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Abstract

We study the linear growth of matter perturbations in the DGP model with the growth index

γ as a function of redshift. At the linear approximation: γ(z) ≈ γ0 + γ′0z, we find that, for

0.2 ≤ Ωm,0 ≤ 0.35, γ0 takes the value from 0.658 to 0.671, and γ′0 ranges from 0.035 to 0.042.

With three low redshift observational data of the growth factor, we obtain the observational

constraints on γ0 and γ′0 for the ΛCDM and DGP models and find that the observations

favor the ΛCDM model but at the 1σ confidence level both the ΛCDM and DGP models are

consistent with the observations.
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I. INTRODUCTION

Various observations show that our universe is undergoing an accelerating expansion [1,

2, 3] and many models have been proposed to explain this mysterious phenomenon. There

are basically two main classes of models. One is dark energy which yields sufficient

negative pressure to induce a late-time accelerated expansion; the other is the modified

gravity, such as the scalar-tensor theory [4], the f(R) theory [5] and the Dvali-Gabadadze-

Porrati (DGP) braneworld scenarios [6, 7], et al. However, these models may predict

the same late time accelerated cosmological expansion, although they are quite different

physically. So an important task is to discriminate one from another. Recently, some

attempts have been made [8, 9, 10, 11, 12, 13, 14] in this regard. An interesting approach

is to differentiate the dark energy and the modified gravity with the growth function

δ(z) ≡ δρm/ρm of the linear matter density contrast as a function of redshift z. While

different models give the same late time expansion, they may produce different growth of

matter perturbations [15].

To the linear order of perturbation, the matter density perturbation δ = δρm/ρm

satisfies the following equation [16] at the large scales

δ̈ + 2Hδ̇ − 4πGeff ρmδ = 0, (1)

where Geff is the effective Newton’s constant and the dot denotes the derivative with

respect to time t. In general relativity, Geff = GN where GN is the Newton’s constant.

Defining the growth factor f ≡ d ln δ/d ln a, one can obtain

d f

d ln a
+ f 2 +

(

Ḣ

H2
+ 2

)

f =
3

2

Geff

GN

Ωm, (2)

where Ωm is the fractional energy density of matter. In general, analytical solutions to

Eq. (2) are hard to find, and we need to resort to numerical methods. It has been known

for many years that there is a good approximation to the growth factor f , which is given

by [17]

f ≡
d ln δ

d ln a
≃ Ωm(z)

γ , (3)

where γ is the growth index and is taken as a constant. This parameterized approach has

been studied in some works recently, see e.g. [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. For
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example, substituting the above equation into Eq. (2) and then expanding around Ωm = 1

(a good approximation at the high redshift), one can obtain γ∞ ≃ 0.5454 [18, 20] for the

ΛCDM model and γ∞ ≃ 11/16 ≈ 0.6875 [18, 19] for the flat DGP model. Therefore,

in principle, one can distinguish the dark energy model from the modified gravity model

with observational data on the growth factor. However, taking the index γ as a constant

is only an approximation although it is a very good one in certain circumstances. More

generically, one should rewrite Eq. (3) as

f ≡
d ln δ

d ln a
= Ωm(z)

γ(z) . (4)

Defining a new quantity γ′ ≡ dγ(z)
dz

, we can expand γ at the low redshift, as follows

γ(z) ≈ γ0 + γ′

0z 0 ≤ z ≤ 0.5 . (5)

This approximation has been studied in Refs. [29, 30, 31], and it was found that γ′

0 is a

quasi-constant and γ′

0 ≃ −0.02 for dark energy models with a constant equation of state.

However, for modified gravity models, such as some scalar-tensor models, γ′

0 is negative

and can take absolute values larger than those in models inside General Relativity [30],

while for the f(R) model γ′

0 is also negative but its value is largely outside the range found

for dark energy models in General Relativity [31]. Therefore, an accurate γ′

0 at the low

redshift could provide another characteristic discriminative signature for these models.

In this paper, we will mainly focus on the observational constraints on γ0 and γ′

0 from

data on the growth factor. Firstly, we will study the linear growth index with the form

γ ≈ γ0+γ′

0z for the DGP model. Then, with the best fit value Ωm,0 from the observational

data we will discuss the theoretical values of γ0 and γ′

0 and the observational constraints

on them.

II. GROWTH INDEX OF DGP MODEL

For the DGP model, in general, Geff can be written as

Geff = GN

(

1 +
1

3β

)

, (6)
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where β = 1− 2rcH
(

1 + Ḣ
3H2

)

[23, 32, 33, 34] and the constant rc is a scale which sets a

length beyond which gravity starts to leak out into the bulk. According to Ref. [33], Geff

GN

can be rewritten as

1 +
1

3β
=

4Ω2
m − 4 (1− Ωk)

2 + α

3Ω2
m − 3 (1− Ωk)

2 + α
, (7)

where α ≡ 2
√
1− Ωk (3− 4Ωk + 2ΩmΩk + Ω2

k), Ωk ≡ −k/(a2H2), and Ωm ≡

8πGρm/(3H
2). Here the spatial curvature k = 0, k > 0 and k < 0 correspond to a

flat, closed and open universe respectively.

For the DGP model, the modified Friedmann equation takes the form [7, 19]

H2 +
k

a2
−

1

rc

√

H2 +
k

a2
=

8πG

3
ρm. (8)

Defining Ωrc =
1

4r2cH
2
0

, we have

E2(z) ≡
(

H

H0

)2

=

[

√

Ωm,0(1 + z)3 + Ωrc +
√

Ωrc

]2

+ Ωk0(1 + z)2 . (9)

Setting z = 0 in the above gives rise to a constraint equation

1 =
[

√

Ωm,0 + Ωrc +
√

Ωrc

]2

+ Ωk0. (10)

Therefore, there are only two model independent parameters out of Ωm,0, Ωrc and Ωk0.

The matter density perturbation in the DGP model satisfies the equation [16, 25]:

d 2 ln δ

d(ln a)2
+

(

d ln δ

d ln a

)2

+

(

2 +
d lnH

d ln a

)(

d ln δ

d ln a

)

=
3

2

(

1 +
1

3β

)

Ωm . (11)

Using
d lnH

d ln a
=

Ḣ

H2
= −

3

2
+

Ωk

2
−

3

2

−1 + Ωk

1 + Ωm − Ωk

(1− Ωk − Ωm) , (12)

we obtain

d2 ln δ

d(ln a)2
+

(

d ln δ

d ln a

)2

+
d ln δ

d ln a

(

1

2
(1 + Ωk)−

3

2

−1 + Ωk

1 + Ωm − Ωk

(1− Ωk − Ωm)

)

=
3

2

(

1 +
1

3β

)

Ωm. (13)
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Thus, according to the definition of f , we have the following differential equation

Ωm

[

3(−1 + Ωk)

1 + Ωm − Ωk

(1− Ωk − Ωm)− Ωk

]

df

dΩm

+ f 2

+f

[

1

2
(1 + Ωk)−

3

2

−1 + Ωk

1 + Ωm − Ωk

(1− Ωk − Ωm)

]

=
3

2

(

1 +
1

3β

)

Ωm . (14)

Substituting the generic expression for f , Eq. (4), into the Eq. (14) we arive at an equation

on γ(z)

1

2
[(1 + Ωk − 2γΩk) +

3(−1 + Ωk)

1 + Ωm − Ωk

(2γ − 1)(1− Ωk − Ωm)]

−(1 + z)γ′ ln Ωm + Ωγ
m =

3

2
(1 +

1

3β
)Ω1−γ

m . (15)

If we only consider the linear expansion at the low redshift as given in Eq. (5), it is easy

to derive

γ′

0 = (lnΩ−1
m,0)

−1

[

− Ωγ0
m,0 +

3

2
(1 +

1

3β
)Ω1−γ0

m,0 −
1

2
(1 + Ωk,0 − 2γ0Ωk,0)

−3
−1 + Ωk,0

1 + Ωm,0 − Ωk,0

(1− Ωk,0 − Ωm,0)(γ0 −
1

2
)

]

. (16)

This gives a constraint equation

g(γ0, γ
′

0,Ωm,0,Ωk,0) = 0 . (17)

So, for any given background parameters Ωm,0 and Ωk,0, the value of γ
′

0 can be determined

by that of γ0. For the sake of simplicity, we will only consider the case of a spatially flat

universe in this paper (Ωk = 0). Thus from Eq. (16), we get

γ′

0 = (lnΩ−1
m,0)

−1

[

− Ωγ0
m,0 +

3

2

4Ω2
m,0 + 2

3Ω2
m,0 + 3

Ω1−γ0
m,0 −

1

2

+
3

1 + Ωm,0

(1− Ωm,0)(γ0 −
1

2
)

]

. (18)

According to equation f(z = 0) = Ωm,0(0)
γ0 , the value of γ0 can be obtained by solving

Eq. (14) numerically for an given value of Ωm,0. Then plugging this obtained γ0 into

Eq. (18), we can get the value of γ′

0. The results are shown in Fig. 1. We find, from
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the right panel, that the value of γ0 increases from 0.658 to 0.671 for 0.2 ≤ Ωm,0 ≤ 0.35.

This suggests that γ cannot really be regarded as a constant as Ωm varies. Notice that

our result is different from that obtained for the ΛCDM model where the value of γ0 is

found to decrease from 0.558 to 0.554 for 0.2 ≤ Ωm,0 ≤ 0.35 [29]. This feature of γ0 also

provides a distinctive signature for the DGP model from the ΛCDM model. From the

right panel, we can see that the γ′

0 is positive and ranges approximately from 0.035 to

0.042, which is also different from the dark energy model, the scalar-tensor model and

f(R) model. For example for the wCDM model with Ωm,0 = 0.3, γ′

0 is negative and

quasi-constant γ′

0 ≃ −0.02. So, in principle, we can discriminate the DGP model from

the dark energy model merely through the sign of γ′

0 if we can have an accurate value of

γ′

0 from the observation data. Now we will discuss the the observational constraints on

γ0 and γ′

0
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FIG. 1: γ0 and γ′0 are displayed as a function of Ωm,0 for DGP model respectively.

III. OBSERVATIONAL CONSTRAINTS

In order to obtain the observational constraints on γ0 and γ′

0, we firstly need to know

the value of Ωm,0 determined by observations. Here we use the results in Ref. [28] where

the author found Ωm,0 = 0.273 ± 0.015 for the ΛCDM model and Ωm,0 = 0.278 ± 0.015

for the DGP model respectively from the 307 Union Sne Ia data, the BAO from the SDSS
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data, the shift parameter from the WMAP5 and the 11 Hubble parameter data. Using the

best fit values Ωm,0 = 0.273 for the ΛCDM model and Ωm,0 = 0.278 for the DGP model

respectively, we find γ0 = 0.665, γ′

0 = 0.04 for theoretical vaules for the DGP model from

Fig. (1) in this paper, and γ0 = 0.555, γ′

0 = −0.018 for the ΛCDM model from Fig. (1)

in Ref. [29].

To find the observational constraints on γ0 and γ′

0, only three observational data on fobs

given in Table I can be used, since the linear expansion is valid only at the low reshifts.

With the best fit value of Ωm,0 we can obtain the constraints from the observations by

using the following equation

χ2
f =

3
∑

i=1

[fobs(zi)− Ω
γ0+γ′

0
zi

m ]2

σ2
fi

, (19)

where σfi is the 1σ uncertainty of the f(z) data. The results are shown in Fig. (2). The

best fit values are γ0 = 0.774, γ′

0 = −0.556 for the ΛCDM model and γ0 = 0.767, γ′

0 =

−0.732 for the DGP model, which show that the observations imply an negative value of

γ′

0. Since the DGP model gives an positive γ′

0, thus we can conclude that observations

disfavor the DGP model. However, from Fig. (2), we find that at the 1σ confidence level

both the ΛCDM and the DGP model are consistent with the observations.

z fobs References

0.15 0.49 ± 0.1 [35]

0.35 0.7 ± 0.18 [36]

0.55 0.75± 0.18 [37]

TABLE I: The summary of the observational data on the growth factor f at low redshifts.

IV. CONCLUSION

In this letter, the growth factor of matter perturbations in the DGP model is studied

and we find that the growth index, γ, should be treated as a function of time. With a
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FIG. 2: The 1σ contours of γ0 and γ′0 by fitting the ΛCDM model and DGP model to the growth

rate data. The points denote the theoretical values of γ0 and γ′0 with the Ωm,0 taking the best

fit values.

linear expansion of γ(z) ≈ γ0 + γ′

0z, we obtain that γ0 increases from 0.658 to 0.671 and

γ′

0 ranges approximately from 0.035 to 0.042, for 0.2 ≤ Ωm,0 ≤ 0.35. This is different

from the results obtained for the ΛCDM model where γ0 decreases from 0.558 to 0.554

and γ′

0 is quasi-constant with γ′

0 ≃ −0.02 for 0.2 ≤ Ωm,0 ≤ 0.35 [29]. These features

provide distinctive signatures for the DGP model from the ΛCDM model. With the

observational data on the growth factor, we analyze the observational constraints on γ0

and γ′

0 and find that the best fit values are γ0 = 0.774, γ′

0 = −0.556 for the ΛCDM model

and γ0 = 0.767, γ′

0 = −0.732 for the DGP model. This seems to show that the observations

favor the ΛCDM model since the theoretical value of γ′

0 is positive for the DGP model.

However, at 1σ confidence level both the DGP model and ΛCDM model are consistent

with the observations as can be seen from Fig 2. It should be pointed out that our results

are based upon merely three low redshifts data, since the linear approximation is valid

only at the low redshiftes. To obtain stronger constraints which can clearly discriminate

different models, we need a parametrized form of γ(z), which is applicable for all the

observational data, and hope to turn to this issue in the future [38].
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