of mass”. With
this setup we are able to determine the component R(0)(1)(1)(2)(p

(r)) of the curvature tensor. On
the right we depict six equivalent interferometers aligned along mutually orthogonal directions.
They allow us to determine six independent components of the curvature tensor, which are
related to the vectors n and m in table II.

When we insert these expressions into the Sagnac time delay (21), we obtain

(23) ∆τSp =
8M
3c

n(a) ε
(0ajk)R(0){(i1)(j)}(k)(p(r))m(i1) +O

(
A (i1)(i2)

(a)

)
,

which yields with the current values of n and m and the first Bianchi identity

(24) ∆τSp =
4M
c

R(0)(1)(1)(2)(p(r)) +O
(
A (i1)(i2)

(a)

)
.

Hence, Sagnac interferometry allows us to determine some of the components of the
curvature tensor. We emphasize, that this result is only valid provided second and
higher order contributions can be neglected.

We conclude by briefly outlining the scheme how to measure six off all 20 independent
components of the curvature tensor. For this purpose, we change the orientation of the
planar Sagnac interferometer without affecting its shape. In particular, we align the unit
surface normal n along one of the coordinate axes, and place the position Mm of the
“center of mass” onto another coordinate axes orthogonal to n. As shown on the right of
fig. 6, we are left with six different orientations of our Sagnac interferometer which allow
for the determination of six independent components of the curvature tensor.
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Table II. – Connection between the orientation of the Sagnac interferometer and the component
of the curvature tensor measured by this device. The orientation of the planar interferometer
is encoded in the surface normal n(a) and in the position Mm(i) of the “center of mass” of A.
The Sagnac time delay ∆τSp follows from the components of the curvature tensor by eq. (23).

n(a) m(i) c
4M ·∆τSp

(1,0,0) (0,1,0) −R(0)(2)(2)(3)(p
(r))

(1,0,0) (0,0,1) +R(0)(3)(3)(2)(p
(r))

(0,1,0) (1,0,0) +R(0)(1)(1)(3)(p
(r))

(0,1,0) (0,0,1) −R(0)(3)(3)(1)(p
(r))

(0,0,1) (1,0,0) −R(0)(1)(1)(2)(p
(r))

(0,0,1) (0,1,0) +R(0)(2)(2)(1)(p
(r))

In table II we present the connection between these components and the Sagnac time
delay for the different orientations of the loops described by the vectors n and m. Here
we have made use of eq. (23) and have evaluated the resulting expressions in complete
analogy to the example leading to eq. (24).

We emphasize, that Sagnac interferometry is not capable of reproducing all compo-
nents of the curvature tensor. However, there exist other methods based e. g. on geodesic
deviation or parallel transport along closed loops, which are capable of providing the re-
maining components of the curvature tensor and which allow for a deeper understanding
of the curvature of spacetime [70,80].

4.3.3. Double eight-Loop interferometer (DELI). One might wonder, whether it is
really necessary to install a rotation as well as a curvature sensor in order to obtain
information about the tetrad rotation and the curvature of spacetime. We now show
that indeed a single device suffices. For this purpose we combine the main ideas of the
two preceding subsections to construct a single Sagnac interferometer in which we can
easily switch between rotation and curvature measurements.

General idea. The appropriate combination of the symmetry aspects of the light paths
S used in the rotation and curvature sensor is the key point of our approach. We
upgrade the curvature sensor displayed on the left of fig. 6 by including a mirror-inverted
interferometer with “center of mass” position −Mm(i). We denote the oppositely located
loops of both curvature sensors by S and S̄. The parameterizations of S and S̄ are both
positively oriented as illustrated in fig. 7.

When we recall the zeroth and first moments of the unit fluxes, eq. (22), we obtain
from the expansion, eq. (19), the Sagnac time delays

(25) ∆τSp(S) = − 4
c2
ω(a)n(a)A+ ΦM+O

(
A (i1)(i2)

(a)

)
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Fig. 7. – Central idea of a device combining tetrad rotation and curvature measurements. Ad-
dition or subtraction of the individual Sagnac time delay measurements obtained in two mirror-
inverted curvature sensors yields either the tetrad rotation or a specific component of the cur-
vature tensor, respectively.

and

(26) ∆τSp(S̄) = − 4
c2
ω(a)n(a)A− ΦM+O

(
A (i1)(i2)

(a)

)
corresponding to the two loops S and S̄. Here, we have introduced the short hand
notation

Φ = n(a)

[
8
3c
ε(0ajk)R(0){(i1)(j)}(k)(p(r)) +

4
c4
(
ω(l)a(l) δ

(a)
(i1) − 3ω(a)a(i1)

)]
m(i1) .

In contrast to eq. (23), where the tetrad attached to the observer was Fermi-Walker
transported along the world-line p(σ)(τ), equations (25) and (26) include both the tetrad
rotation and the curvature of spacetime.

Next, we take the sum

(27) ∆τSp(S) + ∆τSp(S̄) = − 4
c2
ω(a)n(a) · 2A+O

(
A (i1)(i2)

(a)

)
of the individual time delays ∆τSp(S) and ∆τSp(S̄) and their difference

(28) ∆τSp(S)−∆τSp(S̄) = Φ · 2M+O
(
A (i1)(i2)

(a)

)
.

In this way, we have separated the zeroth from the first order contribution of the Sagnac
time delay.

We conclude by noting that the standard Sagnac interferometer experiments do not
directly measure the proper time difference between two counter-propagating light rays,
but rather use its manifestation in phase or frequency differences. For this reason, the
proposed method of adding and subtracting the individual Sagnac time delays ∆τSp(S)
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and ∆τSp(S̄) might not be the most convenient experimental approach towards the mea-
surement of the tetrad rotation and the curvature of spacetime with the same device.

Road to DELI . For this reason, we now pursue a slightly different approach and choose
appropriate combinations of the paths S and S̄. This new measurement scheme can be
easily motivated by a reinterpretation of ∆τSp(S)±∆τSp(S̄) in terms of the proper arrival
times τ±(S) and τ±(S̄) of the clockwise (−) and counterclockwise (+) propagating light
rays after one circulation around S and S̄, respectively. The quantities τ±(S) and τ±(S̄)
follow from eq. (6) with τ± =

√
g(00)(p(r)) t±/c.

Since we have required that the metric expressed in proper reference frame coordinates
is time independent, the values of the proper times τ±(S) and τ±(S̄) do not depend on
the moment of the measurement. Thus, we can cast the sum of the proper time delays
into the form

(29) ∆τSp(S) + ∆τSp(S̄) = [τ+(S) + τ+(S̄)]− [τ−(S) + τ−(S̄)] = ∆τSp(S0) ,

where we have introduced the total time delay

∆τSp(S0) = τ+(S0)− τ−(S0) with τ±(S0) = τ±(S) + τ±(S̄) .

We illustrate the connection between the total time delay ∆τSp(S0) and the proper
times τ+(S0) and τ−(S0) in the left picture of fig. 8. When we consider the counter-
clockwise-propagating light ray which first circulates around S and, after reflection at P ,
continues to travel around S̄, we obtain the total proper time τ+(S0) for the propagation
along the positively oriented eight-loop S0. In accordance, we denote the proper time
which results from the circulation of the clockwise-propagating beam along the eight-loop
curve S0 by τ−(S0) .

In the same spirit we find for the differences of the proper time delays the relation

(30) ∆τSp(S)−∆τSp(S̄) = [τ+(S) + τ−(S̄)]− [τ−(S) + τ+(S̄)] = ∆τSp(S1) ,

where we have defined

∆τSp(S1) = τ+(S1)− τ−(S1) with τ±(S1) = τ±(S) + τ∓(S̄) .

The corresponding situation is illustrated on the right of fig. 8. Here, the initially
counterclockwise-propagating light ray is transmitted at P after its first circulation
around the loop S. Thus, it will travel along the second loop S̄ in clockwise direc-
tion, giving rise to the definition of a different eight-loop path S1. Hence, the total
time τ+(S1) follows from the sum of the individual proper times τ+(S) and τ−(S̄). The
proper time τ−(S1) results from the initially clockwise-propagating light ray which then
circulates around S̄ in counter-clockwise direction, respectively.

The crucial difference between the two eight-loops S0 and S1 stems from the reversed
circulation of the corresponding light rays along S̄. In fact, this difference provides the



28 E. Kajari, M. Buser, C. Feiler and W. P. Schleich

Fig. 8. – Double eight-loop interferometer (DELI): Measurement of the tetrad rotation (left)
and of the curvature of spacetime (right) using two identical, mirror-reflected curvature sensors
with loops S and S̄. In the left picture, the counterclockwise-propagating light ray emitted at
P first travels around the loop S. After its first return at P , it gets reflected and continues to
propagate in counter-clockwise direction along the closed curve S̄. When the light ray arrives
at P for the second time, we take the total time τ+(S0) elapsed during the circulation of the
light ray along S0. Here S0 denotes the combination of both loops S and S̄. In contrast, the
right picture summarizes a situation in which the initially counterclockwise-propagating light
ray is transmitted when first arriving at P . Therefore, it circulates around the second loop S̄
in clockwise direction, giving rise to the total proper time τ+(S1) at its second arrival at P .
In order to bring out most clearly the similarities and differences between the two pictures, we
have marked in the right picture only those quantities which are different from the ones in the
left picture.

bedrock for the determination of the zeroth and first order contributions of the Sagnac
time delay, eq. (19), with this method. Indeed, when we compare eq. (27) to eq. (29),
we obtain the zeroth order contribution

(31) ∆τSp(S0) = − 4
c2
ω(a)n(a) · 2A+O

(
A (i1)(i2)

(a)

)
from a Sagnac time delay measurement with the eight-loop S0, whereas the first order
contribution

(32) ∆τSp(S1) = Φ · 2M+O
(
A (i1)(i2)

(a)

)
follows from a measurement with S1 as indicated by a comparison of eq. (28) with (30).

In this way, we have constructed an intuitive and operational method to gain insight
into the zeroth and first order contributions of the Sagnac time delay. We can distin-
guish between purely gravitational and inertial effects in ∆τSp(S1), when we adjust the
orientation of our satellite such that ∆τSp(S0) = 0 is always satisfied, thus giving rise to
ω(i) = 0. However, we have to be sure that the second and higher order contributions in
eq. (19) are still negligibly small.

Due to the two measurement modes of the eight-loop interferometer, we call the device
depicted in fig. 8 a double eight-loop interferometer (DELI).
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Possible experimental realization. We conclude this subsection by briefly presenting some
ideas for the experimental implementation of the DELI. However, these ideas are prelim-
inary and call for further investigations.

As a first thought, we are tempted to take advantage of the horizontal and vertical
polarization of light and use a polarization beam splitter at P , which allows for a reflection
of the horizontally and a transmission of the vertically polarized light ray after its first
circulation around S, see fig. 8. In this case, the horizontally polarized component would
propagate along the loop S0, whereas the vertically polarized component would follow
the loop S1. After the second arrival of the polarized beams at P , one would have
to separate them, e. g. with a birefringent medium, in order to obtain two separate
interference patterns.

This implementation of a DELI bears an additional complication: spacetime influences
the polarization of light. In fact, a rotation of the polarization vector relative to the
observer’s proper reference frame stems from inertial effects such as the tetrad rotation
on the one hand and from the curvature of spacetime in the vicinity of the observer’s world
line on the other. As a consequence, the initially horizontal and vertical components of
the light rays will intermingle after the circulation around S0 and S1, resulting in more
complex interference patterns at the detector.

A solution to the problem of polarization mixing must crucially depend on the partic-
ular realization of the guiding mechanism for the light rays. For simplicity, let us suppose,
that the counter-propagating light rays stay on target with the help of a large number
of mirrors. In this case, the light rays freely propagate along null geodesics between two
successive mirrors and the polarization vector undergoes parallel transport [71]. Taking
also into account the change of the polarization vector induced by the guiding mirrors
along the eight-loop, we could predict the total change of the polarization vector and try
to countervail, were it not for our ignorance of the local metric in the neighborhood of
the observer’s world line.

We conclude by emphasizing, that this brief discussion makes a strong case for a
thorough analysis of polarization changes due to parallel transport and mirror reflections
in order to obtain valuable limits on the influence of the local, unknown metric for a
particular realization of the eight-loop. Only then we are able to decide, whether to
favor or to reject this polarization-based implementation of a DELI.

4.4. Rotation in general relativity. – We now briefly compare and contrast two concepts
of rotation in general relativity. The first one is based on the local definition of rotation
using e. g. a Sagnac interferometer. The second one is connected to the more traditional
point of view, which unconsciously relates rotation to the circular motion of the stars in
the sky. We close this section with some comments on Mach’s principle.

Inertial compass. In subsection 4.3.1 we have outlined an operational method to deter-
mine the inertial effect of tetrad rotation using the rotation sensor. In other words, we
have given an absolute meaning to the “rotation of the observer’s coordinate axes relative
to a Fermi-Walker transported tetrad”.
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One sometimes refers to a Fermi-Walker transported tetrad as inertial compass. The
use of the word “compass” might be slightly misleading in this context, since the inertial
compass does not characterize a particular spatial direction, but rather describes a certain
state of motion of the observer’s coordinate axes. The adjective “inertial” originates from
the analysis of timelike geodesics in the local neighborhood of the observer. Suppose our
observer disperses a cloud of freely falling test particles simultaneously in all spatial
directions. Using a local approximation of the geodesic equation in proper reference
frame coordinates, the congruence of all particle world lines would only be irrotational
in the local neighborhood of the observer’s world line as long as his coordinate axes were
Fermi-Walker transported. Indeed, a non-vanishing tetrad rotation vector ω(i) 6= 0 would
lead to Coriolis and centrifugal like contributions as first order corrections to the geodesic
equation [70,71].

Stellar compass. Astrometry rests upon the observation of celestial light sources and
suggests the use of spatial reference systems such as catalog stars or Very Long Baseline
Interferometry (VLBI) [81]. With these marvelous techniques in mind, one may conclude
that rotation could also be understood as a relative concept which characterizes the
revolution of the observer’s reference frame relative to the distant “celestial bodies”.
Indeed, this point of view is frequently put forward in the context of Mach’s criticism
concerning Newton’s rotating bucket [3]:

“Newton’s experiment with the rotating vessel simply informs us that the relative
motion of the water with respect to the sides of the vessel produces no noticeable centrifu-
gal forces, but that such forces are produced by its relative rotation with respect to the
mass of the Earth and the other celestial bodies.”

However, when we analyze such celestial reference systems within the framework of gen-
eral relativity aiming for a relative meaning of rotation, we should be aware of two
intricacies.

The first one has to do with the concept of motion in general relativity. Suppose that
a cloud of test particles travels along a congruence of timelike world lines in a spacetime
with fixed metric. In this case, it is always possible to introduce adapted coordinates
such that all particles are spatially at rest and all the spatial components of their four-
velocities vanish. This simple example shows clearly, that we cannot give a rigorous
meaning to the notion of motion, without accepting the metric as a crucial ingredient.

However, the metric is accompanied by the next intricacy, namely the global aspects
of curved spacetime. When we examine the position of a star in the sky, we perceive the
tangent vector of the incident null geodesic which connects the star with our telescope.
It is clear, that the direction of the incident tangent crucially depends on the underlying
metric of spacetime, and not only on the initial position and direction of the null geodesic
emanating from the star.
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The preferred spatial directions obtained by several such catalog stars define the so-
called stellar compass [9]. Despite the fact that the stellar compass(7) crucially depends
on the global aspects of the spacetime metric, it allows for an independent definition of a
spatial reference system. Instead of using a Sagnac interferometer or another gyroscope to
locally define a Fermi-Walker-transported tetrad, which gives rise to the inertial compass,
our observer could likewise establish the orientation of his spatial tetrad axes e. g. with
the help of these catalog stars. Roughly speaking, the Gravity Probe B experiment was
designed to compare the time evolutions of the inertial and the stellar compass along the
world line of the satellite.

In this spirit, one should not state that the water in Newton’s bucket is rotating
relative to the distant “celestial bodies”, but relative to the inertial compass. However,
it is an experimentally well established fact that the inertial and stellar compass do not
rotate relative to each other in our present universe. For this reason one might equally
well assert that the water in the bucket rotates relative the to the stellar compass.

Mach’s principle. We conclude this discussion of the concept of rotation with some brief
comments on the validity of Mach’s principle in the theory of relativity. As already
adumbrated by Isenberg’s and Wheeler’s quote in the introduction, sect. 1, of these
lectures, it is not an easy matter to decide whether Mach’s principle is satisfied in general
relativity or not. This difficulty arises mainly due to the vague formulation of Mach’s
principle which allows for many different interpretations [10, 11]. Here, we will only
mention three distinct versions. For additional formulations of Mach’s principle we refer
to [82].

The first version states that “the universe, as represented by the average motion
of distant galaxies does not appear to rotate relative to local inertial frames” [82]. In
other words, within our current universe the inertial compass is not rotating relative
to the stellar compass. This claim has been tested experimentally to a high accuracy.
However, in connection with general relativity, it rules out certain cosmological solutions
of Einstein’s field equations in favor of other ones. In fact, it can be shown that for
a static spacetime which is endowed with a timelike, hypersurface orthogonal Killing
vector field, the inertial compass does not rotate relative to the stellar compass provided
both, the observer as well as the celestial bodies follow the integral curves of the Killing
field [83]. For stationary spacetimes whose timelike Killing vector field is not hypersurface
orthonormal, the inertial compass will rotate with respect to the stellar one. Since static
spacetimes constitute a very special class of solutions of Einstein’s field equations, the
coincidence of inertial and stellar compass is a rather exceptional case in general relativity.
Therefore, it is remarkable that this version of Mach’s principle fits perfectly with our
observations.

A second version, that we would like to mention here, reads: “local inertial frames are
affected by the cosmic motion and distribution of matter” [82]. In fact, this formulation

(7) In some literature the stellar compass is called light compass.
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of Mach’s principle also holds true in general relativity since the cosmic energy and
momentum distribution influences the whole spacetime metric directly via Einstein’s
field equations. The Lense-Thirring effect may serve as a prominent example: in case the
Earth would not rotate with respect to the asymptotically flat metric at spatial infinity,
the inertial and the stellar compass would coincide. But since the Earth rotates it gives
rise to a rotation of the inertial compass relative to the stellar compass, as mentioned
above in the context of the Gravity Probe B experiment.

The third version of Mach’s principle brings forward a keen and suggestive idea:
“inertial mass is affected by the global distribution of matter” [82]. This formulation does
not apply to general relativity, since the inertial mass takes the role of an independent
quantity in this theory. By no means does general relativity allow for an substitution of
(inertial) mass in terms of any other fundamental quantities.

This brief discussion illustrates the murkiness surrounding the interpretations of
Mach’s principle, as alluded by the quote in the Introduction. It also demonstrates
in a striking way, that some of Mach’s ideas did find their way into general relativity,
but some others did not.

5. – Rotating frame of reference in flat spacetime

After this brief excursion into the concept of rotation, we proceed in the next two
sections with the application of the Sagnac time delays for our DELI, eq. (31) and (32),
to two very different physical situations: (i) an observer located in a rotating reference
frame in Minkowski spacetime, and (ii) an observer at rest with respect to the ideal fluid
in Gödel’s Universe.

In the present section we concentrate on the first case. We start by briefly recalling the
metric coefficients and some properties of the rotating reference frame in flat spacetime,
thereby making use of the corresponding light cone diagram. We then assign a proper
reference frame to an observer at rest, analyze his acceleration and the corresponding
tetrad rotation and deduce the general Sagnac time delays for our DELI, eq. (31) and (32).

5.1. Metric. – When expressed in cylindrical coordinates xµ = (t, r, φ, z), the line
element of Minkowski spacetime reads

(33) ds2 = c2 dt2 − dr 2 − r 2 dφ2 − dz2 .

The coordinates x′µ = (t′, r′, φ′, z′) of the rotating reference frame are then established
by the coordinate transformation

(34) t ≡ t′ , r ≡ r′ , φ ≡ φ′ + ΩRt
′ , z ≡ z′ ,

which corresponds to a rotation around the z-axis with rotation rate ΩR > 0. As a
consequence, we obtain the transformed line element

(35) ds2 = (c2 − r′ 2Ω2
R) dt′2 − dr′ 2 − r′ 2 dφ′2 − dz′2 − 2r′ 2ΩR dt′ dφ′ .
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Fig. 9. – Light cone diagram for a reference frame rotating with rate ΩR in flat spacetime. We
depict two spatial coordinates x = r′ cosφ′ and y = r′ sinφ′, and one time coordinate t. The
z coordinate has been suppressed. As we increase the separation r′ of the light cones from the
origin, the cones tilt and the apex angles decrease. For c/ΩR < r′ the tilting is so large that the
curve xµ(λ) = (λ, r′0, φ

′
0, z
′
0) becomes spacelike. For this reason, we exclude this region in our

Sagnac interferometer experiments. The dashed line depicts a particular null geodesic which
brings out most clearly the fact that the infinitesimal light cones represent the tangents to the
real light paths.

We emphasize, that the metric coefficients in the rotating reference frame do not depend
on time, and therefore satisfy the assumptions used in the derivation of the Sagnac time
delay (7).

5.2. Light cone diagram for a rotating reference frame. – In order to give a first
impression of the propagation of light within a rotating reference frame, we present a
light cone diagram which is the collection of the “infinitesimal” light cones attached to
every point P in spacetime. The light cones indicate all directions in which a flash of
light can propagate when emitted from P . The construction of such a diagram is briefly
discussed in appendix A.2. In short, the “infinitesimal” light cones are established by the
set of all tangents to the null geodesics through P , since these null geodesics represent
the actual trajectories of all freely propagating light rays through P . In general, the
“infinitesimal” light cones tilt and change their apex angle from point to point due to
the curvature of spacetime or simply as a result of the chosen reference frame.

Figure 9 depicts the light cone diagram for the rotating reference frame in Minkowski
spacetime. Here the z-axis has been suppressed. From the line element, eq. (35), we
note that the light cone located at the center of the coordinate system coincides with the
corresponding light cone in the non-rotating inertial frame in flat spacetime. However,
when we increase the radial position of the light cones, they start to tilt and narrow
due to the rotation of our chosen reference frame. Formally, this tilting results from the
off-diagonal element of the metric which couples the time and the angular coordinate.

For radii r′ > c/ΩR, neither a massive particle nor light is able to stay at rest at
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a fixed position (r′0, φ
′
0, z
′
0) in this rotating reference frame since the spacetime curve

xµ(λ) = (λ, r′0, φ
′
0, z
′
0) then becomes spacelike. Hence, a rotating reference frame cannot

be established globally using massive particles or light rays. It should rather be consid-
ered as a purely mathematical construction, which simply labels the spacetime points in
accordance to the coordinate transformation (34).

5.3. Sagnac time delay. – Next we turn to the discussion of the Sagnac time delays,
eq. (31) and (32), for an observer at rest in the rotating reference frame with radial
position 0 < r′0 < c/ΩR.

5.3.1. World line, four-velocity and acceleration. When we denote the spatial position
of the observer by (r′0, φ

′
0, z
′
0) and parameterize his world line in terms of his measured

proper time, we obtain the expression

p′µ(τ) = (N τ, r′0, φ′0, z′0)

for his world line and

u′µ(τ) = (N , 0, 0, 0) = N δµ0

for his four-velocity. Here we have introduced N =
(

1− (r′0ΩR/c)
2
)−1/2

in order to

satisfy the condition uµ(τ)uµ(τ) = c2.
Recalling the non-vanishing components

Γ′100 = −r′Ω2
R, Γ′102 = −r′ΩR, Γ′122 = −r′, Γ′201 =

ΩR
r′
, Γ′212 =

1
r′
,

of the Christoffel symbols, we find the four-acceleration

a′µ(τ) =
d2p′µ

dτ2
+ Γ′µαβ u

′α u′β = −N 2 r′0Ω2
R δ

µ
1

of the observer which has a non-vanishing component in radial direction.

5.3.2. Tetrad basis and transport matrix. We now have to specify the coordinate
axes of the observer’s proper reference frame in terms of a suitable orthonormal tetrad.
For simplicity, we assume that the spacelike tetrad vectors point in the same spatial
directions as the spatial coordinate axes of the rotating reference frame. According to
condition (10) in the definition of a proper reference frame, our timelike basis vector is
given by

e′µ(0)(τ) =
1
c
u′µ(τ) =

N
c
δµ0 .

Two of the corresponding spacelike tetrad vectors can be chosen according to

e′µ(1)(τ) = δµ1 and e′µ(3)(τ) = δµ3 .
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However, the orthogonality condition (11) imposes a non-vanishing time component on
the remaining spacelike tetrad vector, such that

e′µ(2)(τ) =
(
r′0ΩR
c

)
N
c
δµ0 +

1
r′0N

δµ2 .

This vector completes the tetrad basis of our observer along his world line. In this tetrad
basis the components of the four-acceleration read

(36) a′(α) = e′µ(α) a
′
µ = −N 2r′0Ω2

R η(1α) and a′(α) = −N 2r′0Ω2
R δ

(α)
(1) .

Before we proceed with the determination of the tetrad rotation vector, it is reasonable
to examine the transport matrix Ω′µν , eq. (13). For our given family of tetrads along the
world line of the observer, the transport matrix follows directly from the proper transport
law, eq. (12), by using the orthogonality relation (B.8). After some minor algebra, we
arrive at

Ω′µν = −
(
e′µ(α);ρ u

′ρ) η(αβ) e′ν(β) = N ΩR
r′0

(δµ2 δ
ν
1 − δ

µ
1 δ
ν
2 ) .

When we now express the transport matrix in terms of the corresponding tetrad coeffi-
cients, we obtain the slightly more extended expression

Ω′(αβ) =
N 2

c
r′0Ω2

R

(
δ(0)
(α)δ

(1)

(β) − δ
(1)
(α)δ

(0)

(β)

)
+N 2ΩR

(
δ(2)
(α)δ

(1)

(β) − δ
(1)
(α)δ

(2)

(β)

)
.

We then solve the transport matrix, eq. (13), for the rotation vector and finally obtain

(37) ω′(µ) = −1
2
ε(0µαβ)Ω′(αβ) = N 2ΩR δ

(µ)
(3) .

Hence, we conclude that the third component of the tetrad rotation vector ω′(µ) coincides
with the rotation rate ΩR when the observer is located at r′0 = 0. However, for increasing
radii 0 < r′0 < c/ΩR we encounter a growth of this third component.

5.3.3. Sagnac time delays for the DELI. The tetrad components of the four-accelera-
tion and of the tetrad rotation vector, eqs. (36) and (37), enable us to finally establish
the the Sagnac time delays, eq. (31) and (32), for an observer at rest in the rotating
reference frame. For the first measurement mode of the DELI, eq. (31) predicts

(38) ∆τSp(S0) =
4
c2
N 2 ΩR n(3) · 2A+O

(
A (i1)(i2)

(a)

)
,

which is the relativistic analogue of the classical expression (1). As expected, the Sagnac
time delay is non-vanishing as long as the unit normal n to the planar area A possesses
a non-vanishing component in z-direction.
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Moreover, for the second measurement mode of the DELI, eq. (32) reads

(39) ∆τSp(S1) =
12
c4
N 4 r′0 Ω3

R n
(3)m(1) · 2M+O

(
A (i1)(i2)

(a)

)
.

Here, we have taken advantage of the fact that all components of the curvature tensor
vanish in flat spacetime. In this second measurement mode, we obtain a non-vanishing
Sagnac time delay, provided the DELI is oriented in such a way, that the unit normal n
again possesses a non-vanishing z-component, while at the same time the unit vector m
pointing towards the “center of mass” of A possesses a non-vanishing radial component.

We conclude by considering the ratio

∆τSp(S1)
∆τSp(S0)

≈ 3N 2

(
r′0 ΩR
c

)2

m(1) M
r′0A

between the two time delays. Since in a typical experimental situationM/(r′0A) ≈ 1 and
r′0 ΩR/c� 1 which leads to N ≈ 1, we find ∆τSp(S1) � ∆τSp(S0). As a consequence,
the time delay obtained in the second measurement mode is in general much smaller than
the one of the first measurement mode.

6. – Gödel’s Universe

“Now in his universe one can travel into the past.”(8)

In this section, we give a brief introduction into Gödel’s Universe, its spacetime struc-
ture and some of its peculiar features. We then study the resulting Sagnac time delay
and compare it to the corresponding expression found for the rotating reference frame.

6.1. Why a rotating universe? . – How did it happen, that the ingenious mathematician
and logician Kurt Gödel busied himself studying cosmology and rotating universes? It is
difficult to answer this question. Nevertheless, we offer some reasonable arguments why
Gödel might have become interested in this topic [84,12].

After Gödel had left Austria in January 1940, he moved to Princeton and became an
ordinary member of the “Institute for Advanced Studies”, which he had already visited in
1933. In Princeton he became a close friend of Albert Einstein, with whom he frequently
shared the walks home from the Institute.

In September 1946 Einstein received a letter from George Gamov who argued that
the galaxies seem to have more angular momentum than predicted. The underlying
model is based on the assumption that galaxies were formed by fluctuations of an initial
uniform matter distribution. Gamov suggested as a possible explanation a rotation of
the universe [14]. Moreover, he wondered whether anyone had considered anisotropic
solutions of Einstein’s field equations which would describe a rotating and expanding

(8) Entry in the diary of Oscar Morgenstern on May 12, 1949.
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universe. Einstein approached this idea with skepticism and in his answer to Gamov
he pondered: “What does it mean, that the Universe as a whole possesses an angular
momentum?”(9). It is very likely, that Einstein discussed the ideas of Gamov with Gödel
on one of their walks.

Nearly three years later, on May 7th, 1949 Gödel reported in his “Lecture on rotating
universes” [85] at the Institute for Advanced Studies about his results concerning a new
type of cosmological solution of Einstein’s field equations. He summarized his results
in a seminal paper published in “Review of Modern Physics” [15] on the occasion of
Albert Einstein’s 70th birthday, as well as in the “Library of Living Philosophers” [86].
Moreover, Gödel improved his original model by including an expansion of the universe
while preserving intrinsic rotation [18].

6.2. Metric. – We start our discussion of Gödel’s Universe by introducing its metric.
In contrast to the line element presented by Gödel in his original paper [15], we take
advantage of the slightly modified expression [78]

(40) ds2 = c2dt2 − dr2

1 +
(
r
2a

)2 − r2

(
1−

( r
2a

)2
)

dφ2 − dz2 + 2r2 c√
2a

dtdφ ,

where the parameter a > 0 has the dimension of a length. This form brings out most
clearly the interesting property that Gödel’s spacetime approaches the line element of
Minkowski spacetime (33) in the limit of small radii r/

√
a→ 0.

A rather lengthy calculation shows that the metric coefficients arising from the line
element, eq. (40), indeed solve Einstein’s field equations

Rµν −
1
2
gµν R = κTµν + Λ gµν

with the energy-momentum tensor

Tµν ≡
(
ρ+

p

c2

)
uµuν − p gµν

of an ideal fluid. As a result, the mass density ρ, the pressure p and the cosmological
constant Λ are directly coupled to the parameter a via the two constraint equations

κ
(
ρ+

p

c2

)
=

1
a2c2

and κp = Λ +
1

2a2
.

The particles of the ideal fluid travel along the world lines xµ(τ) = (τ, r0, φ0, z0),
with τ being their proper time and (r0, φ0, z0) their fixed spatial positions. Therefore,
the coordinates used in the line element (40) are adapted to the reference frame in

(9) Einstein’s letter was written in German. The original phrase reads: “Was soll es bedeuten,
daß das Universum als Ganzes ein angular momentum hat?” [12]
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which the particles of the ideal fluid are at rest. As a result, the four-velocity of the
fluid particles which appears in the energy-momentum tensor Tµν simply reads uµ(τ) =
(1, 0, 0, 0). An important characterization of timelike vector fields such as uµ can be
obtained by the scalar volume expansion, the shear tensor and the rotation tensor [87,88].
Although we will make no further use of these important quantities within our lecture
notes, we want to briefly mention, that the volume expansion as well as the shear tensor
vanish for the velocity field of the ideal fluid in Gödel’s Universe. However, the rotation
tensor is non-zero and it displays a constant rotation of the ideal fluid around the z-axis.
The magnitude of this rotation is most conveniently expressed in terms of the so-called
rotation scalar, which reads in Gödel’s Universe

(41) ΩG =
c√
2a

> 0 .

Moreover, it can be shown that Gödel’s Universe admits five independent Killing vec-
tor fields, which we specify in appendix E.1. In particular, the existence of a timelike
Killing vector field implies the stationarity of Gödel’s spacetime. A more detailed analysis
of the Killing vectors shows that Gödel’s metric is spacetime homogeneous and rotation-
ally symmetric, but neither static nor isotropic. The latter feature becomes obvious when
we recall the rotation of the ideal fluid about the z-axis.

6.3. Light cone diagram. – As in the case of the rotating reference frame, we take
advantage of a light cone diagram to gain insight into the causal structure of Gödel’s Uni-
verse. Figure 10 displays infinitesimal light cones attached to several spacetime points.
Again, we have suppressed the z-axis in the figure.

At the origin r = 0 the light cone coincides with the one in flat spacetime. This
feature is in agreement with the limit r/

√
a→ 0 in eq. (40), as mentioned in the previous

subsection. Moreover, the Gödel Universe possesses a non-diagonal metric element which
couples the angular and the time coordinate, thus leading to a tilting of the light cones
for increasing radius. We have noticed this behavior already for the light cones in the
rotating reference frame. However, now the light cones do not narrow with increasing
radius, but broaden. Indeed, this behavior is of crucial importance for the world lines
the fluid particles to be timelike [84].

This combination of broadening and tilting has a dramatic consequence illustrated by
the outer circle in the fig. 10. It enables the light cones to intersect the plane of constant
coordinate time t along a closed circle in the x-y-plane, and thus leads to the formation
of closed timelike world lines

xµ(τ) = (t0, r0, α τ, z0) with α =
c

r0

√(
r0
2a

)2 − 1

for r0 > 2a.
The transition between the inner region, where the light cones do not cut through the

plane of constant coordinate time t and the outer region where they do, happens at the
so-called critical Gödel radius r = 2a which is indicated by the middle circle.



Rotation in relativity and the propagation of light 39

Fig. 10. – Light cone diagram of Gödel’s Universe. We depict two spatial coordinates x = r cosφ
and y = r sinφ, and one time coordinate t. The z-coordinate has been suppressed. On two
planes of constant coordinate time we show the light cones for three typical separations r from
the origin. Within the inner circle the light cones behave approximately like in a rotating
reference frame in flat spacetime. The next circle corresponds to the Gödel radius r = 2a, which
divides the plane into two different domains. Here the light cones touch the plane of constant
coordinate time. On the outer circle the light cones fall through this plane and therefore allow
for closed timelike curves. Time travel is possible as indicated by the spiral connecting the two
planes.

Even more mind-boggling is the possibility to travel along a timelike world line from
any spacetime point to any other one. For example, if we start our journey at the origin
r = 0 of the upper plane of constant coordinate time shown in fig. 10 and seek to travel
back to the origin r = 0 of the lower plane, we first follow a timelike world line leading
from the origin to a point beyond the critical Gödel radius. The coordinate time along
this world line will of course increase during the first part of our journey. After crossing
the critical Gödel radius, we take a sharp turn to the “left” in the spacetime diagram,
fig 10, and follow the spiral curve down to earlier coordinate times. Having completed
our journey into the “past of coordinate time”, we take another “left” turn which brings
us back to the origin r = 0, but now in the lower plane of constant coordinate time.

Although Gödel was the first to point out the existence of closed timelike world lines
within the framework of general relativity, his universe is not the only model which allows
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for such peculiar features. The rotating Kerr black hole [89, 90] and the van Stockum
dust cylinder [91] are two out of many other prominent examples which admit closed
timelike world lines.

The existence of closed timelike world lines implies the breakdown of our familiar
notions of time, chronology and causality. But in most cases it is possible to bring
up reasonable arguments which may appease our concerns. They might even lead us
to abandon these peculiar solutions of Einstein’s field equations and mark them as toy
models. However, a general theorem which rules out the possibility of creating a time
machine is still missing, although much effort has gone into achieving this goal from first
principles. In this context a time machine has to work within a local region of spacetime
starting from a well-behaved metric such as the Robertson-Walker metric. Moreover, it
has to result from a physically reasonable energy-momentum tensor. Stephen W. Hawk-
ing established the so-called chronology protection conjecture [92] which states, that “the
laws of physics do not allow the appearance of closed timelike curves”. Hawking closes
his seminal paper [92] with the penetrative observation:

“There is also strong experimental evidence in favor of the conjecture from the
fact that we have not been invaded by hordes of tourists from the future.”

For a brief and instructive survey on chronology protection we refer to [93].

6.4. Sagnac effect . – After this short introduction into Gödel’s spacetime, we proceed
with the derivation of the corresponding Sagnac time delays of the DELI, eqs. (31)
and (32). We suppose that the observer is at rest with respect to the ideal fluid of
Gödel’s Universe, and we denote his spatial position by (r0, φ0, z0).

6.4.1. World line, four-velocity and acceleration. When we parameterize the world line
of the observer in terms of his proper time, we obtain

pµ(τ) = (τ, r0, φ0, z0)

which yields

uµ(τ) = (1, 0, 0, 0) = δµ0

as corresponding four-velocity in accordance with uµ(τ)uµ(τ) = c2.
Recalling the line element (40) as well as the rotation scalar (41), the non-vanishing

components of the Christoffel symbols read

Γ0
01 =

1
a

(
r
2a

)
1 +

(
r
2a

)2 , Γ0
12 =

1
aΩG

(
r
2a

)3
1 +

(
r
2a

)2 , Γ1
02 = rΩG

(
1 +

( r
2a

)2
)
,

Γ1
11 = −

1
2a

(
r
2a

)
1 +

(
r
2a

)2 , Γ1
22 = −r

(
1 +

( r
2a

)2
)(

1− 2
( r

2a

)2
)
,

Γ2
01 = −

ΩG
r

1 +
(
r
2a

)2 , Γ2
12 =

1
r

1 +
(
r
2a

)2 .
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They lead to a vanishing four-acceleration of the observer

aµ(τ) =
d2pµ

dτ2
+ Γµαβ u

α uβ = 0 .

6.4.2. Tetrad basis and transport matrix. Next, we introduce the tetrad attached to
the observer. As in the case of the rotating reference frame, we assume that the spacelike
tetrad vectors point in the same spatial directions as the spatial coordinate axes. Thus,
the spatial axes of our observer in Gödel’s Universe will not rotate relative to the stellar
compass defined by the null geodesics which connect the luminous particles of the ideal
fluid with the observer. Note, that we will analyze the null geodesics in Gödel’s Universe
in subsect. 7.2.1.

Once more, we make use of condition (10) to define the timelike basis vector

eµ(0)(τ) =
1
c
uµ(τ) =

1
c
δµ0 .

The first and third spacelike tetrad vectors are now chosen according to

eµ(1)(τ) =

√
1 +

( r0

2a

)2

δµ1 and eµ(3)(τ) = δµ3 .

In analogy to the rotating reference frame, we have to include a non-vanishing time
component in the second spacelike tetrad vector in order to satisfy the orthogonality
condition (11). The resulting tetrad vector reads

eµ(2)(τ) =
1√

1 +
(
r0
2a

)2
(
−r0ΩG

c2
δµ0 +

1
r0
δµ2

)
.

Having defined our tetrad basis, we mention, that the tetrad components of the four-
acceleration also vanish,

(42) a(α) = 0 .

With the complete tetrad basis at hand, we are now in the position to consider the
transport matrix Ωµν , eq. (13), in the case of Gödel’s Universe. Using the same formula
for the transport matrix as in the rotating reference frame, we end up with

Ωµν = −
(
eµ(α);ρ u

ρ
)
η(αβ) eν(β) =

r0

2a2
(δµ0 δ

ν
1 − δ

µ
1 δ
ν
0 )− ΩG

r0
(δµ2 δ

ν
1 − δ

µ
1 δ
ν
2 ) .

In terms of the covariant components this result yields

Ωµν = −r0 ΩG
(
δ2
µδ

1
ν − δ1

µδ
2
ν

)
,
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and the corresponding tetrad coefficients reduce to

Ω(αβ) = −ΩG
(
δ(2)
(α)δ

(1)

(β) − δ
(1)
(α)δ

(2)

(β)

)
.

The tetrad rotation vector follows from the transport matrix according to

(43) ω(µ) = −1
2
ε(0µαβ)Ω(αβ) = −ΩG δ

(µ)
(3) .

There are two points, which are of interest concerning the tetrad rotation vector (43).
The first one is the difference in sign when comparing the Sagnac time delay (43) to
the time delay (37) for the observer in the rotating reference frame. This sign difference
manifests itself most prominently in the opposite tilting directions of the infinitesimal
light cones in the rotating reference frame, fig. 9, and in Gödel’s spacetime, fig. 10.

The second point of interest is the relation of inertial and stellar compass for the
observer at rest with respect to the ideal fluid in Gödel’s Universe. As mentioned earlier,
the stellar compass coincides with the axes of the observer’s proper reference frame.
However, since the tetrad rotation vector (43) is non-zero, the tetrad basis rotates relative
to the inertial compass. With the discussion of subsect. 4.4 in mind, we conclude that
Gödel’s spacetime represents a simple example of a stationary, but non-static spacetime
in which the inertial compass rotates with respect to the stellar compass.

6.4.3. Non-vanishing components of the curvature tensor. Before we provide the
Sagnac time delays, eq. (31) and (32), for an observer at rest in Gödel’s Universe, we have
to determine the covariant components of the curvature tensor. Apart from the compo-
nents which follow from the symmetries of the curvature tensor, all non-zero components
are given by

R0101 = − Ω2
G

1 +
(
r
2a

)2 , R0112 =
2 ΩG

(
r
2a

)2
1 +

(
r
2a

)2
R0202 = −r2 Ω2

G

(
1 +

( r
2a

)2
)
, R1212 = −2

( r
2a

)2 1 + 3
(
r
2a

)2
1 +

(
r
2a

)2 .

When we now investigate the corresponding tetrad components

R(α)(β)(γ)(δ) = eµ(α) e
ν
(β) e

λ
(γ) e

ρ
(δ)Rµνλρ

of the covariant curvature tensor, we find a surprisingly simple result, namely

(44) R(0)(1)(0)(1) = R(0)(2)(0)(2) = R(1)(2)(1)(2) = − 1
2a2

.

All other tetrad components which do not follow from the symmetry properties of the
curvature tensor vanish.
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6.4.4. Sagnac time delays with the DELI. We now provide the Sagnac time delays,
eqs. (31) and (32), for an observer which is at rest with respect to the ideal fluid in
Gödel’s Universe. According to the expression for the tetrad rotation vector, eq. (43),
the first measurement mode of the DELI, eq. (31), takes the form

(45) ∆τSp(S0) = − 4
c2

ΩG n(3) · 2A+O
(
A (i1)(i2)

(a)

)
.

Thus, the Sagnac time delay (45) in Gödel’s Universe differs from the time delay (38)
in the rotating reference frame by just the additional factor N 2 and a minus sign. And
again, the time delay (45) does not vanish as long as the unit normal n to the planar
area A possesses a non-vanishing component in z-direction.

In order to establish the Sagnac time delay, eq. (32), we take advantage of the vanish-
ing four-acceleration, eq. (42), which eliminates all inertial terms within the first-order
contribution (32). Moreover, when we compare the non-vanishing tetrad components of
the curvature tensor, eq. (44), with the components listed in table II, we immediately
realize that the first-order contribution, eq. (32), completely vanishes. Whatever orien-
tation we choose for the surface normal n and for the vector m, we always measure a
vanishing tetrad component of the curvature tensor in Gödel’s Universe. For this reason,
we simply obtain

∆τSp(S1) = O
(
A (i1)(i2)

(a)

)
.

This is a quite interesting result since it tells us that we cannot detect any effect of
spacetime curvature with a Sagnac interferometer at rest in Gödel’s Universe. Needless
to say, that this statement holds true only as long as we restrict ourselves to the first
order contribution of the Sagnac time delay.

7. – How things look like in Gödel’s Universe

During the last decades many techniques to create realistic pictures with the aid of
computers have been developed. This enormous increase in sophisticated methods in
computer graphics has been made possible by a steadily growing computer power. In
this section we give a short introduction into ray tracing, a simple but very fundamental
technique in computer aided visualization. Standard ray tracing is done in flat spacetime
and can be performed with ease. Since in general relativity spacetime is curved ray tracing
of such phenomena is more complicated. For example, Ertl et al. [94] demonstrated how
to use ray tracing to visualize aspects in astrophysics, whereas Weiskopf et al. [95] have
developed a ray tracing method to visualize caustic surfaces generated by a gravitational
lens. In this section we visualize several scenarios of the Gödel Universe [96]. In order
to gain better insight into the origin of the physical phenomena brought to light in these
visualizations, we also discuss some important aspects of the null geodesics in the Gödel’s
Universe.
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7.1. Fundamentals of ray tracing. – The way how we perceive our environment visually
is determined by the way how light propagates and interacts with the surrounding objects.
A complete simulation of such a problem would take a great effort even on modern
computers and thus cannot be carried out. However, we can obtain acceptable results if
we perform various approximations in the light propagation and the interaction of the
light with the scattering objects. For example, it may suffice to describe the propagation
of light within ray optics. From this point of view, light can be regarded as a bundle
of rays, emitted from a light source and bouncing around between the objects of the
scenery. Unfortunately, very few of these light rays eventually hit the eye of an observer
or a camera.

For the simulation it would be more efficient to only take that light into account
which finally passes through the aperture of the camera. Therefore, it is advantageous
to consider the light rays as originating from the camera and then meandering through
the scenery. This approach is in accordance with Fermat’s principle. The path of the
light between two points A and B is given by the shortest distance between A and B

measured in wavelength. Since the distance between A and B is equal to the distance
between B and A the paths of propagation are identical. For this reason we can trace
the light back from the camera via the scattering objects to the light source.

In order to bring out the essential ingredients of this idea we consider a pinhole
camera. This device is a dark box with a little hole in the front as depicted on the left
in fig. 11. The light emitted or scattered by the objects propagates through the pinhole
and illuminates the film in the back of the box at the corresponding positions. A few
light rays on the left of fig. 11 illustrate the functioning of the pinhole camera.

In ray tracing we follow the light from the camera to the object rather than from the
object to the camera. We construct rays from inside the box through the pinhole and
extend them to the scenery. The intersections of such rays with an object define the
surface patch which emits the light rays emerging through the pinhole. An appropriate
but finite amount of rays is necessary to obtain an image. However, in order to improve
the quality of the image we can take into account the surface properties of the objects
such as the color.

An even simpler version of this method emerges by considering the image plane to
be located between the objects and the camera as shown on the right of fig. 11. With
this virtual plane an image of the scenery is rendered by tracing back a bundle of rays
originating from a given point. This source of rays is reminiscent of the hole of the
camera. Since the camera itself is dispensable, it is omitted from the picture.

Since a computer can only trace a limited number of rays, the image plane is divided
into small rectangular domains which can be regarded as the pixels of a computer screen.
During the rendering process an individual ray is constructed and traced back through
each of these tiles. Moreover, we determine how this particular tile needs to be colored.

This method of composing an approximate image of the scenery is the most elemen-
tary version of ray tracing. For this reason it is not surprising that it contains several
deficiencies. Shadows as well as diffuse light are missing. Moreover, the transmission
through and the reflection from objects need to be included in order to yield more real-
istic pictures.
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Fig. 11. – A simple model of a camera for visualization. Two spheres are mapped onto the
image plane in the back of a pinhole camera (left). We can also use a virtual plane located
anywhere between the objects and the camera (right) as an image plane. All light rays which
are important for rendering the picture converge in the pinhole. Since the camera is redundant
in this situation it is not depicted anymore.

Already in 1980 Whitted [97] presented computer generated pictures which included
such effects. He took these phenomena into account by applying a proper illumination
model and tracing back additional rays emerging from the intersection points. The
illumination model simulates the interaction of the light with the surfaces. However,
this approach cannot be applied in a straightforward way to visualize relativistic models.
Therefore, for our visualization of the Gödel Universe we settle for images without those
effects.

7.2. Two examples of visualizations of the Gödel Universe. – Even the most elementary
version of ray tracing has to be adapted for rendering relativistic situations such as
the Gödel Universe. Due to the curvature of spacetime light is propagating differently
compared to flat space. In terms of geometrical optics the light rays are bent and coincide
with so-called null geodesics discussed in appendix E. We have to obtain them before we
can render a picture by ray tracing. The intersection of the light rays with an object can
then be found by inching forward along the null geodesics. Unfortunately this procedure
is rather time consuming.

Figure 12 depicts ray tracing in the presence of gravity with bent light rays originating
at the observer’s eye. The two objects exemplified here by spheres are above the observer.
However, he perceives them to be located straight in front of him.

This example demonstrates the impact of the curvature of spacetime on the visu-
alization. We now choose two scenarios for our visualization and discuss the related
aspects of light rays in curved spacetime in these two situations. In order to focus on the
visualization we have moved all the mathematics into the appendix E.

7.2.1. View of the inner surface of a sphere. We start our visualization of the Gödel
Universe with a scenario in which an observer looks at the inner surface of a sphere and in
which the light rays propagate under the influence of the Gödel metric. As a consequence
the design of the surface gets distorted. The degree of distortion is determined by the
null geodesics of the Gödel metric which we discuss in the next subsection.
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Fig. 12. – Ray tracing in the presence of a gravitational field. Since the light rays are bent
an observer at the position of the former pinhole views the two spheres to be straight ahead.
However, their real positions differ considerably from his perception, since geometrical optics in
curved spacetime is far more complicated than in flat spacetime.

Propagation of light in Gödel’s Universe. According to the general relativistic version of
geometrical optics, light rays travel along null geodesics, which correspond to straight
lines in the special case of flat spacetime.

However, in curved spacetime they are not straight anymore but get bent by the
curvature of spacetime. In mathematical terms the geodesics follow from the differential
equation

(46) uµ;ν u
ν = 0

where

uµ(λ) ≡ dxµ(λ)
dλ

denotes the tangent vector along the geodesic parameterized by λ. Since we are deal-
ing with light, uµ has to fullfill the requirement for being lightlike as expressed by the
condition

(47) uµuµ = 0.

We now apply eq. (46) to the Gödel metric (40). Moreover, we consider an observer
located at the origin. As a consequence we are interested in the null geodesics which
start from there. Since in this case we have the initial conditions r(0) = 0, z(0) = 0 and
t(0) = 0, eq. (47) reduces to

(48) c2(u0(0))2 = (u1(0))2 + (u3(0))2 .
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Fig. 13. – Two different null geodesics of the Gödel metric originating from the center of the
coordinate system and represented in the x-y-z-subspace (left) and in the x-y-subspace (right).
The red circle constitutes the Gödel radius of value 1.0. It represents the maximal radial
distance a geodesic, which starts at the origin, can reach. The blue geodesic is defined by the
initial velocities u1(0) = 1.0 and u3(0) = 0. Therefore, it is bound to the z = 0 plane. In
contrast, the green geodesic has a non-zero initial velocity in the z-direction. It corresponds to
the initial conditions u1(0) = 1.0 and u3(0) = 0.3 and is of the shape of a spiral aligned along
the z-axis. In the x-y-subspace both geodesics are “ellipses”. However, due to the different
values in u3(0) the major axis of the ellipsoidal green geodesic is smaller than that of the blue
one.

This expression shows that only the components 0 ≤ u1(0) and u3(0) for the initial vector
uµ(0) can be freely chosen. The component u0(0) is then automatically determined by
eq. (48). The fact that the initial angular velocity denoted by the component u2(0) is
not well defined at the origin does not influence the calculations.

For an arbitrary spacetime defined by a given metric the differential equation for the
null geodesic cannot be solved analytically. In such cases numerical algorithms need to be
employed in order to obtain the light rays. Fortunately, in the case of Gödel’s spacetime
analytical solutions for the null geodesics starting in the origin exist. They are derived
in appendix E.

Figure 13 shows two null geodesics of the Gödel Universe corresponding to two dif-
ferent initial velocity vectors uµ(0). We gain deeper insight into the nature of these
geodesics by recalling that the Gödel spacetime can be decomposed into two indepen-
dent subspaces. The first one is the z-space where the Gödel Universe is like flat space.
As a result, light propagates along the z-axis with constant velocity. The second one is
formed by the three Cartesian coordinates x, y and t, or in polar coordinates r, φ and t.
For the sake of simplicity we omit the time coordinate t in fig. 13.

On the left of fig. 13 we display the two null geodesics in three-dimensional space. The
first one lies in the z = 0 plane and is of elliptical shape. The second one conspicuously
forms a spiral aligned along the z-axis. On the right of fig. 13 we show these null geodesics
in the x-y-subspace which brings out most clearly how the rotation contained in the Gödel
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spacetime affects the appearance of the geodesics. All geodesics form “ellipses” whose
areas are determined by the initial velocity component u3(0) in the z-direction.

Moreover, they are encompassed by a cylinder in the three-dimensional space or a
circle in the x-y-plane with Gödel radius 2a. Only geodesics with a vanishing velocity
u3(0) in the z-direction can reach the Gödel radius. With increasing u3(0) the “ellipses”
get smaller as discussed in appendix E.

Since the Gödel radius is the outermost radial point a geodesic can reach, we can
also associate with it an optical horizon. Light emitted from the origin cannot cross this
border by free propagation. With the same argument we can state that light beyond
the Gödel horizon never reaches the origin. Therefore, the view of an observer in the
Gödel Universe is limited to the area encompassed by a cylinder with the Gödel radius.
Examples for this intriguing effect are provided in the following subsections.

Visualization. The first scenario gives an impression, how the curvature of spacetime in
Gödel’s Universe affects the visual appearance of objects for an observer. We demonstrate
this influence of gravity on light by considering a hollow sphere which is viewed by an
observer located at its center. We use a three-dimensional sphere with its center located
at the origin of the coordinate system. In order to bring out most vividly the distortion
of the inner surface of the sphere as it is seen by the observer, we put on it tiles in the
form of a checkerboard.

Figure 14 depicts the scenario for three different Gödel radii. In the right column of
this figure we show typical light rays illustrating paths on which light from the surface of
the sphere reaches the observer. The pictures in the left column give an indication, how
the observer would perceive the sphere in the particular situation. In all situations we
have used a horizontal and vertical aperture angle of the camera of 70◦. The equator is
at the center of the aperture and indicated in the left row of fig. 14 by a black horizontal
line.

In the top scenario the Gödel radius is five times larger than the radius of the sphere.
Hence, the curvature of spacetime is almost negligible within the sphere and the light
rays are bent only slightly. This feature leaves the view of the observer almost unchanged
compared to the one in flat space. Longitudes on the sphere remain vertical as exemplified
by the black bar shown in the top left figure.

In the next scenario the Gödel radius is equal to that of the sphere. In this case the
light rays are bent considerably. For example, light from the poles propagates along a
spiral until it reaches the origin. In contrast light emitted in the neighborhood of the
equator is bent due to the small velocity in z-direction. The black vertical bar in the
middle left figure representing a longitude confirms this statement and now displays a
bump at the equator.

The scenario on the bottom corresponds to a situation where the Gödel radius is
smaller than the one of the sphere. As a result the equatorial area depicted in the
bottom right figure as a gray belt around the sphere is located beyond the Gödel radius.
Since the Gödel radius acts as an optical horizon the belt is out of sight for the observer.
Instead he sees several copies of the remaining visible part of the sphere. Indeed, rays
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Fig. 14. – View of the inner surface of a hollow sphere from the center of the Gödel Universe
for three different Gödel radii. Due to the gravitational field induced by the Gödel metric the
light rays are deflected as shown by the three examples in the right column. As a consequence
the inner surface of the sphere tiled with a checkerboard appears distorted as indicated by the
left column. Both, the horizontal and the vertical aperture take the value of 70◦. The Gödel
radius is in units of the radius of the sphere. When the Gödel radius is 5.0 (top) the light
rays propagate almost on straight lines. In the case of the Gödel radius represented by a red
circle to be identical to the radius of the sphere (middle) the light rays follow spirals and the
checkerboard is substantially distorted. When the Gödel radius again represented by a red circle
is smaller than the radius of the sphere (bottom) the light rays cannot even reach the surface
in the neighborhood of the equator as depicted by the gray belt. This part of the surface is
inaccessible to the observer. However, the light rays can reach the northrn and the southern
hemisphere. On their way they undergo many revolutions on the spiral. As a result the final
point on the surface depends sensitively on the exiting angle of the ray at the camera leading
to a almost self-similar picture of the checkerboard.
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Fig. 15. – Physical origin of the two images of a single object such as a terrestrial globe at rest
in the Gödel Universe. We depict the paths of the light rays in the x-y-subspace. The first
image originates from light rays emitted from the front surface of the object and depicted by
green solid lines. The null geodesics of those light rays are continued as dotted curves and are
of typical elliptical shape as discussed in fig. 13. The second image is due to light rays emitted
from the back of the globe and reflected from the Gödel radius depicted by the gray circle.
These light rays indicated by the red lines enable us to observe the back of the globe. However,
the reflection from the Gödel horizon creates a mirror image of the original surface.

close to the equatorial plane need to rotate up or down on a spiral several times before
they intersect the sphere. As a consequence the observer has several copies of the visible
parts of the sphere in his field of view and the checkerboard is warped with increasing
frequency around the equator. The vertical bar is broken up numerously close to the
equator. It shows an almost chaotic behavior which can be explained by the enourmous
sensitivity of the light rays to small changes of the initial velocity component in the
z-direction.

We conclude our discussion of this scenario by noting that in a small vicinity of the
equator a white stripe appears. The stripe is the result of numerical limitations because
after inching along the light ray for some time this procedure has to be abandoned.

7.2.2. View on a small object in the Gödel Universe. The existence of an optical
horizon in Gödel’s Universe manifests itself in another compelling optical effect. A single
object at rest has two images. Our second scenario discussed in the present section
visualizes this effect.

The Gödel horizon as a mirror . Figure 15 illustrates the physical origin of the two
images and their dependence on the location of the object relative to the horizon. For
this purpose we consider the emission of light from a terrestrial globe. We recognize two
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Fig. 16. – The view of an observer at the origin of the Gödel Universe on a terrestrial globe
located at different positions (top to bottom) on the x-axis. In all four situations the sphere
has a radius of 0.15 expressed in units of the Gödel radius. The observer is looking in the y-
direction with a vertical aperture of 20◦ and a horizontal aperture of 90◦. The top picture shows
the sphere at x = 0.8. Since in this case it is completely within the Gödel radius, two separate
images of the sphere are visible. The right one originates from light rays emitted at the front
of the sphere. The left one shows part of its back and relies on rays reflected from the Gödel
horizon. As a result this image is the mirror image of the backside. The next three pictures
show the sphere located at x = 0.9, x = 1.0 and x = 1.1, respectively. At these positions the
angle between the direct and the reflected light rays decreases and the two images move closer
together and merge. Moreover, the sphere reaches beyond the optical horizon and the parts cut
off by the Gödel radius are out of sight.
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fundamentally different type of light rays propagating from the globe towards the origin.
On the green paths the light comes in a direct way from the part of the globe facing
towards the observer. In contrast the red paths make a detour and go first to the Gödel
horizon before they arrive at the origin. In this way we can observe the back side of the
globe. However, due to the reflection of the light rays at the Gödel radius, the second
image of the globe is mirror-inverted. Furthermore, the different lengths of the paths
make both images appear in different sizes.

Visualization. In fig. 16 we now visualize the phenomenon of the two images. The globe
is positioned on the x-axis and has a radius of 0.15 expressed in units of the Gödel radius.
As suggested by fig. 15 the rays emitted by the globe arrive at the origin propagating in
the neighborhood of the y-axis. For this reason the observer is looking in the y-direction.
His vertical aperture is 20◦ and his horizontal aperture is 90◦.

Figure 16 shows the view of the observer when the sphere is located at different
positions. In the top scenario the separation of the center of the sphere to the origin is
0.87. Consistent with fig. 15, the globe has two images. The right image arise from the
short paths and shows the front part of the sphere. In contrast, the left image is due to
the long paths and is mirror inverted.

With increasing separation of the globe from the origin the angle between the light
rays corresponding to the direct and the reflected paths decreases as shown in fig. 15.
This feature manifests itself in the subsequent pictures of fig. 16 where the globe has a
separation of 0.9, 1.0 and 1.1, respectively. The two images move closer together and
even start to merge. In these scenarios parts of the globe are invisible since they are
located beyond the Gödel radius.
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Appendix A.

Basic concepts of general relativity: A brief review

This appendix is addressed towards readers with a background mainly in quantum
optics. However, we assume that they have already attended some introductory lectures
in tensor calculus [98] and general relativity. The purpose of this appendix is (i) to
provide the definitions and properties of several tensorial quantities used throughout this
article, and (ii) to offer a rudimentary review of some basic concepts in general relativity.
In A.1 we provide the definitions of some important tensorial quantities. We dedicate
appendix A.2 to transform the metric at a point of spacetime to its Minkowski form. A
useful application of this method is the construction of light cone diagrams. We then
briefly mention the connection of symmetries and Killing vectors in A.3 and proceed
in A.4 with the introduction of geodesics. In this context we expose the relation between
the constants of motion of the geodesics and continuous symmetries of a given spacetime.
In A.5 we consider parallel and Fermi-Walker transport.

A.1. Tensors and all that jazz . – A quantity V ν1...νn µ1...µm constitutes the components
of a tensor of type (n,m) if it transforms under a coordinate transformation xµ = xµ(x′ν)
according to

V ′α1...αn
β1...βm

=
∂x′α1

∂xν1
· . . . · ∂x

′αn

∂xνn
∂xµ1

∂x′β1
· . . . · ∂x

µm

∂x′βm
V ν1...νn µ1...µm .

Here n and m denote the number of contravariant and covariant indices, respectively. In
particular, we find the transformations

V ′µ =
∂x′µ

∂xν
V ν and V ′µ =

∂xν

∂x′µ
Vν

for a contravariant vector V µ and a covariant vector Vµ.
The Christoffel symbols

Γµαβ ≡
1
2
gµν (gνα,β + gνβ,α − gαβ,ν)

given in terms of the metric coefficients gµν are symmetric in the lower indices, that is
Γµαβ = Γµβα. However, they do not constitute the components of a tensorial quantity.

In this article we denote the ordinary partial derivative by a comma. Since partial
derivatives of tensors are not tensors anymore, it is convenient to define a generalized
derivative which preserves the tensorial character. We indicate the so-called covariant
derivative

V ν1...νn µ1...µm ;α = V ν1...νn µ1...µm ,α +
n∑
j=1

Γνjρα V
ν1...νj−1 ρ νj+1...νn

µ1...µm

−
m∑
j=1

Γρµjα V
ν1...νn

µ1...µj−1 ρ µj+1...µm
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of a tensor V ν1...νn µ1...µm by a semicolon. In particular, we find

V α;β ≡ V α,β + Γαµβ V
µ and Vα;β ≡ Vα,β − Γµαβ Vµ

for a contravariant vector V α and a covariant vector Vα.
In general, the covariant derivative of a tensor is more complicated than the partial

derivative. However, in the case of the metric gµν the covariant derivative vanishes, that
is gµν;α = 0. Moreover, the covariant derivative of a product of two tensor fields satisfies
a product rule familiar from partial differentiation.

The curvature tensor

(A.1) Rµαβγ ≡ Γµαγ,β − Γµαβ,γ + ΓµρβΓραγ − ΓµργΓραβ

possesses the covariant components Rµαβγ ≡ gµν Rναβγ given by

Rµαβγ =
1
2

(gµγ,α,β + gαβ,µ,γ − gµβ,α,γ − gαγ,µ,β) + gνρ

(
ΓνµγΓραβ − ΓνµβΓραγ

)
.

This expression reveals the symmetry relations

(A.2) Rµαβγ = −Rαµβγ = −Rµαγβ and Rµαβγ = Rβγµα

as well as the Bianchi identities

Rµαβγ +Rµβγα +Rµγαβ = 0

and

Rµαβγ;ν +Rµανβ;γ +Rµαγν;β = 0 .

We obtain the Ricci tensor

Rαβ ≡ gµν Rµανβ = Rµαµβ

and the Ricci scalar

R ≡ Rµµ = gµν Rµν

from the curvature tensor by contraction.
The four-dimensional Levi-Civita-Symbol

(A.3) ∆αβγδ ≡


1 for an even permutation
−1 for an odd permutation

0 otherwise

is used in the definition

(A.4) εαβγδ ≡ 1√
−g

∆αβγδ



Rotation in relativity and the propagation of light 55

of the four-dimensional antisymmetric tensor εαβγδ.
It is convenient to introduce the shorthand notation

(A.5) V{α1...αn} ≡
1
n!

∑
π∈Sn

Vαπ(1)...απ(n)

and

(A.6) V[α1...αn] ≡
1
n!

∑
π∈Sn

sign(π)Vαπ(1)...απ(n)

for the totally symmetric and the totally antisymmetric part of a tensor, respectively.
Here the sums are taken over all permutations Sn of (1, . . . , n) and sign(π) corresponds
to the value +1 for even and −1 for odd permutations.

It will also be necessary to consider the totally symmetric part of a tensor Vα1...αn
with respect to a certain subset α1 . . . αk of indices, where k ≤ n. The notation

(A.7) Symm
(α1...αk)

[Vα1...αn ] ≡ 1
k!

∑
π∈Sk

Vαπ(1)...απ(k)αk+1...αn = V{α1...αk}αk+1...αn

indicates, that the symmetrization is performed only with respect to the indices which
are listed in parentheses below the symmetrization symbol “Symm”.

The tangent

uµ(λ) ≡ dxµ

dλ

of a spacetime curve xµ(λ) with the evolution parameter λ can be classified by the three
categories

gµν u
µ uν


< 0 spacelike
= 0 lightlike
> 0 timelike.

(A.8)

We call a spacetime curve xµ(λ) timelike if its tangent is timelike for all parameters λ.
Null curves or spacelike curves are defined analogously.

A.2. The Minkowski form of a metric at a fixed spacetime point. – The metric gµν
of a given spacetime has the signature −2. As a consequence the number of positive
eigenvalues minus the number of negative eigenvalues of the matrix gµν(pσ) at any fixed
point P in spacetime with coordinates pσ is equal to −2. This property allows us to
transform the metric gµν(pσ) at any fixed event P to the Minkowski metric

(ηµν) = diag(1,−1,−1,−1) ,

as discussed in what follows.
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A.2.1. Transformation to Minkowski metric. When we perform a change of coordinates
xα = xα(x̄β), we arrive at the transformed metric

(A.9) ḡµν(p̄σ) =
∂xα

∂x̄µ

∣∣∣∣
P

∂xβ

∂x̄ν

∣∣∣∣
P

gαβ(pσ(p̄%)) = Tαµ(pσ)T βν(pσ) gαβ(pσ)

at P . Here we have introduced the transformation matrix

(A.10) Tαµ(pσ) ≡ ∂xα

∂x̄µ

∣∣∣∣
P

,

which is not a tensor even though it is written in a tensor like manner.
In order to avoid a confusing index notation we now turn to a matrix representation

and denote the metric components by the matrices g ≡ ( gµν(pσ) ) and ḡ ≡ ( ḡµν(p̄σ) ),
and the transformation matrix by T ≡ (Tαµ(pσ)). In this representation eq. (A.9) reads

ḡ = TTg T .

Since g is a symmetric matrix, it can be diagonalized by an orthogonal matrix O = (Oαµ),
resulting in the diagonal matrix D ≡ diag(λ0,−λ1,−λ2,−λ3) = OTg O. Here we have
assumed λi > 0 according to the signature −2. Moreover, we have arranged the or-
thonormal eigenvectors in O such that the orientation in the spatial subspace remains
right-handed.

Furthermore, we define the diagonal matrix

C ≡ diag((λ0)−
1
2 , (λ1)−

1
2 , (λ2)−

1
2 , (λ3)−

1
2 ) = (Cαµ)

with the help of the eigenvalues of g and introduce the Lorentz transformation matrix
Λ = (Λµα) which satisfies the condition ΛTηΛ = η with the Minkowski metric η = (ηµν).
The transformation matrix T = OC Λ enables us to reduce the transformed metric ḡ to
the Minkowski spacetime η which yields

ḡ = (OC Λ)Tg (OC Λ) = ΛTηΛ = η .

We emphasize that the matrices O and C are determined by the values of the metric
components gµν(pσ) at the fixed point P , whereas the matrix Λ, which corresponds to
homogeneous Lorentz transformations can be chosen arbitrarily within the limits of its
defining equation ΛTηΛ = η. Throughout this article we restrict ourselves to proper
Lorentz transformations [99], whose coefficients obey Λ0

0 ≥ 1 and det Λ = 1.
Thus, we have shown that a coordinate transformation xα = xα(x̄β) with transfor-

mation matrix

(A.11) Tαβ(pσ) =
∂xα

∂x̄β

∣∣∣∣
P

= Oαµ C
µ
ν Λνβ ,

at P transforms gµν(pσ) to the Minkowski metric ḡµν(p̄σ) = ηµν at this point.
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The inverse Matrix S = T−1 is also of importance, since it appears in the transforma-
tion law of a contravariant vector V µ. According to the decomposition of T , eq. (A.11),
we find

(A.12) Sαβ(pσ) =
∂x̄α

∂xβ

∣∣∣∣
P

with S = T−1 = Λ−1 C−1O−1 .

Hence, the vectors in the tangent space at P undergo a four-dimensional rotation O−1, a
rescaling C−1 and a Lorentz transformation Λ−1 by the corresponding coordinate trans-
formation.

A.2.2. Construction of light cone diagrams. We now show that this transformation
method provides a valuable tool for gaining insight into the causal structure of a given
spacetime. In general, the question whether two points P1 and P2 in spacetime can
be connected by a timelike or null curve is not a trivial question. However, light cone
diagrams, such as figs. 9 and 10, may be helpful in finding an answer to this question.
For that reason we now explain their construction in more detail.

All null curves xµ(λ) which pass through the point P satisfy the relation

(A.13) gµν(pσ)uµ uν = 0 .

When we perform a coordinate transformation with transformation matrix T , eq. (A.11),
and inverse S, eq. (A.12), at the point P , we find

(A.14) ūα = Sαµ(pσ)uµ and uµ = Tµβ(pσ) ūβ

for the contravariant components of the tangent vector. Hence, eq. (A.13) turns into

ḡµν(p̄σ) ūµ ūν = ηµν ū
µ ūν = 0 .

As in special relativity, the last equation is fulfilled by all vectors which are element of the
light cone in Minkowski spacetime. Thus, we take this set of vectors ūµ and transform
them back to the components uµ = Tµν(pσ) ūν of the tangent vector expressed in the
original coordinates xµ. This transformation leads effectively to a rescaling of the apex
angle and a tilting of the light cone depending on the metric coefficients at the point
P . We then attach this transformed light cone to the point P , always keeping in mind
that these light cones are objects which live in the tangent space and only illustrate the
tangents of the null curves passing through P . By repeating this procedure for many
spacetime points, we finally arrive at a light cone diagram.

We conclude by briefly pointing out that the freedom in the choice of the Lorentz
transformation matrix Λ within the transformation matrix T , eq. (A.11), does not have
any effect on the construction of the light cone diagram. Indeed, the set of all vectors
constituting the light cone is mapped onto itself under a homogeneous Lorentz transfor-
mation.
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A.3. Symmetries and Killing vectors . – A spacetime manifold endowed with a metric
gµν possesses a symmetry, if there exists a special class of coordinate transformations
x′α = x′α(xβ) which does not change the functional dependence of the metric on the
coordinates, that is

(A.15) g′µν(x′σ) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(xσ) != gµν(x′σ) .

Such a coordinate transformation is called an isometry.

A.3.1. Killing equations. Of special interest are infinitesimal isometries

(A.16) x′α = xα + εξα(xβ)

with |ε| � 1, since every continuous symmetry transformation can be reassembled suc-
cessively by them.

In order to make use of the infinitesimal isometry (A.16) we bring the invariance
condition (A.15) into the form

gαβ(xη) =
∂x′µ

∂xα
∂x′ν

∂xβ
gµν(xη + εξη(xσ)) .

From eq. (A.16) we find

∂x′µ

∂xα
= δµα + εξµ,α(xσ)

and with the Taylor expansion of gµν(xη + εξη(xσ)) around xη up to first order in ε, we
obtain

(A.17) gαβ,ν(xη) ξν(xη) + gµβ(xη) ξµ,α(xη) + gµα(xη) ξµ,β(xη) = 0 .

When we make use of the fact that the covariant derivative of the metric gαβ;ν vanishes,
we finally arrive at the Killing equations

(A.18) ξα;β + ξβ;α = 0

for the Killing vector field ξα(xβ). The solutions ξα of this linear system of partial
differential equations fully characterize the continuous symmetries of a given metric.

A.3.2. Symmetries. Our first important example of a symmetry is the time indepen-
dence of a metric. If a metric possesses a timelike Killing vector field, we call the metric
stationary, since this particular vector field allows the introduction of special coordinates
in which the metric is no longer time dependent.

Moreover, we call a metric homogeneous in space and time if there exist four inde-
pendent Killing vector fields as solutions of eq. (A.18) which are linearly independent
in the tangent space of every point of the spacetime manifold. In this case it is always
possible to connect two arbitrary events by a continuous isometry such that any space-
time point is equivalent to any other with respect to the metric. This feature provides a
natural generalization of the translational invariance property of space and time in flat
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Minkowski spacetime. The concepts of isotropy and purely spatial homogeneity would
need a more sophisticated treatment which cannot be given here. Instead, we would like
to refer to [99,100].

A.4. World lines and geodesics of test particles and of light. – Particles with a non-
vanishing mass as well as observers travel on timelike curves through spacetime. Hence,
a timelike curve is often referred to as world line. It is sometimes convenient to use a
reference frame that is at rest with respect to an observer moving along a world line.
The time measured by such an observer is called proper time τ and it is connected to the
line element ds2 according to

(A.19) ds2 = gµν dxµ dxν ≡ c2 dτ2 .

The proper time is typically used as evolution parameter for a world line xσ(τ).
When we divide the last equation by dτ2, we find the fundamental condition

gµν(xσ(τ))uµ(τ)uν(τ) = c2

for the four-velocity uµ(τ).
Light, on the other hand, evolves on lightlike curves xµ(λ), also called ”null curves”,

corresponding to the line element ds2 = 0. Therefore, it is not possible to define a
proper time for light in the same way as for massive particles. Instead, we consider the
evolution parameter λ just as a label for the spacetime point of the light ray with no
deeper physical meaning.

Since we would like to have a formulation combining the calculations for light and
particles, we introduce the short notation

(A.20) gµν u
µ uν = uµ u

µ = ε2 ,

with ε = 0 corresponding to light, and with ε = c and λ = τ for massive particles.
Freely falling particles and freely propagating light rays follow a special class of space-

time curves called geodesics, which obey the geodesic equation

(A.21)
d2xµ

dλ2
+ Γµαβ(xσ)

dxα

dλ
dxβ

dλ
= uµ;ν u

ν = 0 .

To obtain a particular geodesic one has to solve this equation for the initial values of
position xµ(λ0) and four-velocity uµ(λ0). We emphasize that the initial four-velocity has
to satisfy the condition (A.20).

It is important to note that by contracting eq. (A.21) with uµ, one can show that the
scalar uµ uµ = ε2, eq. (A.20), is a constant of motion and does not change its value along
the geodesic.

In general it is not easy to find analytical solutions of the geodesic equation. However,
intrinsic symmetries of the metric can ease this task since they correspond to constants of
motion. In order to find them we observe, that the contraction of the geodesic eq. (A.21)
by a Killing vector field ξµ on both sides yields

0 = ξµu
µ
;νu

ν = (ξµuµ);ν u
ν − ξµ;νu

µuν .
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By virtue of the Killing equations (A.18) the covariant derivative of the Killing vector ξµ;ν

is antisymmetric and thus the term ξµ;νu
µuν vanishes. Moreover, the expression ξµuµ is

a scalar. Therefore, its covariant derivative can be rewritten as a partial derivative, that
is

0 = (ξµuµ);ν u
ν = uν

∂

∂xν
(ξµuµ) =

d
dλ

(ξµuµ) .

Hence, we can assign to every Killing vector a constant of motion

(A.22) uµ(λ) ξµ(xσ(λ)) = C = uµ(λ0) ξµ(xσ(λ0))

of the geodesic equation.
Finally, we point out that the geodesic equation (A.21) is only valid in the presence

of gravitational forces. In the case of an additional, non-gravitational four-force Kµ(xσ)
acting on a massive particle, such as the electromagnetic force, we must extend the
geodesic equation to the general equation of motion

(A.23) muµ;ν u
ν = maµ = Kµ .

Here we have introduced the four-acceleration aµ ≡ uµ;ν u
ν and the rest mass m of the

particle.
We emphasize that condition (A.20) still holds true, since we have chosen the proper

time τ as the curve parameter for massive particles. When we take the covariant deriva-
tive of eq. (A.20) we find

(A.24) uµ u
µ
;ν = 0 .

Moreover, when we contract the equation of motion (A.23) with uµ we conclude with the
help of eq. (A.24) that the four-acceleration aµ and the four-force Kµ have to satisfy the
additional constraint

(A.25) uµ a
µ = 0 and uµK

µ = 0 .

Hence, the definition of the four-velocity uµ in terms of the proper time τ is sufficient to
imprint the constraint eqs. (A.25) on the four-acceleration and the four-force appearing
in the equation of motion (A.23).

A.5. Parallel transport versus Fermi-Walker transport. – In contrast to Euclidean
geometry, there exists no absolute concept of parallelism in curved spacetime. There is
only a definition of parallelism of vectors along a curve C. To be specific, let the curve C be
defined parametrically by xµ(λ) with corresponding tangent vector uµ(λ). We then call
a vector V µ(λ0) located at the spacetime point xµ(λ0) parallel to another vector V µ(λ1)
at xµ(λ1) along C, if there exists for all λ0 ≤ λ ≤ λ1 a solution V µ(λ) = V µ(xσ(λ)) of
the system of linear differential equations

(A.26) V µ;ν u
ν =

dV µ(λ)
dλ

+ Γµαβ(xσ(λ))uα(λ)V β(λ) = 0 ,

which coincides with V µ(λ0) at λ0 and with V µ(λ1) at λ1.



Rotation in relativity and the propagation of light 61

Fig. 17. – Comparison between parallel transport (left) and Fermi-Walker transport (right) of
a vector V µ(λ) along a curve xµ(λ). In both cases we start at the point P0 with the tangent
vector V µ(λ0) = uµ(λ0) and end up at the point P . In general, the parallel transported vector
(left) at P differs from the tangent vector uµ(λ) in P . However, for the Fermi-Walker transport
(right), the vector V µ(λ) still coincides with uµ(λ). In order to bring out the similarities and
differences between the two pictures most clearly, we have marked in the right picture only those
quantities which are different from the ones in the left picture.

The differential equation (A.26) is usually referred to as the equation of parallel trans-
port, since one can invert the above statement: given an initial vector V µ(λ0) and a
spacetime curve C, then the unique solution of eq. (A.26) for these initial conditions de-
termines all vectors parallel to V µ(λ0) along C. One important consequence of this fact
is, that for a given closed curve C with initial and final point xµ(λ0) = xµ(λ1), the initial
and the parallel transported vector do in general not coincide, that is V µ(λ0) 6= V µ(λ1).

The parallel transport possesses two pleasant properties: it preserves (i) the “space-
time length” V µ(λ)Vµ(λ) of the initial vector V µ(λ0) as can be seen by contraction of
eq. (A.26) with Vµ, and (ii) the “spacetime angle” Wµ(λ)V µ(λ) when the two vector
fields V µ and Wµ are both parallel transported along the same curve C. The latter
statement follows directly from a contraction of the parallel transport equation (A.26)
with Wµ.

When we choose the tangent vector uµ(λ0) as the initial vector V µ(λ0) at the point
P0, we can observe that in general the parallel transported vector V µ(λ) does not coincide
anymore with the tangent vector uµ(λ) at the point P , as indicated by the left picture of
fig. 17, unless the spacetime curve xµ(λ) is a geodesic. In the special case of a geodesic,
the tangent vector V µ = uµ is parallel propagated along the geodesic itself. For this
reason geodesics are sometimes called autoparallel curves.

However, often one would like to have a transport law for vectors V µ along arbitrary
curves, which maps the initial tangent vector V µ(τ0) = uµ(τ0) located at P0 to the
tangent vector V µ(τ) = uµ(τ) at P , as depicted in the right drawing of fig. 17. The
so-called Fermi-Walker transport incorporates this special feature, and it is defined by
the generalization

(A.27) V µ;ν u
ν +

1
c2

(uµaβ − aµuβ)V β =
dV µ

dτ
+
[
Γµαβ u

α +
1
c2

(uµaβ − aµuβ)
]
V β = 0

of eq. (A.26). Here we have used the definition aµ = uµ;ν u
ν of the four-acceleration and

have parameterized our world line xµ(τ) with the proper time τ of the observer. Indeed,
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by inserting the four-velocity V µ = uµ into eq. (A.27) and making use of eq. (A.25),
which holds true for any world line xµ(τ), we can verify that uµ is a solution of the
Fermi-Walker transport equation. As for the parallel transport, we can show without
much effort, that the Fermi-Walker transport eq. (A.27) preserves the “spacetime length”
V µ(τ)Vµ(τ) and the “spacetime angle” Wµ(τ)V µ(τ) for two vectors, which are Fermi-
Walker transported along the same world line C. Finally, we would like to mention
that for C being a geodesic with four-acceleration aµ = 0, the Fermi-Walker transport,
eq. (A.27), reduces to the parallel transport law (A.26).

Appendix B.

Tetrads and their orthonormal transport

In this appendix, we briefly introduce the concept of orthonormal tetrads in general
relativity and examine several important properties. Since this topic is often omitted in
introductory courses on general relativity, we discuss it extensively following the spirit
of [63]. Finally, we analyze the general orthonormal transport of tetrads and motivate a
natural generalization of the Fermi-Walker transport.

B.1. Orthonormal tetrads. – Let eµ(α) be four linearly independent basis vectors span-
ning the tangent space at P . Here we have placed the index (α) ∈ {0, 1, 2, 3} in paren-
thesis to indicate that it is not a tensor index, but a label for the particular basis vector.
If these four basis vectors satisfy the relativistic orthonormality condition

(B.1) eµ(α) e
ν
(β) gµν = η(αβ) ,

we call the four contravariant vectors eµ(α) an orthonormal tetrad.
The invariant matrix η(αβ) = diag(1,−1,−1,−1) is defined in analogy to the flat

spacetime metric. However, it is important to keep in mind, that its indices (αβ) do
not denote tensor indices(10). Therefore, the matrix η(αβ) remains invariant under a
coordinate transformation. We can verify this statement by performing a coordinate
change x′µ = x′µ(xσ). Since the tetrad vectors eµ(α) transform like ordinary contravariant
vectors, the orthonormality condition reads in the new coordinates

e′µ(α) e
′ν
(β) g

′
µν = η(αβ) .

Furthermore, we label the vectors of the tetrad in a way such that eµ(0) is timelike and
the remaining spacelike vectors eµ(i) provide a right-handed basis of the spatial subspace.

B.1.1. Construction. The problem of finding an orthonormal tetrad in the tangent
space at a certain point P of a given spacetime with metric coefficients gµν is solved
by simply taking advantage of the transformation matrix T , eq. (A.11), which brings
the metric at P into its Minkowski form. Thus, the contravariant components of an

(10) Throughout this article indices in parenthesis appear only in connection with tetrad indices.
We emphasize that this notation is in contrast to the standard literature. In order to avoid
ambiguities in the notation, we have denoted the symmetrization brackets, defined by eq. (A.5),
by curly brackets.
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orthonormal tetrad at P are simply found by identifying them with the corresponding
elements

(B.2) eµ(α) ≡ Tµ(α)(pσ) = Oµ(ν) C
(ν)
(ρ) Λ(ρ)

(α)

of the transformation matrix.
An orthonormal tetrad constructed in this way is not uniquely defined, since the

transformation matrix T contains an arbitrary Lorentz transformation matrix Λ. For
this reason, two arbitrary orthonormal tetrads ẽµ(α) and e′µ(α) can always be connected by
a Lorentz transformation matrix Λ. This property holds true, because the orthogonal
matrix O and the scaling matrix C in the decomposition, eq. (B.2), are determined by
the metric coefficients at P , whereas the Lorentz matrix Λ can be freely chosen. If we
decompose the two tetrads according to

ẽµ(α) ≡ T̃µ(α)(pσ) = Oµ(ν) C
(ν)
(ρ) Λ̃(ρ)

(α)

and

e′µ(α) ≡ T ′µ(α)(pσ) = Oµ(ν) C
(ν)
(ρ) Λ′(ρ)(α)

and use the fact, that the Lorentz transformations form a group and thus can be decom-
posed according to Λ̃(ρ)

(α) = Λ′(ρ)(β) Λ(β)
(α), we find

(B.3) ẽµ(α) = Λ(β)
(α) e

′µ
(β) .

The defining equation of a Lorentz matrix reads in tetrad index notation

(B.4) Λ(α)
(µ) Λ(β)

(ν) η(αβ) = η(µν) ,

and the inverse (Λ−1)(β)
(α) of a Lorentz matrix follows herefrom according to

(B.5) (Λ−1)(β)
(α) = η(αγ) Λ(γ)

(ρ) η
(ρβ) .

We emphasize that the proper choice of the Lorentz matrix Λ in (B.2) is crucial when
we desire a particular orthonormal tetrad. We illustrate this circumstance in fig. 18,
where we have suppressed the z-axis. The two images show two different orthonormal
tetrads together with the infinitesimal light cone in the tangent space at the spacetime
point P . Moreover, a timelike curve xµ(τ) with four-velocity uµ at P is included. The left
picture displays the special case of an orthonormal tetrad eµ(α) with the identity as Lorentz
matrix Λ(ρ)

(α) = δ(ρ)
(α) in its decomposition (B.2). However, we can reduce the number of

possible tetrads by demanding, that the timelike basis vector e′µ(0) of the tetrad e′µ(α)

should coincide with the normalized four-velocity uµ/c in P . Indeed, this requirement
leads to a particular Lorentz boost. The right picture in fig. 18 serves as an example
of this special case. Here, the additional Lorentz boost maps the basis vectors eµ(0) and
eµ(2) onto e′µ(0) = uµ/c and e′µ(2) just as in the Minkowski diagrams of special relativity,
thereby leaving eµ(1) = e′µ(1) invariant. Nevertheless, a rotation in the three-dimensional
subspace orthogonal to e′µ(0) can still be subjoined as an additional Lorentz matrix Λ
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Fig. 18. – Construction of an orthonormal tetrad at a point P in spacetime. The observer passes
through P along the world line xµ(τ). When we choose a decomposition (B.2) of the tetrad eµ(α)

with the special Lorentz matrix Λ(ρ)
(α) = δ(ρ)(α), the timelike basis vector eµ(0)(τ) is not parallel

(left) to the four-velocity uµ(λ) at P . However, it is always possible to determine a special
Lorentz boost Λ(ρ)

(α) in the decomposition (B.2) which aligns the two vectors (right). In order to
bring out the similarities and differences between the two pictures most clearly, we have marked
in the right picture only those quantities which are different from the ones in the left picture.

in the decomposition (B.2). Thus the restriction e′µ(0) = uµ/c provides us with enough
freedom in the choice of the spacelike basis vectors e′µ(i).

B.1.2. Decomposition into tetrad components. Before we turn over to the general,
orthonormal transport law of tetrads, we introduce some notations, which considerably
shorten the subsequent calculations.

Co- and Contravariant Components of Tetrads. We denote the covariant components of
the tetrad eµ(α) by lowering the tensor index as usual according to eµ(α) ≡ gµν eν(α). Thus,
the relativistic orthonormality condition (B.1) reads

eµ(α) eµ(β) = η(αβ) .

With the help of the invariant inverse η(αβ) = diag(1,−1,−1,−1) of η(αβ) and an anal-
ogous summation convention, we can adopt the lowering and raising also for the paren-
thesized indices by defining

(B.6) eµ(α) ≡ η(αβ)eµ(β) and e (α)
µ ≡ η(αβ)eµ(β) .

When we multiply the last expressions by η(αγ), we obtain

eµ(γ) = η(γα)e
µ(α) and eµ(γ) = η(γα)e

(α)
µ .

After multiplying eq. (B.1) by η(βγ) and using eq. (B.6), we can reformulate the orthonor-
mality condition in a much more intuitive fashion

(B.7) eµ(α) e
(γ)
µ = δ(γ)

(α) .
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This equation suggests that e (γ)
µ = gµνη

(γα) eν(α) is the inverse matrix to our tetrad eµ(α).
But this interpretation implies furthermore, that the tensorial relation

(B.8) e (α)
µ eν(α) = δνµ

holds as well.

Tetrad indices. A useful application of the tetrad formalism is that every vector V µ and
tensor Wµν , can be decomposed into tetrad components

V µ = V (α) eµ(α) and Wµν = W (αβ) eµ(α) e
ν
(β)

along the tetrad basis eµ(α). The inverse relations

V (α) = V µ e (α)
µ and W (αβ) = Wµν e (α)

µ e (β)
ν

are obtained with the help of eq. (B.7). We can also decompose covariant vector and
tensor components

Vµ = V(α) e
(α)
µ and Wµν = W(αβ) e

(α)
µ e (β)

ν .

By substituting the decompositions of V µ and Vµ in Vµ = gµνV
ν we furthermore conclude

that

V(α) = η(αβ) V
(β) .

In the same way, we can show that

W(αβ) = η(αµ) η(βν)W
(µν) .

Antisymmetric tensor . Let us consider as short and useful example the tetrad decompo-
sition of the total antisymmetric tensor εαβγδ, eq. (A.4), with ε0123 = 1/

√
−g. Its tetrad

components

ε(αβγδ) = e (α)
µ e (β)

ν e (γ)
ρ e (δ)

σ εµνρσ

can be rewritten in terms of the non-tensorial Levi-Civita symbol (A.3)

(B.9) ε(αβγδ) = e (α)
µ e (β)

ν e (γ)
ρ e (δ)

σ

∆µνρσ

√
−g

=
det(e (α)

µ )
√
−g

∆αβγδ ,

where the right hand side of the last equation follows directly from the definition of the
determinant.
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From eq. (B.1) we obtain for the determinant of the tetrad “matrix” (eµ(α)) the rela-
tion(11)

(B.10) det(eµ(α)) =
1√
−g

.

Making use of the relativistic orthonormality condition (B.7), we thus conclude for the
determinant of the inverse tetrad “matrix” det(e (α)

µ ) = (det(eµ(α)))−1 =
√
−g. But this

result implies that the tetrad coefficients of the total antisymmetric tensor just reduce
to the Levi-Civita symbol according to

(B.11) ε(αβγδ) = ∆αβγδ .

The correspondence

(B.12) ε(αβγδ) = η(αµ) η(βν) η(γρ) η(δσ) ε
(µνρσ) = −∆αβγδ

between the lower tetrad indices and the Levi-Civita symbol could have also be found
by deriving ε(αβγδ) in analogy to the above argumentation.

We conclude by pointing out the useful identity

(B.13) ε(0ijk) ε
(0ipq) = −δ(p)

(j)δ
(q)
(k) + δ(p)

(k)δ
(q)
(j) ,

which we will frequently use throughout this article.

Transformation properties. Finally, we would like to recall that the tensor components
V α change under coordinate transformations, but do not depend on the choice of the
tetrad. On the other hand, the tetrad components V (α) are invariants under coordinate
transformations, but they crucially depend on the choice of the tetrad vectors, as can be
easily understood by the following argument. We start from two tetrads ẽµ(α) and e′µ(β)

related to each other via eq. (B.3). Then by virtue of the decompositions

(B.14) Λ(β)
(α) = ẽµ(α) e

′ (β)
µ and (Λ−1)(β)

(α) = e′µ(α) ẽ
(β)
µ

of the Lorentz matrix and its inverse, which follow from (B.3) and (B.7), we obtain the
connection

Ṽ (α) = ẽ (α)
µ V µ = ẽ (α)

µ

(
e′µ(β) V

′ (β)
)

= (Λ−1)(α)

(β) V
′ (β)

between the tetrad components Ṽ (α) and V ′(α).

(11) Throughout this article, we assume an ordering of the four tetrad vectors eµ(α) which pre-
serves the orientation of the manifold and thus leads to det(eµ(α)) > 0.
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B.2. General orthonormal transport of tetrads and the proper transport. – We now
turn to the formulation of the general orthonormal transport law of tetrads [63,101]. For
this purpose we consider a timelike curve C expressed by xµ(τ) with four-velocity uµ(τ)
and acceleration vector aµ = uµ;ν u

ν . Moreover, eµ(α)(τ) denotes a one-parameter family
of tetrads which satisfies the orthonormality conditions (B.7) and (B.8) in the tangent
space of every point xµ(τ) ∈ C.

B.2.1. Transport matrix. In order to arrive at the general transport law, we make
use of the fact that any vector located at xµ(τ) can be decomposed into a given tetrad
basis eµ(α)(τ). By applying this recipe to the vector eµ(α);ν(τ)uν(τ), which appears in the
parallel transport law, we arrive at the decomposition

(B.15) eµ(α);ν(τ)uν(τ) = −J (β)
(α)(τ) eµ(β)(τ) ,

where we have added the minus sign for reasons of conventions.
The coefficients J (β)

(α)(τ) have to satisfy certain conditions in order to guarantee that
the relativistic orthonormality conditions (B.7) and (B.8) are preserved by the gen-
eral transport law (B.15). These conditions follow by taking the covariant derivative
of eq. (B.7) and contraction with the four-velocity uν which gives

eµ(α);ν u
ν e (γ)

µ + eµ(α) η
(γβ)eµ(β);ν u

ν =
d
dτ
(
δ(γ)
(α)

)
= 0 .

Substitution of the general transport law (B.15) into the last expression yields

−J (γ)
(α) − η(ασ) η

(γβ) J (σ)

(β) = 0 .

Further contraction with η(ργ) reveals that the coefficients J (β)
(α) have to obey the anti-

symmetry relation

(B.16) J(ρα) = −J(αρ) ,

in order to preserve the orthonormality conditions.
We call every matrix J (β)

(α) which appears in a transport law of the form (B.15)
and which satisfies the antisymmetry relation (B.16) a transport matrix. The parallel
transport of a tetrad

(B.17) eµ(α);ν(τ)uν(τ) = 0

is included as the special case for which J (β)
(α) = 0.

As discussed in the last subsection every tensor can be decomposed into tetrad co-
efficients. Vice versa, it is also possible to assign tensor components to a given set of
tetrad coefficients. Hence, the transport law (B.15) can be reformulated in a tensorial
form with the so-called transport tensor Jµν which is connected to the transport matrix
via

(B.18) Jµν = eµ(α) e
(β)
ν J (α)

(β) and J (α)

(β) = e (α)
µ eν(β) J

µ
ν .
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Inserting eq. (B.18) into the transport law (B.15) yields its tensorial form

(B.19) eµ(α);ν(τ)uν(τ) = −Jµν(τ) eν(α)(τ) with Jµν = −Jνµ .

This equation, which holds for the different tetrad vectors, can be easily translated into a
tensorial transport law for any contravariant vector V µ(τ). Suppose, the decomposition
of the vector along the world line xµ(τ) reads V µ(τ) = V (α) eµ(α)(τ), where the whole
change of the vector along the world line is incorporated in the tetrad and the coefficients
V (α) do not depend on τ . Then a multiplication of eq. (B.19) by V (α) provides us with
the transport law for vectors V µ;νu

ν = −Jµν V ν . An analogous argument leads to a
transport equation for arbitrary tensors.

B.2.2. Correspondence between distinct transport laws. We now try to gain a deeper
insight into the general orthogonal transport eq. (B.15) and the transport matrix J (α)

(β).
For this purpose it is reasonable to consider the relationship between the transport laws
of two different families of tetrads eµ(α)(τ) and ẽµ(α)(τ), which both live in the tangent
spaces along the world line xµ(τ). By virtue of eq. (B.3) it is always possible to bring
them together with the help of a specific family of Lorentz transformation matrices, say

(B.20) eµ(α)(τ) = Λ(β)
(α)(τ) ẽµ(β)(τ) .

We assume, that the tetrad eµ(α)(τ) satisfies the general transport law (B.15). In order to
derive the corresponding transport law for ẽµ(α)(τ) we simply substitute eq. (B.20) into
eq. (B.15). Together with the inverse Lorentz matrix (B.5), we find after some algebra
the transport law

(B.21) ẽµ(α);ν u
ν = −J̃ (β)

(α) ẽ
µ
(β) , J̃ (β)

(α) = Λ(β)
(γ) J

(γ)
(ρ) (Λ−1)(ρ)

(α) +
dΛ(β)

(ρ)

dτ
(Λ−1)(ρ)

(α)

for the tetrad ẽµ(α)(τ). These formulas bring out most clearly the role of the Lorentz
matrix in the relation between the old transport matrix J (β)

(α) and the new one J̃ (β)
(α).

In particular, it is interesting to compare the general orthonormal transport to the
parallel transport. For this reason, we assume that the tetrad eµ(α)(τ) is initially congru-
ent with ẽµ(α)(τ), in other words eµ(α)(τ0) = ẽµ(α)(τ0) at the initial point xµ(τ0). Moreover,
we define the one-parameter family eµ(α)(τ) by virtue of parallel transport of the initial
tetrad eµ(α)(τ0) along xµ(τ). On the other hand ẽµ(α)(τ) shall be based on the general
orthonormal transport (B.21) along the same world line xµ(τ). As a consequence, the
Lorentz matrix Λ(β)

(α) which connects both tetrads as in eq. (B.20), is specified by the
linear differential equation

(B.22)
dΛ(β)

(ρ)

dτ
= J̃ (β)

(α)(τ) Λ(α)
(ρ)(τ)

following from eq. (B.21). Due to eµ(α)(τ0) = ẽµ(α)(τ0), the corresponding initial condition
simply reads

Λ(α)

(β)(τ0) = δ(α)

(β) .
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Hence, the coefficients J̃ (β)
(α)(τ) of the transport matrix determine the Lorentz transfor-

mation which connects the parallel transported tetrad with the generally transported
one. In particular, we observe for small ε that the infinitesimal Lorentz transformation
Λ(α)

(β)(τ0 +ε) = δ(α)

(β) +ε J̃ (α)

(β)(τ0), which directly links both tetrads at xµ(τ0 +ε), is gener-
ated by the elements of the transport matrix. Hence, one usually refers to the elements
of the transformation matrix as the generators of infinitesimal Lorentz transformations,
see e. g. [102].

B.2.3. Proper transport as natural generalization of the Fermi-Walker transport. We
conclude this appendix by discussing another prominent transport equation, the so-called
proper transport, which will be of crucial importance in the definition of proper reference
frame coordintates analyzed in appendix C.3. They may serve as coordinates well suited
for the theoretical description of future satellite experiments testing the local curvature
of spacetime by various interferometric devices. In order to appreciate the implications
of this proper transport, we provide its motivation in two steps: first we impose certain
restrictions on the transformation matrix by demanding, that the timelike tetrad vector
eµ(0)(τ) should be equal to the scaled four-velocity uµ(τ)/c, and second, we derive its
most general form by taking advantage of an intuitive illustration.

Fermi-Walker transport . We start our motivation of the proper transport by recalling
fig. 18. As indicated in the right picture it is always possible to find a tetrad in the
tangent space of a given point in such a way, that the timelike vector eµ(0) is parallel to
the four-velocity uµ at P . Stimulated by this fact, we want to examine the transport
laws for which the timelike tetrad vector eµ(0)(τ) is equal to the scaled four-velocity vector
uµ(τ)/c on the whole world line xµ(τ) for all proper times τ . For this reason we suppose,
that initially eµ(0)(τ0) = uµ(τ0)/c and that eµ(0)(τ) = uµ(τ)/c represents a solution of the
transport equation

(B.23) eµ(α);ν(τ)uν(τ) = −Ω(β)
(α)(τ) eµ(β)(τ) .

The coefficients Ω(β)
(α)(τ) of the new transport matrix will now be specified in order to

fulfill the desired requirement. Inserting eµ(0)(τ0) = uµ(τ0)/c into the zeroth component
of eq. (B.23) we find

eµ(0);ν(τ)uν(τ) =
1
c
aµ(τ) = −Ω(β)

(0)(τ) eµ(β)(τ) ,

where we have made use of the definition aµ = uµ;ν u
ν of the four-acceleration. When we

now contract the last expression with e (α)
µ and introduce the invariant tetrad coefficients

a(α)(τ) = aµ(τ) e (α)
µ (τ) of the four-acceleration, we arrive at the condition

(B.24) Ω(γ0) = −1
c
η(γα) a

(α) = −1
c
a(γ) .

In particular, we obtain −Ω(00) = 1
c a(0) = 1

ca
µ eµ(0) = 1

c2 a
µ uµ = 0, which follows

directly from eq. (A.25). Indeed, eq. (B.24) and the antisymmetry relation Ω(0γ) = −Ω(γ0)

are the only conditions for the transport matrix Ω(β)
(0) to guarantee eµ(0)(τ) = uµ(τ)/c as
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a natural solution of eq. (B.23). If we assume for simplicity, that all the other elements
Ω(ik) = 0 with i, k ∈ {1, 2, 3} vanish, then the transport matrix reads

(B.25) Ω(γα) = −1
c

(a(γ)η(α0) − a(α)η(γ0)) ,

in accordance with eq. (B.24) and the antisymmetry condition.
In this case we arrive at the corresponding transport equation

eµ(α);ν u
ν =

1
c
η(βγ) (a(γ)η(α0) − a(α)η(γ0)) e

µ
(β) =

1
c
aµ η(α0) −

1
c2
uµaν e

ν
(α) .

Its tensor form follows in analogy to eqs. (B.18) and (B.19) with the help of the transport
tensor

Ωµν = Ω(γα) e
µ(γ) e (α)

ν = − 1
c2

(aµuν − uµaν)

and thus reads

(B.26) eµ(α);ν u
ν =

1
c2

(aµuν − uµaν) eν(α) ,

which is just the Fermi-Walker transport of our tetrad eµ(α)(τ), as can be seen by com-
paring it with eq. (A.27).

Before we turn to a natural generalization of eq. (B.26), we briefly compare the Fermi-
Walker transport in its tetrad form, eq. (B.23), to the parallel transport, eq. (B.17).
Again, we denote the initial tetrad located at the point xµ(τ0) by eµ(α)(τ0). We transport
the tetrad to the adjacent point xµ(τ0 +ε) in two different ways: (i) by parallel transport,
and (ii) by Fermi-Walker transport. The resulting tetrads are connected by an infinites-
imal Lorentz boost Λ(α)

(β)(τ0 + ε) = δ(α)

(β) + εΩ(α)

(β)(τ0) whose generators are the coefficients
of the corresponding transport matrix Ω(β)

(α) = η(βγ)Ω(γα), given by eq. (B.25).
When we compare the two tetrads at a point xµ(τ) which does not lie in the immediate

neighborhood of xµ(τ0), the connection between them will no longer be given by a simple
Lorentz boost. This feature reflects the fact that in general the combination of two
infinitesimal Lorentz boosts does not lead to another Lorentz boost since spatial rotations
have to be taken into account.

Proper transport . So far, we have shown, that the Fermi-Walker transport can be derived
by simply imposing the condition (B.24) on the transport matrix, whereas all other
components Ω(ik) have been set to zero. However, the choice Ω(ik) = 0 was haphazard.
Condition (B.24) was the only necessary restriction to provide a transport law which
keeps the timelike tetrad eµ(0)(τ) = uµ(τ)/c tangential to the world line xµ(τ) for all τ .
As illustrated in fig. 19, the presented transport law is not the only one which satisfies this
condition. In the left picture we sketched the Fermi-Walker transport of an initial tetrad
eµ(α)(τ0) at the point xµ(τ0). However, it is possible to additionally rotate the Fermi-
Walker-transported spacelike vectors ẽµ(i)(τ) in every point xµ(τ), without affecting the
property of the timelike vector eµ(0)(τ) to remain tangential to the world line xµ(τ). The
right picture of fig. 19 shall serve as an illustration of this statement. The transport
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Fig. 19. – Two different orthonormal transport laws applied to the same initial tetrad. Both
possess the property, that the timelike basis vector eµ(0)(τ) = ẽµ(0)(τ) remains tangential to the
world line xµ(τ). However, they differ in the orientation of the spacelike basis vectors. A spatial
rotation of the tetrad vectors eµ(i)(τ) (left), which were obtained by transporting the initial tetrad
eµ(α)(τ0) according to the Fermi-Walker transport (B.23), yields the tetrad (right) with the basis
vectors ẽµ(i)(τ). In order to bring out the similarities and differences between the two pictures
most clearly, we have marked in the right picture only those quantities which are different from
the ones in the left picture.

equation which includes also this spatial rotation is exactly the proper transport we are
seeking.

Hence, in order to find the proper transport equation we make use of eqs. (B.20)
and (B.21). We start from an initial tetrad eµ(α)(τ0) = ẽµ(α)(τ0) which is located at the
point xµ(τ0) of the world line xµ(τ). The first family of tetrads eµ(α)(τ) shall arise from
the Fermi-Walker transport (B.23) of the initial tetrad along xµ(τ), whereas the second
family of tetrads ẽµ(α)(τ) shall be defined by adding an arbitrary, spatial rotation to the
Fermi-Walker transported tetrad. Hence, we choose the ansatz

eµ(α)(τ) = (ΛR)(β)
(α)(τ) ẽµ(β)(τ)

for the tetrad ẽµ(α)(τ). Here we have introduced the Lorentz matrix (ΛR)(β)
(α)(τ) which

relates the two tetrads by a simple spatial rotation of their basis vectors eµ(i) and ẽµ(k).
Apart from eq. (B.4), it is specified by the relations

(B.27) (ΛR)(0)
(α) = δ(0)

(α) , (ΛR)(α)
(0) = δ(α)

(0) , (ΛR)(i)
(k) = R(i)

(k) ,

with the rotation matrix R(i)
(k).

When we substitute the defining equation of ẽµ(α)(τ) into the Fermi-Walker transport
(B.23) we arrive in analogy to eq. (B.21) at the corresponding transport law for the basis
vectors ẽµ(α)(τ)

(B.28) ẽµ(α);ν u
ν = −Ω̃(β)

(α) ẽ
µ
(β) ,
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with the new transport matrix

(B.29) Ω̃(β)
(α) = (ΛR)(β)

(γ) Ω(γ)
(ρ) (Λ−1

R )(ρ)
(α) +

d(ΛR)(β)
(ρ)

dτ
(Λ−1

R )(ρ)
(α) .

We now introduce the tetrad components ã(α) = (ΛR)(α)

(β) a
(β) of the four-acceleration

with respect to the basis ẽµ(α) and the abbreviation

(B.30) Θ̃(β)
(α) =

d(ΛR)(β)
(ρ)

dτ
(Λ−1

R )(ρ)
(α)

for the second term on the right hand side of eq. (B.29).
By substitution of eq. (B.25) and usage of (B.5), we are able to rewrite the coefficients

Ω̃(γα) = η(γβ) Ω̃(β)
(α) according to

(B.31) Ω̃(γα) = −1
c

(ã(γ)η(α0) − ã(α)η(γ0)) + Θ̃(γα) .

The first term on the right hand side represents the transport matrix of the Fermi-Walker
transport, but with the tetrad coefficients of the acceleration ã(α) now corresponding to
the new tetrad ẽµ(α). The second term Θ̃(γα) stems from the additional spatial rotation.
As required by eq. (B.16), it satisfies the antisymmetry relation

Θ̃(γα) = −Θ̃(αγ) ,

as can be verified by using

d(ΛR)(β)
(ρ)

dτ
(Λ−1

R )(ρ)
(α) = −(ΛR)(β)

(ρ)

d(Λ−1
R )(ρ)

(α)

dτ

and eq. (B.5) in the definition (B.30) of Θ̃(γα).
Moreover, it follows directly from the definition (B.27) of the Lorentz matrix ΛR that

Θ̃(0α) = 0 .

Hence, the quantity Θ̃(γα) possesses only three independent, non-vanishing, spatial com-
ponents Θ̃(ik). It is convenient to map them directly onto the spatial tetrad components
ω̃(k) of a four-vector. This one-to-one mapping is accomplished by the tetrad components
ε̃(αβγδ) of the totally antisymmetric tensor, eq. (B.12). The connection

(B.32) Θ̃(βγ) = ε̃(0αβγ) ω̃
(α)
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ensures that the elements Θ̃(0α) vanish and accounts for the antisymmetry of Θ̃(βγ). When
we solve eq. (B.32) for ω̃(α), we find that this one-to-one mapping(12) implies

(B.33) ω̃(0) = 0 .

Hence, we can rewrite the transport eq. (B.28) according to

(B.34) ẽµ(α);ν u
ν = −Ω̃(γα) ẽ

µ(γ) with Ω̃(γα) = −1
c

(ã(γ)η(α0) − ã(α)η(γ0)) + ε̃(0βγα) ω̃
(β) ,

which is the desired proper transport law formulated in tetrad language.
In order to express eq. (B.34) in tensor form, we make use of the relations ẽµ(0) = uµ/c

and ω̃(β) = ẽσ(β) ωσ and arrive at

Ωµν = ẽµ(γ) ẽν(α) Ω̃(γα) = − 1
c2

(aµuν − uµaν) + ωσ η(0λ)

(
ε̃(λβγα) ẽσ(β) ẽ

µ
(γ) ẽ

ν
(α)

)
.

From eq. (B.9) we obtain the identity

ε̃(λβγα) ẽσ(β) ẽ
µ
(γ) ẽ

ν
(α) = ερσµν ẽ (λ)

ρ ,

which finally yields the proper tansport law

(B.35) ẽµ(α);ν u
ν = −Ωµν ẽν(α) with Ωµν = − 1

c2
(aµuν − aνuµ) +

1
c
uρ ωσ ε

ρσµν

in its tensorial form. Thus, we have established the proper transport which has been
utilized by [70,71] to define the proper reference frame.

Appendix C.

Riemann normal coordinates and proper reference frames

In this appendix we give a rudimentary introduction into Riemann normal coordinates
and proper reference frames within the framework of general relativity. For this purpose
it is necessary to first examine the formal solution of the geodesic equation [62]. In the
subsequent discussion of Riemann normal coordinates, we concentrate on the expansion of
the metric coefficients around a fixed point in spacetime, thereby following the approach
given in [64, 65]. We then turn to the discussion of proper reference frame coordinates,
which have been introduced in subsect. 3.2. Finally, we also provide the expansion of
the metric coefficients for this case [70-76].

(12) The definition (B.32) of the tetrad rotation vector ω̃(α) guarantees the validity of the
right-hand rule for the spatial components ω̃(k). We illustrate this statement by the set of
time-dependent tetrad vectors ẽµ(0)(τ) = eµ(0)(τ), ẽµ(1)(τ) = cos(ωτ) eµ(1)(τ) + sin(ωτ) eµ(2)(τ),
ẽµ(2)(τ) = − sin(ωτ) eµ(1)(τ) + cos(ωτ) eµ(2)(τ) and ẽµ(3)(τ) = eµ(3)(τ), which describes a uniform,
counter-clockwise rotation of the tetrad vectors ẽµ(1)(τ), ẽµ(2)(τ) relative to the Fermi-Walker
transported basis around the common axis eµ(3)(τ). According to eqs. (B.30)and (B.32), we

obtain ω̃(α) = (0, 0, 0, ω).
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C.1. Formal solution of the geodesic equation. – In this subsection we examine the
formal solution of the geodesic equation

(C.1)
d2xµ

dλ2
+ Γµαβ(xσ)

dxα

dλ
dxβ

dλ
= 0

discussed in appendix A.4, for the initial conditions

xµ(0) = pµ and
dxµ(0)

dλ
= vµ = v(α) eµ(α) .(C.2)

The corresponding solutions represent all geodesics, which start at the point P with
coordinates pµ, and which have arbitrarily directed tangent vectors vµ at P . Without
loss of generality we impose the restriction

(v(0))2 + (v(1))2 + (v(2))2 + (v(3))2 = 1

on the tetrad coefficients v(α) of our initial tangent vectors vµ. In this subsection we are
interested in taking all kinds of geodesics into account: timelike, lightlike and spacelike
geodesics. Hence, we denote the “arclength” of the geodesics by λ.

With the initial conditions (C.2) the power-series expansion of the solution of the
geodesic equation reads

(C.3) xµ(λ) = pµ + vµλ+
∞∑
n=2

dnxµ(0)
dλn

λn

n!
.

We now derive general expressions for the higher derivatives dnxµ(0)

dλn by making use of
the geodesic equation. For this purpose we differentiate eq. (C.1) with respect to λ and
arrive at

(C.4)
d3xµ

dλ3
+
(

d
dλ

Γµαβ

)
dxα

dλ
dxβ

dλ
+ Γµαβ

d2xα

dλ2

dxβ

dλ
+ Γµαβ

dxα

dλ
d2xβ

dλ2
= 0 .

When we insert the geodesic equation into the terms containing the second derivatives,
we find

d3xµ

dλ3
+
(

Γµαβ,γ − ΓναγΓµνβ − ΓνβγΓµαν
) dxα

dλ
dxβ

dλ
dxγ

dλ
=

d3xµ

dλ3
+ Γµαβγ

dxα

dλ
dxβ

dλ
dxγ

dλ
= 0 ,

where in the second step we have introduced the quantity

Γµαβγ ≡ Γµαβ,γ − ΓναγΓµνβ − ΓνβγΓµαν .

We now generalize the definition of the coefficients Γµαβγ recursively by

(C.5) Γµα1...αn ≡ Γµα1...αn−1,αn −
n−1∑
i=1

ΓναiαnΓµα1...αi−1 ν αi+1...αn−1
.
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This definition looks formally like a covariant differentiation, which has been applied to
the lower indices of the quantities Γµα1...αn−1

only. However, we emphasize that none of
the Γ’s has tensorial character at all.

Using the recursive definition (C.5), it follows by induction that all higher differ-
entiations of the geodesic equation with respect to λ can be expressed by the general
formulas

(C.6)
dnxµ

dλn
+ Γµα1...αn

dxα1

dλ
· . . . · dxαn

dλ
= 0 for n ≥ 2 .

We substitute eq. (C.6) evaluated at P into the power-series expansion of the geodesic,
eq. (C.3), to arrive finally at the formal solution

(C.7) xµ(λ) = pµ + vµλ−
∞∑
n=2

Γµα1...αn(pσ) vα1 · . . . · vαn λ
n

n!

of the geodesic equation. With this result at hand we now continue with the construction
of Riemann normal coordinates.

C.2. Riemann normal coordinates. – The objective of the present subsection is to
provide the definition of Riemann normal coordinates and to obtain the expansion of the
metric around the new origin up to the third order.

C.2.1. Definition and subtleties. We start by recalling the situation considered in the
preceding subsection. There, we were interested in all geodesics which emerge from
the point P with coordinates pµ and with arbitrarily directed initial tangent vectors vµ,
eq. (C.2). The formal solution of the geodesic equation (C.1) was then given by eq. (C.7).

Now,it is always possible to connect any point X with coordinates xµ by a unique
geodesic with the initial point P , provided that X lies within a sufficiently small region D
around P . In this case, there exists a one-to-one correspondence between the coordinates
xµ of the point X ∈ D and one of the scaled initial tangent vectors vµλ. This one-to-one
correspondence allows us to establish Riemann normal coordinates x(α) in the following
way: given a tetrad basis eµ(α)(pσ) at P , we identify Riemann normal coordinates as the
tetrad coefficients x(α) = v(α)λ of the scaled initial four-velocity vµλ , eq. (C.2), where
λ denotes the curve parameter of the geodesics at the point X. Taking eq. (B.7) into
account, this statement reads explicitly

(C.8) vµλ = eµ(α)(pσ) x(α) or respectively x(α) = e (α)
µ (pσ) vµ λ .

The connection between the original coordinates xµ of a point X ∈ D and Riemann
normal coordinates x(α) follows by substitution of eq. (C.8) into the formal solution (C.7)
of the geodesic equation leading to the expression

(C.9) xµ(x(σ)) = pµ + eµ(α) x
(α) −

∞∑
n=2

1
n!

Γµν1...νn(pσ) eν1(β1) · . . . · e
νn
(βn) x

(β1) · . . . · x(βn) .

In this way, the origin of the Riemann normal coordinates is given by the spacetime
point P . Its new coordinates read p(µ) = 0 since they correspond to the starting point
λ = 0 of the geodesic in eq. (C.8). Moreover, we conclude by inspection of eq. (C.8), that
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Fig. 20. – Dependence of Riemann normal coordinates on the choice of the tetrad at the point
P . The geodesics x(α) and x′(α) which emerge from P for the two different initial tangent vectors
eµ(α) (left) and e′µ(α) (right) define two different sets of “coordinate axis” for the corresponding
Riemann normal coordinates. In order to bring out the similarities and differences between the
two pictures most clearly, we have marked in the right picture only those quantities which are
different from the ones in the left picture.

all geodesics passing through P become straight lines in Riemann normal coordinates
x(α), in analogy to Cartesian coordinates in Euclidean geometry. Due to their definition
as tetrad coefficients(13) of the scaled tangent vector vµλ, Riemann normal coordinates
behave like invariants under general coordinate transformations. Strictly speaking, Rie-
mann normal coordinates are two-point invariants, since they depend on the two points
P and X ∈ D which are connected by a unique geodesic.

Riemann normal coordinates are not uniquely defined by eq. (C.8). Indeed, they
crucially depend on the choice of the particular tetrad at the origin P as illustrated in
fig. 20. The two pictures represent two examples of Riemann normal coordinates with
the same origin P resulting from two different tetrads. The tetrad eµ(α) in the left picture
of fig. 20 corresponds to the tetrad shown on the left of fig. 18, and in analogy the tetrad
in the right picture of fig. 20 coincides with the tetrads e′µ(α) on the right of fig. 18. In
both pictures of fig. 20 we have indicated some “coordinate axes” x(α) and x′(α) which
are just the geodesics resulting from the initial point P with initial tangent vectors eµ(α)

and e′µ(α), respectively. Both sets of Riemann normal coordinates are connected to each
other by a corresponding Lorentz transformation matrix.

Before we turn to the expansion of the metric coefficients in Riemann normal coor-
dinates, we briefly address the range of validity of Riemann normal coordinates. Due

(13) We admit that the notation used in appendix B
.
1 might be misleading, since it suggests the

relation xµ = eµ(α)x
(α) which does not hold true. This is due to the fact that the coordinates

xµ label points in the manifold, whereas the tetrad vectors eµ(α) are elements of the tangent
space at the point xµ. Indeed, the superscript µ has two completely different meanings de-
pending on the left or right hand side of the previous expression. The possible confusion in the
notation originates from the desire to denote the new coordinates by the letter x(α), and not
by (vλ)(α) = e (α)

µ (vλ)µ as would be self-evident according to appendix B
.
1. Equation (C.9)

displays the correct relation between both sets of coordinates.
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to the fact, that according to eq. (B.10) the coordinate transformation (C.9) possesses a
non-vanishing Jacobian determinant

det
(
∂xµ

∂x(α)

) ∣∣∣∣
P

= det
(
eµ(α)

)
=

1√
−g
6= 0 ,

there exists a sufficiently small region around P such, that the coordinate transforma-
tion (C.9) can be inverted. As already pointed out in the beginning of this subsection,
Riemann normal coordinates are thus defined only in a domain D around P , in which it
is possible to connect any point X in D by a unique geodesic with P , such that there
exists a one-to-one correspondence between the scaled, initial tangent vµλ and X.

There exist several scenarios which are responsible for the restriction of Riemann
normal coordinates to the domain D. For example, it might happen that two geodesics,
which emanate from P with different initial tangent vectors, intersect in some point
Y /∈ D due to the curvature of the underlying spacetime. It could also happen, that a
geodesic emerging from P encounters a singularity S /∈ D of the metric. Or the geodesic
could be bent by the intrinsic rotation of the spacetime in such a way, that it propagates
only within a finite spatial region around P . This situation occurs in e. g. Gödel’s
Universe.

C.2.2. Metric coefficients. With the help of Riemann normal coordinates the laws of
nature reduce to their special relativistic form in the neighborhood of any fixed event P .
It is our aim to substantiate this statement by considering the expansion

(C.10) g(µν)(x(σ)) = g(µν)(0) +
∞∑
n=1

1
n!
g(µν),(α1),...,(αn)(0)x(α1) · . . . · x(αn)

of the metric coefficients g(µν)(x(σ)) expressed in Riemann normal coordinates around
the origin p(µ) = 0.

Zeroth-order term. The zeroth-order term g(µν)(0) can easily be found using the trans-
formation law of the metric coefficients for the coordinate transformation (C.9) at P
together with the orthonormality condition (B.1), which yields

(C.11) g(µν)(0) =
∂xα

∂x(µ)

∣∣∣∣
P

∂xβ

∂x(ν)

∣∣∣∣
P

gαβ(pσ) = eα(µ) e
β
(ν) gαβ(pσ) = η(µν) .

First-order term. In order to obtain the higher order terms of the expansion we consider
the geodesic equation (C.1) together with the corresponding initial conditions (C.2), but
now expressed in Riemann normal coordinates, that is

(C.12)
d2x(µ)

dλ2
+ Γ(µ)

(α)(β)(x
(σ))

dx(α)

dλ
dx(β)

dλ
= 0 , x(µ)(0) = 0 and

dx(µ)(0)
dλ

= v(µ) .

In complete analogy to eq. (C.7) we can find the formal solution

(C.13) x(µ)(λ) = v(µ)λ−
∞∑
n=2

Γ(µ)
(α1)...(αn)(0) v(α1) · . . . · v(αn) λ

n

n!
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of the geodesic equation in Riemann normal coordinates. Here the quantities Γ(µ)
(α1)...(αn)

are defined again in complete analogy to eq. (C.5) with Γ(µ)

(α)(β) denoting the Christoffel
symbols in Riemann normal coordinates.

However, it is now important to realize, that the formal solution was already given
by eq. (C.7) in terms of the original coordinates xµ. This formal expression was then
used in connection with eq. (C.8) to establish the transformation law (C.9) between the
original and the Riemann normal coordinates. Therefore, the solution of the geodesic
equation (C.12) reads

x(µ)(λ) = e (µ)
α vα λ = v(µ) λ .

Since the formal solution (C.13) has to match the last equation for all possible values
λ > 0 and all possible tangent vectors v(µ), we conclude that the quantities Γ(µ)

(α1)...(αn)

have to satisfy the condition

(C.14) Γ(µ)

{(α1)...(αn)}(0) = 0 ∀ n ≥ 2

at P . Here we used the symmetrization brackets (A.5).
Since the Christoffel symbols Γ(µ)

(α)(β) are symmetric in their lower indices, the condi-
tion (C.14) implies for n = 2 at P

(C.15) Γ(µ)

(α)(β)(0) = 0 .

This relation brings out another interesting feature of Riemann normal coordinates:
The covariant derivative of any tensor field reduces to the ordinary partial derivative
at the point P . Moreover, since the covariant derivative of the metric always vanishes
g(µν);(α) = 0, we obtain with eq. (C.15) at P the identity

(C.16) g(µν),(α)(0) = 0 .

Hence, all first partial derivatives of the metric vanish at P in Riemann normal coordi-
nates.

Second- and third-order terms. Equation (C.11) together with eq. (C.16) provide the
bedrock of local inertial coordinates: Coordinates in which the metric reduces to its
Minkowski form g(µν)(0) = η(µν) at a spacetime point P , while the first partial derivatives
g(µν),(α) vanish at P , are called local inertial coordinates.

However, the second and the higher partial derivatives of the metric do not vanish at
P , but they can be expressed in terms of the curvature tensor and its higher covariant
derivatives. Here, we are solely interested in the second and third order terms.

We start by drawing the connection between the symmetrized coefficients of the second
and third partial derivatives g(µν){,(α1),(α2)}(0) and g(µν){,(α1),(α2),(α3)}(0), which appear
in eq. (C.10), and the derivatives of the Christoffel symbols. For the second partial
derivative we explicitly evaluate the vanishing second covariant derivative of the metric
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tensor g(µν);(α1);(α2) = 0 at P . This procedure yields with eq. (C.15) the expression

0 = g(µν);(α1);(α2)(0) = (g(µν);(α1)),(α2)

∣∣
P

(C.17)

= g(µν),(α1),(α2)(0)− Γ(ρ)
(µ)(α1),(α2)(0) g(ρν)(0)− Γ(ρ)

(ν)(α1),(α2)(0) g(µρ)(0) .

An analogous expansion of the vanishing third covariant derivative g(µν);(α1);(α2);(α3) = 0
leads after application of eqs. (C.15) and (C.16) and the fact, that all covariant derivatives
of the metric components are zero, to the relation

g(µν),(α1),(α2),(α3)(0)− Γ(ρ)
(µ)(α1),(α2),(α3)(0) g(ρν)(0)− Γ(ρ)

(ν)(α1),(α2),(α3)(0) g(µρ)(0) = 0 .

Thus, the symmetrized second and third partial derivatives of the metric coefficients at
P can be expressed in terms of the Christoffel symbols according to

(C.18) g(µν){,(α1),(α2)}(0) = g(ρν)(0) Γ(ρ)
(µ){(α1),(α2)}(0) + g(µρ)(0) Γ(ρ)

(ν){(α1),(α2)}(0)

and

g(µν){,(α1),(α2),(α3)}(0) =(C.19)

g(µρ)(0) Γ(ρ)
(ν){(α1),(α2),(α3)}(0) + g(ρν)(0) Γ(ρ)

(µ){(α1),(α2),(α3)}(0) .

On the other hand, the curvature tensor (A.1) and its first covariant derivative reduce
in Riemann normal coordinates to the simple form

(C.20) R(ρ)
(α1)(α2)(α3)(0) = Γ(ρ)

(α1)(α3),(α2)(0)− Γ(ρ)
(α1)(α2),(α3)(0)

and

(C.21) R(ρ)
(α1)(α2)(α3);(α4)(0) = Γ(ρ)

(α1)(α3),(α2),(α4)(0)− Γ(ρ)
(α1)(α2),(α3),(α4)(0)

at the spacetime point P . The remaining task is to express the first and the second
derivative of the Christoffel symbols which appear on the right hand side of eqs. (C.18)
and (C.19) in terms of the curvature tensor and its first covariant derivative at P . For
this purpose, we first cast condition (C.14) for n = 3 and n = 4 in a more useful form
and replace the quantities Γ(ρ)

(α1)(α2)(α3) and Γ(ρ)
(α1)(α2)(α3)(α4) in terms of their recursive

definitions (C.5). Together with eq. (C.15), we thus arrive at the relations

Γ(ρ)
{(α1)(α2)(α3)}(0) = Γ(ρ)

{(α1)(α2),(α3)}(0) = 0(C.22)

and

Γ(ρ)
{(α1)(α2)(α3)(α4)}(0) = Γ(ρ)

{(α1)(α2),(α3),(α4)}(0) = 0 .(C.23)

Using the symmetrization symbol, eq. (A.7), it is not difficult to show, that eq. (C.22) is
equivalent to the expression

1
3

Symm
(α1α2)

[
Γ(ρ)

(α1)(α2),(α3)(0) + Γ(ρ)
(α1)(α3),(α2)(0) + Γ(ρ)

(α3)(α1),(α2)(0)
]

= 0 ,
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which reduces due to the symmetry of the Christoffel symbol in its lower indices to the
identity

(C.24) Γ(ρ)
{(α1)(α2)},(α3)

(0) = −2 Γ(ρ)
(α3){(α1),(α2)}(0) .

In complete analogy, we first rewrite eq. (C.23) in terms of the symmetrization symbol

1
4

Symm
(α1α2α4)

[
Γ(ρ)

(α1)(α2),(α3),(α4)(0) + Γ(ρ)
(α1)(α2),(α4),(α3)(0)

]
+

1
4

Symm
(α1α2α4)

[
Γ(ρ)

(α3)(α1),(α2),(α4)(0) + Γ(ρ)
(α1)(α3),(α2),(α4)(0)

]
= 0 ,

and use Γ(ρ)
(α1)(α2),(α3),(α4) = Γ(ρ)

(α1)(α2),(α4),(α3), as well as the symmetry in the lower indices
of the Christoffel symbols, to finally arrive at

(C.25) Γ(ρ)
{(α1)(α2),(α4)},(α3)

(0) = −Γ(ρ)
(α3){(α1),(α2),(α4)}(0) .

Hence, applying the symmetrization symbol with respect to the indices (α1, α2) to
eq. (C.20) and with respect to the indices (α1, α2, α4) to eq. (C.21), we find with the
help of eqs. (C.24) and (C.25) the identities

Γ(ρ)
(α3){(α1),(α2)}(0) =

1
3

Symm
(α1α2)

[
R(ρ)

(α1)(α2)(α3)(0)
]

(C.26)

and

Γ(ρ)
(α3){(α1),(α2),(α4)}(0) =

1
2

Symm
(α1α2α4)

[
R(ρ)

(α1)(α2)(α3);(α4)(0)
]
.(C.27)

Thus, we have accomplished our task to express the symmetrized first and second deriva-
tive of the Christoffel symbols in terms of the curvature tensor and its first covariant
derivative at P . We now insert the last two expressions into eqs. (C.18) and (C.19) and
obtain

g(µν){,(α1),(α2)}(0) =
2
3

Symm
(α1α2)

[R(µ)(α1)(α2)(ν)(0) ](C.28)

and

g(µν){,(α1),(α2),(α3)}(0) = Symm
(α1α2α3)

[R(µ)(α1)(α2)(ν);(α3)(0) ] ,(C.29)

where we have used the symmetries of the curvature tensor (A.2).
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C.2.3. Summary. In conclusion, we insert the results (C.11), (C.16), (C.28) and (C.29)
into the expansion (C.10) of the metric in Riemann normal coordinates and obtain up
to third order

g(µν)(x(σ)) = η(µν) +
1
3
R(µ)(α1)(α2)(ν)(0)x(α1)x(α2)(C.30)

+
1
6
R(µ)(α1)(α2)(ν);(α3)(0)x(α1)x(α2)x(α3) +O((x(α))4) .

We emphasize that the preceding derivation is based on the recursive determination
of the expansion coefficients of arbitrary tensors in Riemann normal coordinates given
in [64, 65]. Moreover, some of the higher order contributions to the expansion of the
metric can be found there.

In summary, Riemann normal coordinates provide local inertial coordinates around a
fixed spacetime point P , where the curvature of the underlying spacetime appears in the
second and higher orders of the expansion of the metric coefficients. However, Riemann
normal coordinates neither represent appropriate coordinates for the description of a
freely falling inertial observer, nor for the more general case of an arbitrarily rotating
observer which moves along any world line. Nevertheless, our inspection of Riemann
normal coordinates provides a solid basis for the discussion of the so-called proper ref-
erence frames, which represent appropriate local coordinates for such arbitrarily moving
observers.

C.3. Local coordinates of a proper reference frame. – The basic ingredients and the
geometrical concepts behind the definition of proper reference frame coordinates were
already given in subsect. 3.2. Nevertheless, we want to recall their definition in a more
explicit and formal manner in the beginning of this subsection, thereby bringing forward
the analogies and differences to Riemann normal coordinates. We then proceed with the
analysis of the metric expansion around the world line of an accelerating and rotating
observer and utilize the same techniques which were previously used in the derivation
of eq. (C.30). We close by giving an approximate solution of the geodesic equation
in proper reference frame coordinates which is valid in the local neighborhood of the
observer’s world line.

C.3.1. Definition. The construction of proper reference frame coordinates is primarily
based on the world line pµ(τ) of the accelerating and rotating observer with four-velocity
uµ(τ) and four-acceleration aµ(τ). Furthermore, the observer carries with him a tetrad
eµ(α)(τ) in order to distinguish different spatial directions in his rest frame. This tetrad
satisfies the relativistic orthonormality condition (11) and the proper transport eq. (12)
along pµ(τ). The local coordinates of the proper reference frame are then established as
follows: draw a spacelike geodesic xµ = xµ(τ, vσs) from a point pµ(τ) on the world line
to a point xµ in its neighborhood in such a way, that the initial tangent vector vµ(τ)
is orthogonal to the four-velocity uµ(τ) at the initial point pµ(τ). This construction
is indicated in fig. 3 for the initial point P1 with coordinate values pµ(τ1). Within a
sufficiently small region around the world line pµ(τ), this definition guarantees a one-to-
one correspondence between the original coordinate values xµ and the local coordinates
represented by the arclength s and the initial direction of the spacelike geodesic together
with the proper time τ , that corresponds to the initial point pµ(τ).

In order to substantiate the connection between the original and the local coordinates,
we once more take advantage of the formal solution of the geodesic equation presented
in appendix C.1. However, this time we consider the spacelike geodesic xµ = xµ(τ, vσs).
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We start from the geodesic equation

(C.31)
d2xµ

ds2
+ Γµαβ(xσ)

dxα

ds
dxβ

ds
= 0 .

In contrast to Riemann normal coordinates, the initial conditions

(C.32) xµ(τ, 0) = pµ(τ) and
d
ds
xµ(τ, 0) = vµ(τ) = v(i)(τ) eµ(i)(τ)

for the spacelike geodesic now depend explicitly on the proper time τ of the observer.
The orthogonality relation

(C.33) vµ(τ)uµ(τ) = 0 ,

between the initial tangent vector vµ(τ) and the four-velocity uµ(τ) = c eµ(0)(τ) of the
observer is automatically satisfied by its tetrad decomposition vµ(τ) = v(i)(τ) eµ(i)(τ).
Moreover, we assume without loss of generality that the tetrad components of the initial
tangent vector are normalized, that is

(v(1)(τ))2 + (v(2)(τ))2 + (v(3)(τ))2 = 1 .

The quantities v(i) just characterize the initial direction in which the spacelike geodesic
emanates from pµ(τ).

Hence, the formal solution (C.7) of the geodesic equation (C.31) reads with eq. (C.32)

(C.34) xµ(τ, vσs) = pµ(τ) + vµ(τ) s−
∞∑
n=2

Γµα1...αn(pσ(τ)) vα1(τ) · . . . · vαn(τ)
sn

n!
.

According to subsect. 3.2, the local coordinates(14) of the proper reference frame x(α)

are given by the proper time τ of the observer located at pµ(τ), the spatial direction v(i)

of the outgoing spacelike geodesic, and the value of the arclength s corresponding to the
spacetime point xµ. In particular, they are established by the relations

(C.35)
τ = x(0)/c or x(0) = c τ

vµ(τ) s = eµ(i)(τ) x(i) x(i) = e (i)
µ (τ) vµ(τ) s = v(i) s .

Our notation might suggest that the time coordinate x(0) = c τ is a tetrad component.
However, this is not the case – it is simply a scalar that is proportional to the proper
time of the observer. Nevertheless, our notation proves to be useful in pointing out the
analogies to Riemann normal coordinates. On the other hand the spatial coordinates x(i)

are real tetrad indices coming from the scaled initial tangent vector vµ(τ) s, which itself

(14) We characterize both proper reference frame coordinates and Riemann normal coordinates
by superscripts in parenthesis. In this way we want to highlight the analogies between both sets
of coordinates. However, throughout this article the symbol x(α) denotes proper reference frame
coordinates. The only exception is appendix C

.
2.
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is an element of the three-dimensional spacelike hypersurface of the tangent space that
is orthogonal to the four-velocity uµ(τ) at pµ(τ).

With this definition at hand, the connection between both sets of coordinates is simply
established by inserting (C.35) into the formal solution (C.34) of the geodesic equation,
that is

xµ(x(σ)) = pµ
(
x(0)

c

)
+ eµ(i)

(
x(0)

c

)
x(i)(C.36)

−
∞∑
n=2

1
n!

Γµν1...νn
(
pσ
(
x(0)

c

))
eν1(i1)

(
x(0)

c

)
· . . . · eνn(in)

(
x(0)

c

)
x(i1) · . . . · x(in) .

As a consequence of eq. (C.35), the world line of the observer reads p(µ)(τ) = (cτ, 0, 0, 0)
when expressed in proper reference frame coordinates, with the origin p(i) = 0 in the
spatial subspace simply corresponding to the arclength s = 0.

That proper reference frame coordinates are indeed valid within a sufficiently small
region around the world line p(σ)(τ) can be verified with the Jacobi determinant. Making
use of (C.36) we find for the transformation matrix along the world line p(σ)(τ)

(C.37)
∂xµ

∂x(α)

∣∣∣
p(σ)(τ)

= eµ(α)(τ) .

We have already discussed the determinant of a given tetrad in the context of Riemann
normal coordinates. In analogy to the result given there, we conclude with the help of
eq. (B.10) that

(C.38) det
(
∂xµ

∂x(α)

) ∣∣∣
p(σ)(τ)

= det
(
eµ(α)(τ)

)
=

1√
−g

∣∣∣
pσ(τ)

6= 0 ,

which proves the validity of the proper reference frame coordinates within a sufficiently
small region around the world line of the observer.

C.3.2. Metric . We now come to the determination of the power-series expansion of
the metric coefficients in proper reference frame coordinates up to second order around
the world line p(σ)(τ) of the observer. Before we begin, we mention, that the second- and
third-order contributions were already determined by [72,73] and [74,76], respectively(15).
In the case of a weak gravitational field, all orders of the power-series were investigated
by [75].

The metric expansion enables us, to estimate the main physical effects which arise
from the acceleration and rotation of the observer, as well as from the curvature of space-
time in the spatial neighborhood of his world line. In order to shorten the notation, we
omit the explicit time dependence of p(σ)(τ) and simply write p(σ) henceforth. However,
it should be kept in mind that p(σ) represents the world line of the observer.

We start the derivation by providing the spatial power-series expansion

(C.39) g(µν)(x(σ)) = g(µν)(p(σ)) +
∞∑
n=1

1
n!
g(µν),(i1),...,(in)(p(σ))x(i1) · . . . · x(in)

(15) The third-order contributions in [74] and [76] differ from each other and should therefore
be considered with caution.
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of the metric around the observer’s world line p(σ). Since we use the spatial tetrad indices
x(i) of the scaled initial tangent vector vµ(τ) s as expansion parameters, the power-
series (C.39) solely applies to the spatial subspace of the tangent space at p(σ)(τ), that is
orthogonal to the four-velocity u(µ)(τ). This ansatz is in contrast to the corresponding
expansion (C.10) for Riemann normal coordinates.

Zeroth-order term. According to the transformation matrix (C.37), the zeroth-order co-
efficients of the metric expansion read

(C.40) g(µν)(p(σ)) =
∂xα

∂x(µ)

∣∣∣∣
p(σ)

∂xβ

∂x(ν)

∣∣∣∣
p(σ)

gαβ(pσ) = eα(µ)(τ) eβ(ν)(τ) gαβ(pσ) = η(µν) ,

and they are given by the metric of flat Minkowski spacetime, in complete analogy to
Riemann normal coordinates.

Determination of higher-order terms. However, the first- and second-order contributions
will differ from the corresponding expressions in Riemann normal coordinates. They can
be derived most conveniently in two steps:

(i) The purely spatial components g(jk),(i1)(p(σ)) and g(jk){,(i1),(i2)}(p(σ)) follow in anal-
ogy to the results (C.16) and (C.28) for Riemann normal coordinates.

(ii) The remaining components g(0ν),(i1)(p(σ)) and g(0ν){,(i1),(i2)}(p(σ)) are found by
making use of the proper transport, eq. (12), expressed in proper reference frame coor-
dinates.

We start by reformulating the geodesic eq. (C.31)

(C.41)
d2x(µ)

ds2
+ Γ(µ)

(α)(β)(x
(σ))

dx(α)

ds
dx(β)

ds
= 0 ,

as well as the corresponding initial conditions (C.32)

x(µ)(τ, 0) = p(µ)(τ) = (cτ, 0, 0, 0) and
d
ds
x(µ)(τ, 0) = v(µ)(τ)

in proper reference frame coordinates. With the help of eq. (C.37), the vector components
v(µ) follow from the transformation law of vectors and are thus in agreement with the
tetrad components of vµ(τ), eq. (C.32). In particular, we find from eq. (C.33) for the
zeroth component

(C.42) v(0) = e (0)
µ vµ = 0 .

These considerations enable us to rewrite the formal solution (C.7) of the geodesic
equation in terms of proper reference frame coordinates

(C.43) x(µ)(τ, v(r)s) = p(µ)(τ) + v(µ)(τ) s−
∞∑
n=2

Γ(µ)

(i1)...(in)(p
(σ)) v(i1)(τ) · . . . · v(in)(τ)

sn

n!
.
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As for Riemann normal coordinates, the exact solution of the geodesic eq. (C.41) is
already known by construction. Indeed, according to the definition (C.35) of proper
reference frame coordinates, it is given by the straight line

x(0)(τ, v(r)s) = c τ ,(C.44)

x(i)(τ, v(r)s) = v(i)(τ) s .

However, the formal solution (C.43) and the exact expression (C.44) coincide for all
values of the curve parameter s and all initial tangent vectors v(i) only if

(C.45) Γ(µ)

{(i1)...(in)}(p
(σ)) = 0 ∀ τ ∈ R and ∀ n ≥ 2 .

Unlike the constraints (C.14) for Riemann normal coordinates, eq. (C.45) provides just
a necessary condition for the quantities Γ(µ)

(i1)...(in)(p
(σ)) with spatial lower indices. More-

over, expressions with zero indices, such as Γ(µ)

(i1)(0)(p
(σ)), are not covered by eq. (C.45) at

all. Therefore, we cannot expect to establish all metric coefficients with the help of (C.45),
but we obtain at least the spatial coefficients g(jk),(i1)(p(σ)) and g(jk),{(i1),(i2)}(p(σ)).

First-order terms. The first-order contributions can be derived without much effort by
taking advantage of eq. (C.45) for the special case n = 2, which yields

(C.46) Γ(µ)
(i1)(i2)(p

(σ)) = 0 .

By using g(jk);(i1) = 0 once more, we realize that these spatial contributions vanish,

(C.47) g(jk),(i1)(p(σ)) = Γ(ρ)
(j)(i1)(p

(σ)) g(ρk)(p(σ)) + Γ(ρ)
(k)(i1)(p

(σ)) g(jρ)(p(σ)) = 0 ,

as they did for Riemann normal coordinates.

Second-order terms. The similarity between (C.14) and (C.45) also plays a crucial role
in the determination of the second-order coefficients g(jk),{(i1),(i2)}(p(σ)). Indeed, when
we express them in terms of the first partial derivatives of the Christoffel symbols – in
analogy to eq. (C.18) – we find with eq. (C.46) the relation

g(jk){,(i1),(i2)}(p(σ)) = g(ρk)(p(σ)) Γ(ρ)
(j){(i1),(i2)}(p

(σ)) + g(jρ)(p(σ)) Γ(ρ)
(k){(i1),(i2)}(p

(ρ)) .

It is interesting to note, that we can formally establish this result by replacing the indices
in the identity (C.18) according to (µ)→ (j), (ν)→ (k), (α1)→ (i1) and (α2)→ (i2).
Moreover, we can apply this substitution law also to eqs. (C.20), (C.22) and (C.24),
since the underlying calculations are similar to the Riemann normal coordinate case. In
particular, we obtain from eq. (C.26) the expression

(C.48) Γ(ρ)
(i3){(i1),(i2)}(p

(σ)) =
1
3

Symm
(i1i2)

[
R(ρ)

(i1)(i2)(i3)(p
(σ))

]
.
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These considerations directly aim at the index substitution of eq. (C.28), which results
in the expression

(C.49) g(jk){,(i1),(i2)}(p(σ)) =
2
3

Symm
(i1i2)

[R(j)(i1)(i2)(k)(p(σ)) ] .

for the spatial components of the second-order contribution.

Proper transport in local coordinates. So far, we have provided all spatial components
of the metric coefficients up to second order in proper reference frame coordinates. The
starting point of their derivation was the formal solution of the geodesic equation (C.43)
in combination with the exact solution (C.44). From a comparison of both expressions,
we have obtained eq. (C.45), which made the spatial components of the metric expansion
available to us. Motivated by this idea, we start our search for the remaining coefficients
by rewriting the proper transport, eq. (12), in the local coordinates of the proper reference
frame which yields

(C.50) e(µ)
(α);(ν) u

(ν) = −Ω(µ)
(ν) e

(ν)
(α)

with

(C.51) Ω(µν) = − 1
c2

(a(µ)u(ν) − a(ν)u(µ)) +
1
c
u(ρ) ω(σ) ε(ρσµν) .

At this point, we unfortunately encounter conceptional problems in our notation which
reveal themselves in the additionally underlined lower tetrad indices. The reason for this
problem are the different interpretations associated with the superscript and subscript of
the tetrad e(µ)

(α). It is important to bear in mind that the superscript (µ) denotes a tensor
index, whereas the subscript (α) just labels the individual tetrad vectors, as discussed in
appendix B.1. This distinction is especially important for the covariant derivative

e(µ)
(α);(ν) = e(µ)

(α),(ν) + Γ(µ)
(ρ)(ν) e

(ρ)
(α) ,

where the only relevant index is (µ), and not the subscript (α). For this purpose, we un-
derline the indices which should be ignored when taking covariant derivatives. However,
we will silently drop this notation as soon as the distinction between tensor and tetrad
indices is of no further importance in the calculations.

Coming back to eq. (C.50), we observe that with the inverse of the transformation
matrix (C.37), the tetrad components read in local coordinates along p(σ)(τ)

(C.52) e(µ)
(α)(τ) =

∂x(µ)

∂xν

∣∣∣
p(σ)(τ)

eν(α)(τ) = e (µ)
ν (τ) eν(α)(τ) = δ(µ)

(α) .

This result demonstrates that the orthogonal tetrad vectors e(µ)
(α)(τ) remain fixed along

their directions, when expressed in the adapted coordinates of the proper reference frame.
When we insert the last equation into the left hand side of the proper transport law

(C.50), we find with u(ν) = c e(ν)
(0) = c δ(ν)

(0) the relation

e(µ)
(α);(ν) u

(ν)
∣∣
p(σ) =

d
dτ
e(µ)

(α) + Γ(µ)
(ρ)(ν)(p(σ)) e(ρ)

(α)(τ)u(ν)(τ) = cΓ(µ)
(α)(0)(p

(σ)) .
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Substitution of eq. (C.52) into eq. (C.50) thus provides the expression

(C.53) Γ(µ)
(α)(0)(p

(σ)) = −1
c

Ω(µ)
(α)(τ)

for the missing components of the Christoffel symbols along p(σ)(τ). It is possible to
combine the results (C.46) and (C.53) in a single equation by taking advantage of the
identity

Γ(ρ)
(µ)(ν)(p(σ)) = η(0µ) Γ(ρ)

(0)(ν)(p
(σ)) + η(0ν) Γ(ρ)

(µ)(0)(p
(σ))− η(0µ) η(0ν) Γ(ρ)

(0)(0)(p
(σ)) .

Substitution of eq. (C.53) into the last equation thus yields

(C.54) Γ(ρ)
(µ)(ν)(p(σ)) = −1

c

(
η(0µ) Ω(ρ)

(ν) + η(0ν) Ω(ρ)
(µ) − η(0µ) η(0ν) Ω(ρ)

(0)

)
.

Remaining first-order terms. Being equipped with this identity, it is not difficult to find
the remaining first-order contributions to the metric expansion. Once more we make use
of the vanishing covariant derivative of the metric, g(0ν);(i1) = 0, which then leads us to
the analog of eq. (C.47), that is

g(0ν),(i1)(p(σ)) = Γ(ρ)
(0)(i1)(p

(σ)) g(ρν)(p(σ)) + Γ(ρ)
(ν)(i1)(p

(σ)) g(0ρ)(p(σ)) .

By inserting the zeroth-order term (C.40) and the Christoffel symbols (C.54) along the
world line, we arrive at the remaining first-order terms

(C.55) g(0ν),(i1)(p(σ)) = −1
c

(η(νρ) + η(0ν)η(0ρ)) Ω(ρ)
(i1) .

Again, it is possible to combine this expression with the spatial components of the first-
order term, eq. (C.47). In analogy to the treatment of the Christoffel symbols given
above, we make use of the relation

g(µν),(i1)(p(σ)) = η(0µ) g(0ν),(i1)(p(σ)) + η(0ν) g(µ0),(i1)(p(σ))− η(0µ) η(0ν) g(00),(i1)(p(σ))

in order to establish the general expression

(C.56) g(µν),(i1)(p(σ)) = −1
c

(η(0µ) Ω(νi1) + η(0ν) Ω(µi1))

for the first-order contribution by making use of eq. (C.55).

Remaining second-order terms. Hence, we are left with the determination of the remain-
ing second-order contributions g(0ν) {,(i1),(i2)}(p(σ)), which we now express in terms of the
first derivatives of the Christoffel symbols. For this purpose, we translate the arguments
associated with eq. (C.17) to the present case, and obtain

g(0ν){,(i1),(i2)}(p(σ)) = Γ(ρ)
(0){(i1),(i2)}(p

(σ)) η(ρν) + Γ(ρ)
(ν){(i1),(i2)}(p

(σ)) η(0ρ)(C.57)

+ S(ν)(i1i2)
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where we have introduced the abbreviation

S(ν)(i1i2) ≡ Symm
(i1i2)

[
Γ(ρ)

(0)(i1)(p
(σ)) g(ρν),(i2)(p(σ)) + Γ(ρ)

(ν)(i1)(p
(σ)) g(0ρ),(i2)(p(σ))

]
.

Now it is most convenient to treat the different terms which appear on the right hand
side separately. We start with the term S(ν)(i1i2) since it contains only quantities that
have been worked out so far. Inserting eqs. (C.54) and (C.56) into it, a straight forward
calculation shows that

S(ν)(i1i2) =
1
c2

Symm
(i1i2)

[
Ω(0i1)Ω(νi2) + η(0ν)

(
Ω(0i1)Ω(0i2) + 2 Ω(ρ)

(i1)Ω(ρ i2)

) ]
.(C.58)

Next, we consider the first term on the right hand side of eq. (C.57), which can be
found by the following argument: since the spatial components of the Christoffel symbols
vanish for all p(σ)(τ), eq. (C.46), their first partial derivative with respect to x(0) = c τ
does also vanish, that is

(C.59) Γ(ρ)
(i1)(i2),(0)(p

(σ)) = 0 .

Moreover, recalling the definition (A.1) of the curvature tensor, we obtain

R(ρ)
(i1)(i2)(0)(p

(σ)) =
[
Γ(ρ)

(i1)(0),(i2) − Γ(ρ)
(i1)(i2),(0) + Γ(ρ)

(µ)(i2)Γ
(µ)
(i1)(0) − Γ(ρ)

(µ)(0)Γ
(µ)
(i1)(i2)

] ∣∣
p(σ) .

We solve this last equation for the unknown term Γ(ρ)
(i1)(0),(i2) and arrive with the help of

eqs. (C.54) and (C.59) after some algebra at

Γ(ρ)
(i1)(0),(i2)(p

(σ)) = R(ρ)
(i1)(i2)(0)(p

(σ))− 1
c2

Ω(0i1)Ω
(ρ)
(i2) .

Symmetrization with respect to the indices (i1) and (i2) of the last expression thus leads
us to the first term on the right hand side of eq. (C.57)

(C.60) Γ(ρ)
(0){(i1),(i2)}(p

(σ)) η(ρν) = Symm
(i1i2)

[
R(ν)(i1)(i2)(0)(p(σ))− 1

c2
Ω(0i1)Ω(νi2)

]
.

Finally, there is only one term left to be found, namely the second contribution on the
right hand side of eq. (C.57). It is most suitable here to consider the cases (ν) = (0) and
(ν) = (k) separately. For (ν) = (0) we encounter the pleasant situation, that the missing
term follows as a special case from eq. (C.60) leading us to the expression

(C.61) Γ(ρ)
(0){(i1),(i2)}(p

(σ)) η(0ρ) = Symm
(i1i2)

[
R(0)(i1)(i2)(0)(p(σ))− 1

c2
Ω(0i1)Ω(0i2)

]
.

For (ν) = (k) we can take advantage of the identity (C.48) to arrive at

(C.62) Γ(ρ)
(k){(i1),(i2)}(p

(σ)) η(0ρ) =
1
3

Symm
(i1i2)

[R(0)(i1)(i2)(k)(p(σ)) ] .
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With these results at hand, we are finally able to obtain the remaining second-order
contributions. Combining eqs. (C.58), (C.60), and (C.61) for (ν) = (0) yields

(C.63) g(00){,(i1),(i2)}(p(σ)) = 2 Symm
(i1i2)

[
R(0)(i1)(i2)(0)(p(σ)) +

1
c2

Ω(ρ)
(i1)Ω(ρ i2)

]
.

In accordance, we add up eqs. (C.58), (C.60), and (C.62) for (ν) = (k), and use the
symmetry properties of the curvature tensor, eq. (A.2), to obtain

(C.64) g(0k){,(i1),(i2)}(p(σ)) =
4
3

Symm
(i1i2)

[R(0)(i1)(i2)(k)(p(σ)) ] .

Summary . Thus, we have found all coefficients of the metric expansion up to second order,
and again, it is most convenient to summarize them separately for the metric coefficients
g(00)(x(σ)), g(0k)(x(σ)) and g(jk)(x(σ)). Inserting the results (C.40), (C.47), (C.49), (C.56),
(C.63) and (C.64) into the power-series (C.39), we obtain the metric coefficients

g(00)(x(σ)) = 1− 2
c

Ω(0i1)x
(i1) +

(
R(0)(i1)(i2)(0)(p(σ))(C.65)

+
1
c2

Ω(ρ)
(i1)Ω(ρ i2)

)
x(i1)x(i2) +O(x3) ,

g(0k)(x(σ)) =− 1
c

Ω(ki1)x
(i1) +

2
3
R(0)(i1)(i2)(k)(p(σ))x(i1)x(i2) +O(x3) ,

g(jk)(x(σ)) =− δ(jk) +
1
3
R(j)(i1)(i2)(k)(p(σ))x(i1)x(i2) +O(x3)

in proper reference frame coordinates.
We close this appendix with an explicit expression for the transport matrix Ω(µν)(τ),

eq. (C.51), in proper reference frame coordinates. According to the transformation ma-
trix (C.37), we obtain for the components of the four-velocity u(µ)(τ) and the four-
acceleration a(µ)(τ) the following constraints

u(µ) = c e(µ)
(0) = c δ(µ)

(0) and a(0) = eµ(0) aµ =
1
c
uµaµ = 0 ,

where we made use of eq. (A.25) in the last step of a(0).
Moreover, we know from appendix B.2 and in particular from eq. (B.33) that the

four-vector ω(µ)(τ), which characterizes the rotation of the tetrad along the world line,
has a vanishing zeroth component in proper reference frame coordinates, that is ω(0) = 0.
Thus, we end up with the matrix

Ω(µν) = −1
c

(a(µ)η(ν0) − a(ν)η(µ0)) + ε(0pµν) ω
(p) ,

in analogy to the tetrad form of the transport matrix, eq. (B.34). With this explicit
expression at hand, we can now show without much effort that

Ω(ρ)
(i1)Ω(ρ i2) =

1
c2
a(i1)a(i2) + ω(i1)ω(i2) − ω(l)ω(l) η(i1i2) .
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Insertion of these last two results in the power-series (C.65) finally yields the individual
coefficients, eq. (16), for the metric expansion in proper reference frame coordinates.

C.3.3. Approximate solution of the geodesic equation. We now briefly sketch how to
arrive at an approximate formula for arbitrary geodesics in the spatial neighborhood of
the observer’s world line p(µ)(τ) = (cτ, 0, 0, 0). We thereby take advantage of the deriva-
tion of the metric expansion up to second order presented in the preceding subsect. C.3.2.
Our construction of the approximate geodesics will have the same level of accuracy as
the metric expansion, eq. (C.65).

We start by recalling the geodesic equation

(C.66)
d2x(µ)

dλ2
+ Γ(µ)

(α)(β)(x
(σ))

dx(α)

dλ
dx(β)

dλ
= 0

in proper reference frame coordinates. Again, we suppose that the geodesics start from
the world line of the observer, but now with an arbitrarily directed initial tangent vector,
giving rise to the initial conditions

x(µ)(τ, 0) = p(µ)(τ) = (cτ, 0, 0, 0) and
d

dλ
x(µ)(τ, 0) = v(µ)(τ) .

In contrast to the spacelike geodesics used in subsect. C.3.2 which satisfy the condi-
tion (C.42), the geodesics considered in the present discussion do not have any restrictions
concerning the directions of their initial tangents. Here, we simply require

(v(0)(τ))2 + (v(1)(τ))2 + (v(2)(τ))2 + (v(3)(τ))2 = 1 .

Hence, we allow for timelike, spacelike and null geodesics.
Next, we recall that the derivation of the metric coefficients up to second order,

eq. (C.65), was based on the formal solution of the geodesic equation (C.43) and the
resulting condition (C.45) up to third order n = 3. In this spirit, we use as ansatz for
the approximate solution of the geodesic equation (C.66) a truncated expression of the
formal solution, eq. (C.7). Thus, we start from the approximate formula

(C.67) x(µ)(τ, v(σ)λ) = p(µ) + v(µ) λ−
3∑

n=2

Γ(µ)

{(α1)...(αn)}(p
(σ)) v(α1) · . . . · v(αn) λ

n

n!
+O(λ4)

for the geodesics in the spatial neighborhood around the world line p(µ)(τ) and express
the coefficients Γ(µ)

(α1)(α2)(p(σ)) and Γ(µ)

{(α1)(α2)(α3)}(p
(σ)) in terms of the transport matrix

Ω(αβ) and of the curvature tensor, in analogy to the metric expansion (C.65). Fortunately,
we have already found some of the coefficients in subsect. C.3.2. According to eq. (C.54),
the second-order terms are completely determined by

(C.68) Γ(µ)
(α1)(α2)(p(σ)) = −1

c

(
η(0α1) Ω(µ)

(α2) + η(0α2) Ω(µ)
(α1) − η(0α1) η(0α2) Ω(µ)

(0)

)
.

Moreover, the purely spatial components of the third-order coefficients Γ(µ)

{(i1)(i2)(i3)}(p
(σ))

vanish due to eq. (C.45). All third-order coefficients which at least possess one zero-
index, namely Γ(µ)

{(0)(i1)(i2)}(p
(σ)), Γ(µ)

{(0)(0)(i1)}(p
(σ)) and Γ(µ)

(0)(0)(0)(p
(σ)) can be obtained by

applying the same techniques that were used in subsect. C.3.2.
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With the help of the identity

Γ(µ)
(α1)(α2)(α3) = Γ(µ)

(α1)(α2),(α3) − Γ(ν)
(α1)(α3)Γ

(µ)
(ν)(α2) − Γ(ν)

(α2)(α3)Γ
(µ)
(α1)(ν) ,

which follows from the definition (C.5) for n = 3, we can express the third-order coeffi-
cients Γ(µ)

{(α1)(α2)(α3)} in terms of the first partial derivatives and products of Christoffel
symbols. In particular, eqs. (C.45), (C.48), (C.54), (C.59) and (C.60), allow for the
substitution of the Christoffel symbols as well as their first derivatives by the trans-
port matrix and by the curvature tensor. We refrain from presenting the details of this
calculation and just provide the final expressions

Γ(µ)

{(i1)(i2)(i3)}(p
(σ)) = 0 ,(C.69)

Γ(µ)

{(0)(i1)(i2)}(p
(σ)) =

2
3
R(µ)

{(i1)(i2)}(0)
(p(σ))− 2

c2
Symm
(i1i2)

[
Ω(0i1)(τ) Ω(µ)

(i2)(τ)
]
,

Γ(µ)

{(0)(0)(i1)}(p
(σ)) =

1
3
R(µ)

(0)(i1)(0)(p
(σ))− 1

c
Ω(µ)

(i1),(0)(τ)− 1
c2

Ω(µ)
(ρ)(τ) Ω(ρ)

(i1)(τ),

Γ(µ)

{(0)(0)(0)}(p
(σ)) = −1

c
Ω(µ)

(0),(0)(τ)− 2
c2

Ω(µ)
(ρ)(τ) Ω(ρ)

(0)(τ)

for the individual third-order coefficients.
The formal solution of the geodesic equation up to third order in the curve parameter

is now simply established by substitution of the second- and third-order coefficients,
eqs. (C.68) and (C.69) into eq. (C.67).

We emphasize, that this formal solution offers the possibility for an operational def-
inition of proper reference frame coordinates, at least up to a certain level of accuracy.
The basic idea is to take advantage of the radar method for light rays in order to explore
the spatial neighborhood around the world line of the observer. For this purpose, the
formal solution, eq. (C.67), can be utilized to provide the connection between proper
reference frame and radar coordinates [103].

Moreover, when we take advantage of the approximate solution, eq. (C.67), for the
local description of null geodesics, it should be possible to independently verify Pirani’s
method [21,63,79], which uses the “bouncing photon” as a measure for the rotation of a
reference frame relative to the inertial compass.

Appendix D.

Expansion of the Sagnac time delay in proper reference frame coordinates

In the present appendix we derive a series expansion of the Sagnac time delay. The
expansion is performed in orders of the moments of “unit fluxes” through the area A,
which encloses the spatial curve S. We close this appendix by providing the two dominant
contributions in the Sagnac time delay.

D.1. General expansion. – As mentioned in sect. 4, the proper reference frame coor-
dinates are established by a slowly accelerating and rotating observer who moves along
the world line p(σ)(x(0)) = (x(0), 0, 0, 0) in such a way, that the metric coefficients can be
considered as quasi-stationary for the time it takes to perform the Sagnac interferom-
eter experiment. A second observer, who measures the proper time difference ∆τSq, is
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supposed to be located at the fixed spatial point q(i) on the closed curve S in proper
reference frame coordinates. His world line reads q(σ)(x(0)) = (x(0), q(1), q(2), q(3)).

We start by recalling the expression

(D.1) ∆τS = −2
c

√
g(00)(q(r))

∮
S

g(0k)

g(00)

ds(k)

for the Sagnac time delay derived in 2.2.
Next we represent the integrand of the integral in eq. (D.1) by the power-series ex-

pansion

(D.2)
g(0k)(x(r))
g(00)(x(r))

=
∞∑
n=0

C(k) (i1...in) x
(i1) · . . . · x(in)

valid in a sufficiently small spatial neighborhood around the world line p(σ)(x(0)). Here
we have introduced the constant coefficients

(D.3) C(k) (i1...in) ≡
1
n!

∂n

∂x(i1) . . . ∂x(in)

(
g(0k)

g(00)

) ∣∣∣∣
p(r)

.

We emphasize that in this expression the case n = 0 does not involve any derivatives.
Moreover, we note that the quantities C(k) (i1...in) are by construction totally symmetric
in their indices (i1 . . . in).

When we insert the power-series expansion (D.2) into the Sagnac time delay (D.1),
we obtain

(D.4) ∆τSq = −2
c

√
g(00)(q(r))

∞∑
n=0

∮
S

C(k) (i1...in) s
(i1) · . . . · s(in) ds(k) .

As shown in fig. 2, the line integral is evaluated along the closed spatial curve S with
positive orientation according to the coordinate representation s(i)(φ).

D.2. Stokes’ theorem. – Since the spatial coordinates x(i) of the proper reference frame
coordinates are defined in the three-dimensional, spacelike subspace of the tangent space
at p(σ)(τ) which is orthogonal to the four-velocity u(σ)(τ), we can take advantage of
Stokes’ theorem in its familiar formulation in Cartesian coordinates(16). For a three-
dimensional, continuously differentiable vector field f(s) it reads∮

S

f ds =
∫∫
A

rot f dσ , with dσ =
(
∂s
∂u
× ∂s
∂v

)
dudv .

(16) In the literature one frequently finds a general formulation of Stokes’ theorem in terms
of differential forms. However, for our purpose the three-dimensional formulation in terms of
Cartesian coordinates is sufficient. Throughout these lecture notes, Stokes’ theorem refers to
the familiar three-dimensional version.
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Fig. 21. – Stokes’ theorem in Cartesian coordinates. The parameterization s(u, v) of the surface
A with positively oriented boundary S has to satisfy the right-hand rule in the definition of the
infinitesimal surface normal dσ.

The positively oriented curve S with parameterization s(φ) encloses the surface A whose
parameterization s(u, v) defines the infinitesimal surface normal dσ according to the
right-hand rule as illustrated in fig. 21.

Stokes’ theorem can be translated into a tensorial form based on proper reference
frame coordinates by identifying the parameterization s(u, v) with the proper reference
frame coordinates s(i)(u, v) and the vectors f(s) and dσ with the contravariant spatial
vector components f (i)(s(r)) and dσ(i). When we recall eqs. (B.11) and (B.12), we find
the equivalent tensorial version

(D.5)
∮
S

f(k) ds(k) = −
∫∫
A

ε(0ajk) ∂f(k)

∂s(j)
dσ(a), with dσ(a) = ε(0amn)

∂s(m)

∂u

∂s(n)

∂v
dudv

of Stokes’ theorem.

D.3. Complete expansion of the Sagnac time delay . – We now apply Stokes’ theorem
in the form of eq. (D.5) to each of the line integrals in the sum of eq. (D.4). After minor
algebra, we obtain the relation∮
S

C(k) (i1...in) s
(i1) · . . . · s(in) ds(k) = −n ε(0ajk) C(k) (j i1...in−1)

∫∫
A

s(i1) · . . . · s(in−1) dσ(a) ,

which after substitution into eq. (D.4) leads to formula

(D.6) ∆τSq =
2
c

√
g(00)(q(r))

∞∑
n=0

(n+ 1) ε(0ajk) C(k) (j i1...in)

∫∫
A

s(i1) · . . . · s(in) dσ(a)

for the Sagnac time delay.
In order to highlight the structure of this expression for ∆τSq, it is convenient to

introduce the constant tensorial quantity

W (a)
(i1...in) =

c

2
(n+ 1) ε(0ajk) C(k) (j i1...in)(D.7)

=
c

2n!
ε(0ajk) ∂n+1

∂x(j)∂x(i1) . . . ∂x(in)

(
g(0k)

g(00)

) ∣∣∣∣
p(r)

,
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and the covariant components of the n-th moment of the unit fluxes

(D.8) A (i1...in)
(a) =

∫∫
A

s(i1) · . . . · s(in)dσ(a) .

We briefly note, that we call the A (i1...in)
(a) the n-th moment of the unit fluxes for the

following reason: suppose we are given a unit vector field e(i)(x(r)) = δ(i)
(1) within the

three-dimensional, spatial subspace of our proper reference frame coordinates. Then, the
quantity

A(1) =
∫∫
A

δ(i)
(1) dσ(i) =

∫∫
A

dσ(1)

just corresponds to the ordinary flux of δ(i)
(1) through the surface A. In analogy, we obtain

all the covariant components of the zeroth moment A(a) by considering the flux with
respect to the constant vector fields δ(i)

(a). The same argumentation applies also to the
higher moments.

Coming back to the Sagnac time delay, we rewrite eq. (D.6) with the help of eq. (D.7)
and (D.8) according to

(D.9) ∆τSq =
4
c2

√
g(00)(q(r))

∞∑
n=0

W (a)
(i1...in)A

(i1...in)
(a) .

The moments A (i1...in)
(a) of the unit fluxes constitute the order parameters of this series

expansion and they are completely determined by the choice of the closed spatial curve
S and the shape of the enclosed surface A. In contrast to this, the quantities W (a)

(i1...in)

follow directly from the metric coefficients and their partial derivatives evaluated along
the world line p(σ)(τ).

In this context, we would like to point out that although the moments of the unit fluxes
depend on the shape of the surface A, the Sagnac time delay itself does not. The latter
is completely determined by the choice of the closed spatial curve S. It is the splitting of
the individual contributions in the Sagnac time delay into surface dependent and metric
dependent expressions, A (i1...in)

(a) and W (a)
(i1...in), which unfortunately obfuscates this fact

after the utilization of Stokes’ theorem.

D.4. Leading-order Contributions. – We now focus on the lowest-order contributions
in this series expansion. With the zeroth- and first-order terms

g(00)(p(r)) = 1 , g(00),(i1)(p(r)) = − 2
c2
a(i1) ,

g(0k)(p(r)) = 0 , g(0k),(i1)(p(r)) =
1
c
ε(0kli1)ω

(l)

of the metric expansion, eq. (16), we find from the definition (D.7) the expression

(D.10) W (a) = −ω(a).



Rotation in relativity and the propagation of light 95

Taking advantage of the second-order term, eq. (C.64),

g(0k),(i1),(i2)(p(r)) =
4
3
R(0){(i1)(i2)}(k)(p(r)) ,

we arrive after some algebra at

W (a)
(i1) =

2c
3
ε(0ajk)R(0){(i1)(j)}(k)(p(r)) +

1
c2
(
ω(l)a(l) δ

(a)
(i1) − 3ω(a)a(i1)

)
.

When we finally substitute these expressions into eq. (D.9), we obtain the two leading-
order contributions of the Sagnac time delay

∆τSq =
4
c2

√
g(00)(q(r))

[
−ω(a)A(a) +

2c
3
ε(0ajk)R(0){(i1)(j)}(k)(p(r))A (i1)

(a)

+
1
c2
(
ω(l)a(l) δ

(a)
(i1) − 3ω(a)a(i1)

)
A (i1)

(a) +O
(
A (i1)(i2)

(a)

)]
.

It is this result, which allows for an operational definition of the compass of inertia within
general relativity.

Appendix E.

Integration of null geodesics in Gödel’s Universe

In this appendix we solve the geodesic equation for light rays which emerge from the
origin and possess the initial conditions

(E.1) r(0) = 0, z(0) = 0, t(0) = 0 ,

used in subsect. 7.2. As suggested in [104], we can take advantage of the intrinsic
symmetries of Gödel’s Universe to simplify the calculations. We refer to [84,105-107] for
a more detailed discussion of the geodesics in Gödel’s spacetime.

E.1. Killing vectors. – We start by summarizing the five Killing vectors for the Gödel
metric. Three of them follow immediately from the invariance condition eq. (A.15), since
Gödel’s metric does not depend explicitly on the coordinates t, φ, and z. We note without
prove, that the complete solution of the Killing equations (A.18) reads

(E.2) ξα(t, r, φ, z) = Aδα0 +Bδα2 + Cδα3 +Dζα(r, φ) + Eζα
(
r, φ− π

2

)
,

with the integration constants A, B, C, D, E and the vector field ζα(r, φ) defined by

(E.3)


ζ0

ζ1

ζ2

ζ3

 ≡ 1√
1 +

(
r
2a

)2


r√
2c

cosφ

a
(

1 +
(
r
2a

)2) sinφ
a
r

(
1 + 2

(
r
2a

)2) cosφ

0

 .
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E.2. Constants of motion. – As described in A.4, each symmetry represented by
a Killing vector corresponds to a constant of motion of the geodesic equation. For
simplicity, we focus on the first three Killing vectors in eq. (E.2) and determine with
eq. (A.22) the three constants of motion

(E.4)
(0)

C = u0(λ) ,
(2)

C = u2(λ) ,
(3)

C = u3(λ) .

When we take into account the identity uµ(λ) = gµν(xσ(λ))uν(λ) together with the
metric coefficients

(gµν) =


c2 0 r2 ΩG 0

0 − 1

1+( r
2a )2 0 0

r2 ΩG 0 −r2
(

1−
(
r
2a

)2) 0

0 0 0 −1

 ,

following from the line element (40) and eq. (41), we arrive at

(0)

C = u0(0) = c2u0(0) + r2(0) ΩG u2(0) = c2u0(0) ,(E.5)
(2)

C = u2(0) = r2(0) ΩG u0(0)− r2(0)

(
1−

(
r(0)
2a

)2
)
u2(0) = 0 ,(E.6)

(3)

C = u3(0) = −u3(0) .(E.7)

The simplicity of these expressions is due to the initial conditions (E.1).
When we furthermore insert the latter expressions into the condition

(E.8) gµνu
µuν = 0

we obtain

(E.9) c2(u0(0))2 = (u1(0))2 + (u3(0))2 .

On the other hand, using the equivalent form gµν(xα(λ))uµ(λ)uν(λ) = 0 of eq. (E.8)
and the corresponding contravariant components

(E.10) (gµν) =



1
c2

1−( r
2a )2

1+( r
2a )2 0 ΩG

c2
1

1+( r
2a )2 0

0 −
(

1 +
(
r
2a

)2) 0 0
ΩG
c2

1

1+( r
2a )2 0 − 1

r2
1

1+( r
2a )2 0

0 0 0 −1


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of the metric tensor together with the constants of motion (E.4-E.7), we find the addi-
tional condition

c2(u0(0))2
1−

(
r(λ)
2a

)2

1 +
(
r(λ)
2a

)2 − (u1(λ))2

(
1 +

(
r(λ)
2a

)2
)
− (u3(0))2 = 0 .(E.11)

E.3. Explicit expressions for the coordinates. – We now present the differential equa-
tion for the radial coordinate and its solution. This result enables us to deduce expressions
for the other coordinates.

E.3.1. Integration of the radial coordinate. When we substitute u1 = g11u
1 into

eq. (E.11), we finally arrive at

(E.12) (u1(λ))2 =
(

dr
dλ

)2

=
(
c2(u0(0))2− (u3(0))2

)
−
(
c2(u0(0))2 +(u3(0))2

)( r
2a

)2

.

It is useful to introduce the constants

ω =
1
2a

√
c2(u0(0))2 + (u3(0))2 =

u1(0)
2a

√
1 + 2

(
u3(0)
u1(0)

)2

and

(E.13) A =

√
c2(u0(0))2 − (u3(0))2

c2(u0(0))2 + (u3(0))2
=
u1(0)
2aω

,

which cast eq. (E.12) into the form

(E.14) (u1(λ))2 =
(

dr
dλ

)2

= (2aAω)2

(
1−

(
r(λ)
2aA

)2
)
.

We take the derivative of eq. (E.14) with respect to λ and arrive at a second-order
differential equation

(E.15)
d2r

dλ2
+ ω2 r(λ) = 0

for the radial coordinate r(λ), which is identical to the equation of motion of a classical
harmonic oscillator.

Together with the definition (E.13), the solution of (E.15) subjected to our initial
conditions reads

(E.16) r(λ) = 2aA sin (ωλ) .

Here we have restricted ourselves to the parameter values 0 ≤ λ ≤ π
ω .
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At λ = π
ω the radial coordinate returns to its initial value r(π/ω) = r(0) = 0.

Moreover, due to the non-uniqueness of polar coordinates at the origin r = 0 we encounter
a jump in the radial velocity u1(λ), eq. (E.14), from −|u1(0)| to +|u1(0)|. Hence, the
periodicity in the time evolution of the radial coordinate can be expressed concisely by
the formula

(E.17) r(λ) = 2aA |sin (ωλ)| .

The maximum value rmax of r(λ) is found to be 2aA. In particular, we obtain for
vanishing u3(0) the value A = 1 and thus rmax = 2a. However, with increasing u3(0),
the value of A gets smaller and rmax falls below the critical Gödel radius 2a.

E.3.2. Time coordinate. The knowledge of the radial coordinate enables us to calculate
the remaining functions t(λ) and φ(λ). For the time coordinate we start with the relation
u0 = g0µuµ which yields after substitution of our constants of motion (E.4-E.7)

(E.18) u0(λ) =
dt
dλ

= u0(0)
1−

(
r(λ)
2a

)2

1 +
(
r(λ)
2a

)2 .

Separation of variables and substitution of eq. (E.17) in eq. (E.18) leads to

dt = u0(0)
(
−1 +

2
1 +A2 sin2(ωλ)

)
dλ .(E.19)

The right-hand side of the above equation is a periodic function with period λ = π/ω,
and it can be integrated piecewise in the separate intervals λ ∈ [nπ/(2ω), (n+ 1)π/(2ω)]
with n ∈ N0. Taking the different contributions of the integration carefully into account,
we finally arrive at the continuous function

(E.20) t(λ) = −u0(0)λ+
2

ΩG

(
arctan

(
ΩG
ω

u0(0) tan(ωλ)
)

+ π

⌊
ω

π
λ+

1
2

⌋)
,

for the time coordinate. Here we have made use of the floor function bxc, which is defined
according to

bxc = max{n ∈ Z | n ≤ x} .

E.3.3. Polar coordinate. In analogy to the coordinate time t, we now recall the relation
u2 = g2µuµ to derive the functional dependence of the polar angle φ(λ). Insertion of the
radial function (E.17) yields

(E.21) u2(λ) =
dφ
dλ

=
ΩG u0(0)

1 +A2 sin2(ωλ)
.

Hence, we encounter the same periodic function for the integration of φ(λ) as in the
previous case for the time coordinate t(λ). In addition another subtlety occurs due to
the non-uniqueness of polar coordinates at the origin. Every continuously differentiable
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curve which passes through the origin suffers a jump in its angular coordinate φ(λ) by π.
Therefore, we have to substract an extra term πbωλ/πc in comparison to the integration
of the periodic function given above. Taking the initial polar angle φ(0) of the geodesic
into account, the final expression for our angular coordinate reads

(E.22) φ(λ) = arctan
(

ΩG
ω

u0(0) tan(ωλ)
)

+ π

⌊
ω

π
λ+

1
2

⌋
− π

⌊
ω

π
λ

⌋
+ φ(0) .

E.3.4. Vertical coordinate. The remaining function z(λ) is easily found by recalling
the constant of motion (E.7) in combination with (E.4). An integration provides the
final result

(E.23) z(λ) = u(3)(0)λ .

Thus, we have established the general solution of the geodesic equation for light rays
which emerge from the origin.

REFERENCES

[1] Isenberg J. and Wheeler J. A., Relativity, quanta, and cosmology in the development
of the scientific thought of Albert Einstein (Johnson Reprint Corp., New York) 1979.
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[64] Alvarez-Gaumé L., Freedman D. Z. and Mukhi S., Ann. Phys. (N.Y.), 134 (1981)

85.
[65] Hatzinikitas A., Arxiv: hep-th/0001078 (2000).
[66] Fermi E., Atti R. Accad. Lincei Rend. C1. Sci. Fis. Mat. Nat., 31 (1922) 21; 31 (1922)

51.
[67] Jantzen R. T., Circular holonomy, clock effects and gravitoelectromagnetism: still going

around in circles after all these years in Proceedings of the Ninth ICRA Network Workshop
on Fermi and Astrophysics edited by Gurzadyan V. and Ruffini R. (World Scientific,
Singapore) 2003.

[68] Manasse F. K. and Misner C. W., J. Math. Phys., 4 (1963) 735.
[69] Li W.-Q. and Ni W.-T., J. Math. Phys., 20 (1979) 1925.
[70] Ehlers J., Survey of General Relativity Theory in Relativity, Astrophysics and Cosmology

edited by Israel W. (Reidel, Dordrecht-Holland) 1973.
[71] Misner C. W., Thorne K. S. and Wheeler J. A., Gravitation, (Freeman, San

Francisco) 1973.
[72] Mitskievich N. V. and Nesterov A. I., Izv. Vuzov. (Fisica), 9 (1976) 92.
[73] Ni W.-T. and Zimmermann M., Phys. Rev. D, 17 (1978) 1473.
[74] Li W.-Q. and Ni W.-T., J. Math. Phys., 20 (1979) 1473.
[75] Marzlin K. P., Phys. Rev. D, 50 (1994) 888.
[76] Nesterov A. I., Class. Quantum Grav., 16 (1999) 465.
[77] Pound R. V. and Rebka G. A. Jr., Phys. Rev. Lett., 3 (1959) 439; 4 (1960) 337.
[78] Kajari E., Walser R., Schleich W. P. and Delgado A., Gen. Rel. Grav., 36 (2004)

2289.
[79] Pirani F. A. E., Bull. Acad. Polon. Sci., Ser. Sci. Math. Astr. Phys., 13 (1965) 239.
[80] Audretsch J. and Lämmerzahl C., Gen. Rel. Grav., 15 (1983) 495.
[81] Soffel M. H., Relativity in Astrometry, Celestial Mechanics and Geodesy, (Springer,

Berlin) 1989.



102 E. Kajari, M. Buser, C. Feiler and W. P. Schleich

[82] Bondi H. and Samuel J., Physics Letters A, 228 (1997) 121.
[83] Straumann N., General Relativity with Applications to Astrophysics, (Springer, Berlin)

2004.
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137.


