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Abstract

The construction of Dirac observables, that is gauge invariant objects, in General Relativity is tech-
nically more complicated than in other gauge theories such as the standard model due to its more com-
plicated gauge group which is closely related to the group of spacetime diffeomorphisms. However, the
explicit and usually cumbersome expression of Dirac observables in terms of gauge non invariant quantities
is irrelevant if their Poisson algebra is sufficiently simple. Precisely that can be achieved by employing
the relational formalism and a specific type of matter proposed originally by Brown and Kuchař, namely
pressureless dust fields. Moreover one is able to derive a compact expression for a physical Hamiltonian
that drives their physical time evolution. The resulting gauge invariant Hamiltonian system is obtained
by Higgs – ing the dust scalar fields and has an infinite number of conserved charges which force the
Goldstone bosons to decouple from the evolution. In previous publications we have shown that explicitly
for cosmological perturbations. In this article we analyse the spherically symmetric sector of the theory
and it turns out that the solutions are in one–to–one correspondence with the class of Lemaitre–Tolman–
Bondi metrics. Therefore the theory is capable of properly describing the whole class of gravitational
experiments that rely on the assumption of spherical symmetry.
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1 Introduction

Until today General Relativity (GR) is the most successful theory in describing observations involving
gravitational interactions on macroscopic scales. It has been tested in various experimental settings and so
far many predictions of GR have been confirmed to great accuracy. But next to the complicated highly non
– linear structure of Einstein’s equations there is one aspect in GR which has to be treated with special
care as compared to other field theories such as Maxwell’s theory: the issue of observables. Observables are
those quantities that respect the gauge symmetry of the theory, for Electrodynamics this would simply be
all U(1) – invariant quantities. In contrast for GR the gauge group is closely related to the group of space
time diffeomorphisms, denoted by Diff(M), reflecting the independence of physics on space time coordinates.
We are dealing with a background independent theory where “space” and “time” do not have any a priori
physical meaning.
In the canonical picture of GR [1], where one performs a (3+1) – split of the four dimensional space time
(M,g), gauge invariance carries over to the condition that phase space functions have to commute with
the Hamiltonian and spatial diffeomorphism constraints of GR1. The reason why it is so complicated to
extract the gauge–invariant content of GR is that the Poisson algebra formed by the constraints of GR,
the so called Dirac algebra, is an extremely difficult one. It is not only non–Abelian but is not even an
honest Lie–algebra: instead of structure constants it involves structure functions, i.e., phase space dependent
quantities. However, even if observables were known there would still be a conceptual task to solve which
is often referred to as the problem of time in GR [4, 5] and concerns the evolution of observables. Speaking
about dynamics of GR we usually refer to Einstein’s equations. In the canonical picture these can be obtained
from a canonical Hamiltonian and the Hamiltonian and diffeomorphism constraint equations. However, as a
consequence of diffeomorphism invariance the canonical Hamiltonian is a linear combination of constraints
only2. Hence, the Hamiltonian equations generated by this canonical Hamiltonian will be identical to
zero in the case of observables. Consequently, Einstein’s equations do not describe what we usually would
call physical evolution but rather describe how the metric changes under gauge transformations. What is
needed for observables is a gauge invariant version of Einstein’s equation, generated by a so called physical
Hamiltonian and describing non – trivial evolution of observables.
A framework that allows to construct observables and analyse their evolution for constrained systems such
as GR is the so called Relational Formalism. The basic idea is to take the background independent nature
of GR seriously and define observables not with respect to unphysical space time points in M but to use
relations between dynamical fields instead. These ideas date back to the seminal work of Bergmann and
Komar [6, 7, 8] from the 1960s. Its conceptual foundations were very much improved in the 1990s, see [9, 10]
and references therein. The corresponding mathematical framework was also developed in the 1990’s, see
e.g. [11] and references therein and rediscovered more recently in [12, 13]. Once appropriate dynamical fields
are chosen as clocks3 in order to give space and time a physical meaning one can at least formally write down
an expression for observables associated to any phase space function f . In [14, 15] a perturbative scheme to
compute these observables was developed and its application to perturbation theory around Minkowski space
and cosmological perturbation theory for different choices of clocks was discussed. However, the explicit
form is a power series in these clock variables with coefficients involving multiple Poisson brackets of the
constraints and f generally leading to a rather complicated dependence on the physical time parameter that
in most cases cannot be written down in a closed analytic form.

However, as pointed out for instance in [16], the precise expression of the Dirac observables in terms of
non gauge inavriant objects, which generically involves a hopelessly complicated, infinite series of multiple
Poisson brackets, is in fact irrelevant from the point of view of the physical (or reduced) phase space that
we are actually interested in. What is relevant is the Poisson algebra of those Dirac observables and the

1See [2] or [3] for a detailed description how to deal with gauge symmetries in physical theories.
2In the absence of boundaries such as in asymptotically flat situations.
3Whenever we talk of clocks we mean devices (fields) to measure temporal and spatial distances.
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physical Hamiltonian which drives their physical time evolution. General expressions for an arbitary first
class system and for general choices of clocks were derived in [16]. From a practical point of view and
especially with regard to quantisation it is of course desirable to have a sufficiently simple gauge invariant
Poisson algebra Aphys and a compact expression for the resulting physical Hamiltonian Hphys. The structure
of both Aphys, Hphys depends sensitively on the choice of clocks and for generic choices both are beyond
mathematical control. One therefore should analyse first which type of matter simplifies their structure.

First steps in this direction have been performed in [17] where a phantom scalar field, i.e. a scalar field
with negative kinetic energy term, has been used as a clock and the corresponding physical Hamiltonian has
been derived. The choice of a scalar field with vanishing potential as a clock field was motivated entirely by
mathematical considerations based on the Brown – Kuchař mechanism [18] which allows to deparametrise
the Hamiltonian constraint. From a physical point of view, introducing some ad hoc matter component
that adopts the role of clocks for GR might look artificial and even dangerous, especially if that matter is
in conflict with the ususal energy conditions that stabilise the system. However, the way that the relational
formalism works is in fact very similar to the Higgs mechanism: In the gauge invariant formulation, the
scalar field completely disappears. What remains is the corresponding physical Goldstone boson and what
one has to worry about is that this additional degree of freedom is not in conflict with observation, in
particular, that the energy conditions hold in the gauge invariant description.

A more physically motivated choice of clocks which have the additional advantage of implementing the
Brown – Kuchař mechanism is defined by the original Lagrangian for pressure free dust due to Brown
and Kuchař [18]. This choice of matter is a sense physically distinguished because it can be considered
in a precise sense as a congruence of mutually non interacting, freely falling observers which only interact
gravitationally and which define the dynamical reference frame for GR. From the mathematical point of
view, the essential point in the construction is that the constraints of the coupled system, including gravity,
matter and dust, can be written in a deparametrised form4. As was shown explicitly in [19], this achieves
the goal of drastically simplifying the Poisson algebra of physical observables and the physical Hamiltonian
and furthermore ensures that the associated physical Hamiltonian is time independent. In contrast to [18],
the requirement that the physical Hamiltonian should be positive definite, or equivalently physical time is
required to run forward rather than backwards, demands the dust needs to be phantom dust. This is exactly
the same reason why the phantom occurred in the previous work [17] and ensures that the energy momentum
tensor of observable matter obeys the usual energy conditions. It was also shown that the resulting theory
is in good agreement with current cosmological observations in [20] as far as FRW space times as well as
perturbations around FRW are considered. The reason for why that happens is the afore mentioned Higgs
mechanism by which the phantom dust completely disappears from the physical particle spectrum together
with another nice feature of this particular choice of clocks which is absent for generic choices: The physical
Hamiltonian system posesses an infinite number of conserved charges which can be considered as physical
energy and momentum densities of the dust respectively and which enforce the corresponding gravitational
Goldstone boson modes to decouple in a mathematically precise sense from the physical time evolution. In
particular, it is consistent to tune those charges to be arbitarily small so that their corrections to Einstein’s
equations for the non Goldstone modes are also arbitrarily small. In this way the dust comes as close as
possible to the mathematical idealisation of a test observer while taking its gravitational interaction into
account. Of course, one could also use gravitational clocks, that is certain components of the metric tensor
and thus avoid the Goldstone modes altogether. However, while that works well for the linearised theory,
taking into account the full non linearities of Einstein’s theory leads to equations of motion for the physical
graviational modes that have no resemblance with the classical Einstein equations whatsoever. Similar to the

4A system of constraints CI is said to be deparametrisable if one can find a local coordinate chart on phase space with
two mutually commuting sets of canonical pairs denoted by (qa, pa) and (T I , PI) such that in this chart the constraints can be
written in the locally equivalent form CI = PI + hI where hI depends only on (qa, pa). Equivalence has to be understood in
the sense that the constraint hypersurface, spanned by the deparametrised constraints is exactly the same as the one spanned
by the original set of constraints.
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vast number of proposals from cosmologists, particle physicists and string theorists for possible extensions of
the field content of the standard model such as inflatons, axions, dark matter, supersymmetric extensions,
dilatons, Kaluza Klein modes etc. we consider the existence of a fundamental dust field in addition to
standard matter as an at least theoretical possibility which of course has to be tested in experiments. The
fact that the dust only interacts gravitationally makes it in principle a perfect dark matter candidate5.

The topic addressed in this article is the spherically symmetric sector of the theory presented in [19].
We will show in detail that a gauge invariant version of Einstein’s equations specialised to the spherically
symmetric case can be mapped to a family of Lemaitre – Tolman – Bondi (LTB) solutions. The only
modification is that the equations contain a phantom dust energy density instead of the usual dust energy
density and we will discuss explicitly which consequences this has.

As pointed out in [16], the existence of gauge invariant version of Einstein’s equations and thus a re-
duced phase space formulation of GR involving an algebra of observables and a physical Hamiltonian is
of advantage when a quantisation of gravity is concerned because one sidesteps the difficulties involved in
the anomaly free quantisation of constraints and the construction of the physical Hilbert spaces. Recently,
this strategy has been used in order to present a reduced phase space quantisation [21] for Loop Quantum
Gravity [22, 23]. This framework developed for the full theory can of course be applied also to the spherically
symmetric sector [24].

The paper is structured as follows:

In section 2 we review the results of [19] for the full theory. In section 3 we specialise the observables
and the physical Hamiltonian to spherically symmetric space times and in section 4 derive the correspond-
ing equations of motion. These equations are a gauge invariant version of Einstein’s equations in the case
of spherical symmetry. Section 5 discusses the solution of these equations which belong to a family of LTB
– solutions. In section 6 and 7 we discuss further properties of these solutions such as their semistatical
behaviour as well as the occurrence of singularities. For the latter we analyse in particular the effect of
the phantom dust energy momentum that occurs as a source in these equations. Finally in section 8 we
conclude, discuss the implications of the work done in this paper and give an outlook. Several appendices
on the boundary conditions imposed on gauge invariant variables, various spherically symmetric coordinate
systems employed in the literature and a comparison with the covariant derivation of the LTB solutions
complete the paper.

2 Brown – Kuchař Dust Reduction of General Relativity

In this section we summarise the analysis performed in [19] which builds on the seminal work [18].

The Brown – Kuchař dust Lagrangian is given by

Sdust = −1

2

∫

M

d4X
√

|det(g)|ρ[gµνUµUν + 1] , (2.1)

5One could call it a NIMP (Non Interacting Massless Particle) as compared to a WIMP (Weakly Interacting Massive
Particle) which is considered as the most favourite (cold) dark matter candidate. Massless here refers to the fact that the dust
Lagrangian does not contain a usual mass (or potential) term. However, the foliation defined by the dust is always spacelike
and the corresponding foliation vector field has unit timelike norm with respect to the physical metric (but it is not necessarily
normal to the foliation). That is, the dust moves along unit timelike geodesics which also follows from the fact that the dust
Lagrangian can be interpreted as the sum (or integral) of relativistic point particle Lagrangians (one for each flow line of the
congruence) with variable mass depending on the flow line. This mass distribution is just the energy density of the dust. See
[18] for details. Hence the dust moves at non relativistic speeds as required by realistic dark matter models. Of course the
dust energy density has the wrong sign to explain the anomalous galactic rotation curves but we should recall that the dust
is anyway like a Higgs boson which disappears from the observable particle spectrum. There is no obstacle in adding one’s
favourite observable dark matter model.
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which is coupled to the standard Einstein Hilbert action SEH

SEH =
1

κ

∫

M

d4X
√

|det(g)|(4)R. (2.2)

Standard matter Lagrangians can be added in the usual way, but they do not couple to the dust. Here M
is a four dimensional manifold which can topologically be identified with R×X for some three dimensional
manifold X of arbitrary topology and X ∈ M are local coordinates on M . Next, gµν(X) with µ, ν =
0, 1, 2, 3 denotes a (Pseudo–) Riemannian metric on M . U ∈ T ∗M is a one form defined as the differential
U = −dT + WjdS

j , j = 1, 2, 3, for some scalar fields T,Wj, S
j ∈ C∞(M). So finally the action (2.1) is a

functional of gµν and eight scalar fields ρ, T,Wi, S
i. (4)R is the Ricci scalar corresponding to the metric g.

We need the Hamiltonian formulation of that system which can be derived by performing a usual ADM
– (3+1) – split with respect to a foliation of M ∼= R × X . We denote the momentum conjugate to the
ADM 3 – metric qab by pab. The momenta conjugate to the configuration variables ρ,Wj , T, S

j are denoted
by Z,Zj , P, Pj respectively. Latin indices range from 1 to 3. A detailed Dirac analysis of the occurring
constraints shows that the coupled system is second class. Hence, in order to proceed, one passes on to the
corresponding Dirac bracket and solves the second class constraints explicitly. As a consequence it turns out
that the momenta conjugate to ρ and Wj vanish and that these configuration variables can be expressed in
terms of the remaining phase space variables. Explicitly, we have

Z := 0, Zj := 0, Wj := −Pj

P
, ρ2 :=

P 2

√
det q

[

qabUaUb + 1
]

. (2.3)

In general, analysing second class constraint systems is a very hard task due to the complicated structure of
the corresponding Dirac bracket. However, it turns out that for the system SEH + Sdust, when restricting
attention to the geometry variables (qab, p

ab) as well as the remaining dust variables (Sj , Pj) and (T, P ),
then the Dirac bracket in this sector reduces to the standard Poisson bracket again, which makes a further
analysis of this system tractable.
We end up with a first class system possessing the following constraints

ctot = c+ cdust (2.4)

ctota = ca + cdusta , (2.5)

where the geometry and dust contributions can be written as

ca := −2

κ
qacDbp

bc (2.6)

c :=
1

κ

1√
det q

[

qacqbd −
1

2
qabqcd

]

pabpcd −
√

det(q)R(q) (2.7)

cdust := P
√

1 + qabUaUb (2.8)

cdusta := PT,a + PjS
j
,a . (2.9)

Here Da is the covariant differential compatible with qab and R(q) denotes the Ricci scalar of qab. Here P
takes only non positive values and thus the energy density of the dust is negative or zero which is why we
call it phantom dust in contrast to [18]. The reasons for that can be summarised as follows: If P would take
positive values then on the constraint surface we would have c < 0. As we will see, the derived physical
Hamiltonian is approximated by |c| = −c which in the limit of flat space would be the negative of the
standard model Hamiltonian. One could cure this by letting time run backwards and defining the physical
Hamiltonian by −|c| = c but then energy would be unbounded from below. Furthermore, the dynamical
foliation generated by the dust would be past oriented if we chose the other sign, see [19] for a detailed
discussion.
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Concerning the interpretation of (2.1) we refer the reader to [18], where the authors describe that the dust
action can actually be derived as a field theoretic generalisation of the concept of free massive relativistic
particles moving on geodesics of the gravitational field created by the entire collection of particles. To get
an idea why this interpretation is possible, one can check that the integral curves of Uµ = gµνUν describe
geodesics of gµν , S

j is constant along each of these curves and T describes proper time. So Sj = const.
labels a geodesic and T = const. is an affine parameter along the geodesic. This is exactly the reason why
it so convenient to use the fields T, Sj as a physical reference frame.

The canonical Hamiltonian that generates Hamiltonian equations for (qab, p
ab), (P, T ) which are, together

with the constraints in (2.4) and (2.5), equivalent to the 10 Einstein equations obtained in the Lagrangian
framework is given by

Hcan :=

∫

X

d3x
(

n(x)c(x) + na(x)ca(x)
)

. (2.10)

where n is the so called lapse function and na the so called shift vector which play the role of Lagrange
multipliers.

Now we come to the crucial observation made by Brown and Kuchař in [18] that the system SEH + SD is
indeed (partially) deparametrisable. To see this, note first, that the total Hamiltonian constraint (2.4) can
be written in equivalent form

ctot = c+ P

√

1 +
qabcdusta cdustb

P 2
≃ c+ P

√

1 +
qabcacb
P 2

. (2.11)

On the constraint hypersurface the constraints ctot and ctota can be solved for the momenta P and Pj

respectively and thus be written down in completely equivalent6 form as

c̃tot = P + h h =
√

c2 − qabcacb (2.12)

c̃totj = Pj + hj hj = Sa
j [ca − hT,a] , (2.13)

where we assumed that Sj
,a is non degenerate and defined its inverse Sa

j . As shown in [19] this condition is
gauge invariant under the gauge transformations generated by (2.12) and (2.13).

At least the total Hamiltonian constraint is in deparametrised form now, because h depends only on the
gravitational variables qab, p

ab. Moreover, since the constraints are linear in the dust momenta, (2.12) and
(2.13) form a strongly Abelian first class constraint algebra. As a consequence also {h(x), h(y)} = 0 because
h commutes with P . However, only the total Hamiltonian constraint ctot is of deparametrised form but not
the total diffeomorphism constraint, so Poisson brackets between either h(x) and hj(y) or hj(x) and hj(y)
will not vanish in general. So we achieved a partially deparametrised form for the coupled system of gravity
and dust. Note that this can also be obtained when additional, for instance standard model, matter would
be coupled to gravity and dust. The only difference in this case will be that the constraints c and ca above
will then not only include gravitational contributions but consist of a sum of gravity plus the additional
matter contributions. An example where additional to gravity and dust a K.G. – scalar field was considered
can be found in [19, 20].

We are now in the position to define distinguished coordinates on the reduced phase space defined by
the first class system defined by (2.12) and (2.13). It is clear that T, Sj are pure gauge and that P,Pj can
be solved for the gravitational (and standard matter) field variables. Therefore it is natural to introduce a
four parameter family of gauge fixing conditions defined by T (x, t) = τ, Sj(x, t) = σj where τ ∈ R and σ

6By equivalence we mean that the constraint hypersurface generated by both constraints are the same.
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takes values in the dust space S = S(X ) which by assumption is diffeomorphic to X . The dust space labels
the geodesics and τ is an affine parameter along the geodesics.

The relational framework can now be applied and the results can be described as follows (see [19] for all
the details and the derivations):
Let Sa

j (x) be the inverse of Sj
,a(x) and J(x) := det(∂S/∂x). Consider

q̃ij(σ) =

∫

χ

d3x|J(x)|δ(σj − Sj(x))Sa
i S

b
jqab

p̃ij(σ) =

∫

χ

d3x|J(x)|δ(σj − Sj(x))
Si
,aS

j
,bp

ab

J
(x)

(2.14)

It maybe checked explicitly that

{p̃ij(σ), q̃kl(σ′)} = κδi(kδ
j
l)δ(σ, σ

′) . (2.15)

The interpretation of (2.14) is obvious: These are the coordinate transformations of (qab, P
ab) respectively

into the dynamical coordinate system defined by xσ = S−1(σ). One can arrive at these expressions inde-
pendently by symplectic reduction which explains why (q̃ij , p̃

ij) continue to be a conjugate pair.
Next let

Qjk(τ, σ) :=

∞
∑

n=0

1

n!
{h̃τ , q̃jk}(n)

P jk(τ, σ) :=

∞
∑

n=0

1

n!
{h̃τ , p̃jk}(n) (2.16)

where we introduced

h̃τ :=

∫

S

d3σ
(

τ − T̃ (σ)
)

h̃(σ) with h̃ = h(q̃jk, p̃
jk) (2.17)

It maybe checked explicitly that (2.16) has vanishing Poisson brackets with all constraints.
These expressions can no longer be described in a compact form, they are hopelessly complicated to

evaluate as functions of q̃, p̃. However, as stressed in the introduction, all we need is their Poisson algebra
and their time evolution. To that end, set Qij(σ) := Qij(τ = 0, σ), P ij(σ) := P ij(τ = 0, σ). Then it maybe
checked explicitly that

{P ij(σ), Qkl(σ
′)} = κδi(kδ

j
l)δ(σ, σ

′) . (2.18)

still form a canonical pair, all other Poisson brackets vanishing. Furthermore, let us define

H(σ) =
√

C2 −QijCiCj(σ) , (2.19)

where

C := c̃(q̃jk = Qjk, p̃
jk = P jk), Ci := c̃i(q̃jk = Qjk, p̃

jk = P jk), (2.20)

and c̃, c̃i are just c, ca expressed in the dust coordinate system. Then it may be checked that the physical
Hamiltonian generating time evolution for all observables f(Qij , P

ij) is given by

Hphys :=

∫

S

d3σH(σ) . (2.21)

7



When looking at its variation

δHphys =

∫

S

d3σ
[(C

H

)

δC −
(QijCj

H

)

δCi +
1

2H
CiCjQ

ikQjlδQij

]

(2.22)

=:

∫

S

d3σ
(

NδC +N iδCi +
1

2
HN iN jδQij

)

, (2.23)

one sees that the physical equations of motion generated byHphys are almost equivalent to the ones generated
by the canonical Hamiltonian Hcan with the identification qab(x) → Qij(σ), p

ab(x) → P ij(σ) modulo the
following important differences: First, lapse N and shift N i are not phase space independent functions as
for Hcan where they only encode the arbitrariness of the foliation. Rather they are observable phase space
functions composed out of the elementary fields Qij , P

ij as

N :=
C

H
, N i = −QijCj

H
, (2.24)

Second, there is one additional contribution proportional to the Hamiltonian density H(σ). But H(σ) is a
conserved quantity in the theory and can be freely chosen on the initial value hypersurface, so we may tune
this term to alter the equations of motion as little as we like.

The physical Hamiltonian has an infinite number of conserved charges, namely energy and momentum
density H(σ), Cj(σ). The latter ones generate active diffeomorphisms of the dust space S, they are to
be considered as symmetries of the system rather than gauge transformations generated by the passive
diffeomorphisms of X . Likewise, the former are related in an intricate way to time reparametrisation
invariance in General Relativity.

3 Spherical symmetry

Now we want to specialise the general theory to spherically symmetric spacetimes. We will work directly at
the gauge invariant level and assume that what one usually measures in physical experiments are not the
gauge variant three metrics qab and their canonically conjugate momenta pab in some unphysical coordinate
system xa but rather the physical metricsQij and their physical canonically conjugate momenta P ij measured
with respect to the physical reference frame S given by the dust fields. There is nothing to debate about
the fact that whenever we perform experiments we measure physical gauge invariant quantities and not
the kinematical quantities qab, p

ab. Hence we will require spherical symmetry with respect to the physical
coordinate system σ.

Thus, spherically symmetric spacetimes M = R × S will be characterised by a triplet of Killing vector
fields {~ξ1, ~ξ2, ~ξ3} on S whose commutator algebra is isomorphic to the Lie algebra so(3). As usual, for such
spacetimes it is always possible to find a coordinate chart in which the physical four metric Gµν takes the
special form

Gµν =

(

−N2 +QijN
iN j N i

N j Qij

)

, (3.1)

where i, j = 1, 2, 3 and

Qij(σr) = diag
[

Λ2(σr), R2(σr), R2(σr) sin
2 σθ

]

(3.2)

P ij(σr) = sinσθdiag
[PΛ(σr)

2Λ(σr)
,

PR(σr)

4R(σr)
,

PR(σr)

4R(σr)
sin−2 σθ,

]

, (3.3)

8



where (σr, σθ, σφ) are spherical coordinates of a physical coordinate system on the spatial slices and (Λ, PΛ)
and (R,PR) respectively are conjugate pairs. Hence, the only non vanishing Poisson brackets are given by

{PΛ(σr),Λ(σr
′)} =

κ

4π
δ(σr, σr

′), {PR(σr), R(σr
′)} =

κ

4π
δ(σr, σr

′) . (3.4)

In contrast to the gauge variant formalism lapse N and shift N i are not arbitrary phase space independent
functions but are given by (2.24).
Using these fields the geometry parts of the Hamiltonian and spatial diffeomorphism constraints reduce to:

C =
1

κ
sinσθΛR

2
[PΛ

2

8R4
− PΛPR

4ΛR3
+

2

Λ2

(R′

R

)2
+

4

Λ2

R′′

R
− 4R′Λ′

Λ3R
− 2

R2

]

(3.5)

Cσr =
1

κ
sinσθ

[

− ΛPΛ
′ +R′PR

]

(3.6)

Cσθ
= Cgeo

σφ
= 0 , (3.7)

Hence, the physical Hamiltonian Hphys, which generates the evolution of observables, specialised to the case
of spherically symmetric spacetimes reads as

Hphys =

∫

S

d3σ

√

C2 − 1

Λ2
C2
σr

. (3.8)

4 Equations of motion

Now we want to discuss the physical equations of motion for the spherically symmetric case: Physical time
evolution is generated by the physical Hamiltonian (2.21), so as a first step we need to compute its variation.
This was already demonstrated for the general case at the end of section 2 and now we want to specialise this
result to the spherically symmetric case: For this purpose we must use the physical Hamiltonian Hphys that
has been specialised to the spherically symmetric case in (3.8) and compute its variation while considering
Λ, R, PΛ and PR as the basic variables. This results in the following first order equations of motion:

Λ̇ =
{

Hphys,Λ
}

Ṙ =
{

Hphys, R
}

ṖΛ =
{

Hphys, PΛ

}

ṖR =
{

Hphys, PR

}

. (4.1)

The explicit derivation of physical equations of motion from the variation δHphys of the physical Hamiltonian
has been done for full GR in [19] and it was shown that suitable boundary conditions can be chosen so that
boundary terms can be neglected in that calculation. This carries over to the spherically symmetric case.
A discussion of boundary conditions in the latter case is given in appendix A. Denoting derivatives with
respect to τ and σr with dot and slash respectively the first order equations of motion explicitly read as

Λ̇ =
NΛPΛ

4R2
− NPR

4R
+ (Nσr)′Λ+NσrΛ′ (4.2)

Ṙ = −NPΛ

4R
+NσrR′ (4.3)

ṖΛ = −NC(σr)

4πΛ
− NPΛPR

4ΛR
− 4N ′RR′

Λ2
+

4NR′′R

Λ2
− 4NRR′Λ′

Λ3

+NσrPΛ
′ − (Nσr)2ΛH (4.4)

ṖR = −2NC(σr)

4πR
+

NΛPΛ
2

2R3
− 3NPΛPR

4R2
+

4NR
′2

ΛR
+

4NR′′

Λ
− 4NR′Λ′

Λ2

−4NΛ

R
− 4N ′′R

Λ
− 4N ′R′

Λ
+

4N ′RΛ′

Λ2
+ (Nσr)′PR +NσrPR . (4.5)
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We obtain the same equations when we specialise the first order Hamiltonian equations for full GR given
in [19] to spherical symmetry and additionally set the K.G. – scalar field contributions to zero. Formally
these equations of motion coincide with the ones generated by Hcan for the gauge variant 3–metrics and
momenta up to the term proportional to the Hamiltonian density H in (4.4), but there is one important
difference: N and Nσr are no free functions anymore. Rather they are phase space dependent functions
given by (2.24) and choosing different N,N i is equivalent to working in a different physically distinguishable
coordinate system. This again is due to the fact that Diff(S) is the group of active diffeomorphisms on S
as opposed to the passive diffeomorphism on X .
The Hamiltonian density H(σ) as well as Cσr are constants of motion [19]. The latter corresponds to the
momentum density of the dust denoted by ǫσr(σ), that is Cσr(σ) = −ǫσr(σ). In the following we will restrict
our discussion to the case of vanishing dust momentum density. Then the shift vector Nσr being proportional
to Cσr is vanishing. Furthermore the Hamiltonian density is given by H =

√

C2 −QijCiCj = C and we
automatically get unit lapse N = 1. This means that equations (4.2) - (4.5) simplify significantly, all terms
proportional to Nσr , N ′ and N ′′ vanish. Using that H(σ) is a constant of motion, meaning that it does not
evolve in physical time τ , we can write

H(σ) = sinσθǫ(σr) for ǫ(σr) > 0 . (4.6)

From H(σ) = −P (σ) = ρdust
√

det(Q) we obtain

ρdust(τ, σr) = −sinσθǫ(σr)√
detQ

= − ǫ(σr)

Λ(τ, σr)R2(τ, σr)
. (4.7)

Hence, we can write

C(σr) :=

∫

dσθdσφC(σ) = −
∫

dσθdσφ sinσθΛ(σr)R
2(σr)ρD(τ, σr) = −4πρD(σr)Λ(σr)R

2(σr) . (4.8)

For further analysis we want to transform the first order system (4.2) - (4.5) into a second order system. To
this end one can solve (4.2) and (4.3) for the momenta and then use these expressions and their τ -derivatives
in (4.4) and (4.5). Setting N = 1 and Nσr = 0 and using (4.8) this results in

Λ̈

Λ
+

R̈

R
− Λ̇Ṙ

ΛR
− Λ′R′

Λ3R
−
(Ṙ

R

)2
+

1

Λ2

(R′

R

)2
+

2R′′

Λ2R
− 1

R2
= −ρD

2
, (4.9)

2R̈

R
+

2R′′

Λ2R
− 2Λ̇Ṙ

ΛR
− 2Λ′R′

Λ3R
= −ρD

2
. (4.10)

Furthermore we can use that H(σ) = −ρdust
√

det(Q) yielding

−
(Ṙ

R

)2
+

1

Λ2

(R′

R

)2
− 2ṘΛ̇

ΛR
− 2R′Λ′

Λ3R
+

2R′′

Λ2R
− 1

R2
= −ρD

2
, (4.11)

and the vanishing of the momentum density

Ṙ′ − Λ̇

Λ
R′ = 0 . (4.12)

(4.9) - (4.11) are actually not entirely independent of each other, in fact it is sufficient to keep (4.10) and
(4.11): One can check that solutions to these two equations also satisfy (4.9).
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5 Solving the equations of motion

In this section we will discuss the solution of the equations of motion. We will mainly follow [25] for the
derivation of this solution using a slightly different notation here. In order to solve (4.9) - (4.12) it is first
important to notice that the (physical τ -) time dependencies of Λ(τ, σr) and R(τ, σr) are not independent
from each other. We can solve (4.12) and get:

Λ(τ, σr) = R′(τ, σr)
1

√

1 + E(σr)
, (5.1)

where E(σr) is a so far arbitrary, time–independent function7 of σr. Exploiting this, we can rewrite (4.10)
and (4.11) as

2R̈

R
+
(Ṙ

R

)2
− E

R2
= 0 (5.2)

R̈

R
− Ṙ′Ṙ

R′R
+

E′

2R′R
= −ρD

4
. (5.3)

First, by multiplying (5.2) by R2Ṙ we get

2RṘR̈+ Ṙ3 −EṘ = R(2ṘR̈) + Ṙ(Ṙ2 − E) =
d

dτ

[

R(Ṙ2 − E)
]

= 0

⇒ U̇ = 0 , (5.4)

where we defined U = R(Ṙ2 − E). U does not depend on τ so we can write U(τ, σr) = F (σr) for an so far
arbitrary σr-dependent function F (σr). By differentiating U with respect to σr we get

U ′ = F ′ = R′(Ṙ2 −E) + 2RṘṘ′ − E′R . (5.5)

Dividing this by R2R′ we see that F ′ is equal to the lefthand side of (5.2) minus 2 times the lefthand side
of (5.3). Thus, we can rewrite F ′ as

F ′ =
1

2
R′R2ρD =

1

2

√
1 + E ΛR2ρD = −1

2

√
1 + E ǫ(σr) , (5.6)

where we used (5.1) in the first equality and (4.7) in the second one. Integrating the equation above once,
we end up with

F (σr) = −1

2

σr
∫

0

dλ ǫ(λ)
√

1 + E(λ) + α =: −1

2
M(σr) +

1

2
M(0) , (5.7)

where M(0) is an so far arbitrary (constant) mass. M(σr) can be interpreted as the effective gravitating
mass (multiplied by 1/4 since the relation between the Schwarzschild radius and the central mass involves
a factor of 2) of the dust inside a sphere with radial label σr. So finally the equation U = F yields

Ṙ = ±
√

F

R
+ E . (5.8)

We arrive at the following general form of the metric

ds2 = −dτ2 +
R

′2(τ, σr)

1 + E(σr)
dσr

2 +R2(τ, σr)dΩ
2

Ṙ(τ, σr) = ±
√

E(σr) +
F (σr)

R(τ, σr)

ρD(τ, σr) =
2F ′(σr)

R′(τ, σr)R2(τ, σr)
, (5.9)

7It will become clear later on why we have chosen this rather complicated form for the integration constant.
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with E(σr) > −1 and F (σr) must be chosen such that the expression under the square root in the second
line is non–negative for all R(τ, σr), see section 7 for further elaborations on this topic.
The solution for R(τ, σr) for general E(σr) can only be given in parametric form, distinguishing the cases
E > 0, E = 0, E < 0 and using the conventions of [26] one finds:

• E(σr) > 0 :

R(τ, σr) =
F (σr)

2E(σr)

(

cosh(η)− 1
)

(

sinh(η)− η
)

=
2
[

E(σr)
] 3
2 (β(σr)− τ)

F (σr)
(5.10)

• E(σr) < 0 :

R(τ, σr) =
F (σr)

2(−E(σr))

(

1− cos(η)
)

(

η − sin(η)
)

=
2
[

− E(σr)
] 3
2 (β(σr)− τ)

F (σr)
(5.11)

• E(σr) = 0 :

R(τ, σr) =
[3

2

√
F
(

β(σr)− τ
)

]2/3
(5.12)

Here β(σr), E(σr) and F (σr) are so far arbitrary functions of σr which allow a coordinate choice by a partic-
ular form of β(σr) and two further physical quantities. As mentioned above F in (5.7) can be understood as
the effective gravitating mass within radius σr and E(σr) determines the time evolution of R as well as the
local geometry. For a more detailed discussion see for instance [27]. The time τ at which R(τ, σr) is equal
to zero is β(σr) and one calls τ ≥ β(σr) the big bang time whereas τ ≤ β(σr) is referred to as the recollapse
time. Often one refers to these three cases as elliptic, parabolic and hyperbolic for E(σr) < 0, E(σr) = 0
and E(σr) > 0 respectively. The solution in (5.9) can easily be identified as the whole class of Lemâıtre–
Tolman–Bondi (LTB) metrics (see appendix B.3), so we managed to map the problem of solving the physical
τ -evolution of gauge–invariant three–metrics Qij to the problem of analysing the LTB class of solutions in
standard GR. However, it is important to note that opposed to the standard LTB models, the mass term
M(σr) enters with the opposite sign in F (σr) = 1

2(M(0) − M(σr)). That means the effective gravitating
mass will decrease when going further away from the central mass. This happens because the dust clocks,
which have been chosen as a physical reference system, have negative energy.

We can fix the coordinate choice included in β(σr) and the mass M(0) in (5.7) by requiring that in the
vacuum case the general solution above should reduce to the Lemâıtre solution [28] given by

ds2 = −dτ2 +
Rs

RLem(τ, σr))
dσr

2 +R2
Lem(τ, σr)dΩ

2 with RLem(τ, σr) =
[3

2

√

Rs(σr − τ)
]2/3

(5.13)

where Rs = 2MG/c2 denotes the Schwarzschild radius which simplifies in units h = c = G = 1 to Rs = 2M .
The Lemâıtre solution is diffeomorphic to the Schwarzschild solution and can be obtained from the latter
through a coordinate transformation into a comoving coordinate system. So this metric describes the local
coordinate system of a free falling observer in a spherically symmetric gravitational field originating from a
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central mass M, more details can be found in appendix B.1. Matching the Lemaitre with the LTB solution
we obviously need to consider the case E(σr) = 0. This is often referred to as the marginally bound case.
Furthermore, in the vacuum case, ǫ(σr) is zero and as a consequence F ′ vanishes. Hence, in this case F is just

equal to the constant 1
2M(0) introduced in (5.7). Using this we obtain R(σr, 0) =

[

3/2
√

1
2M(0)(β(σr))

]2/3

whereas RLem(σr, 0) =
[

3/2
√
Rs(σr)

]2/3
. Thus, we can match these two radii by simply choosing β(σr) = σr

and identifying M(0) = 4M because Rs = 2M = 1/2M(0).

5.1 Newtonian limit

Let us have a look at the Newtonian limit of this spacetime: In [25] it was argued that R(τ, σr) is the quantity
that should actually be identified with “Newtonian distance”, for instance in the context of luminosity
distance. Having this in mind let us look at equation (5.8) again. By differentiating this one with respect
to τ we obtain

R̈ = − F

2R2
, (5.14)

which coincides formally with Newton’s equation of motion for a point particle under the influence of a
central mass. The crucial difference is that the effective gravitating mass F/2 is less than the central mass
M = Rs/2. So the gravitational field is weaker than one would expect without having the dust around.
There is one remark necessary concerning the falloff behaviour of R(τ, σr): One might wonder whether the
boundary conditions discussed in appendix A are not violated by the explicit form of R as in (5.12). The
solution to this puzzle lies in the fact that in the derivation of the falloff conditions (A.3) we assumed a
coordinate system which approaches a flat spherical Minkowskian one in the asymptotic limit. In contrast,
the coordinate system we are using here is the coordinate system of a freely falling observer so one cannot
expect (5.12) to hold automatically. Nevertheless, we assumed that ǫ(σr) → 0 for σr → ∞, so in the limit
of vanishing dust density and in the marginally bound case (that is E=0) the LTB coordinates merge into
Lemaitre coordinates which themselves can be transformed to Schwarzschild coordinates having the correct
Newtonian limit (see appendix B.1) .

We have seen above that the exact Schwarzschild solution is obtained for F =const. and E = 0. How-
ever, it is possible to obtain the Schwarzschild solution also for certain E 6= 0 and F =const. The idea is to
transform the LTB coordinates first into generalised Painleve – Gullstrand coordinates (GPG), introduced
in [29] and then to Schwarzschild coordinates. For later comparison, let us first transform the Lemaitre
solution from Lemaitre coordinates (τ, σr) to the ordinary Painleve – Gullstrand (PG) coordinates (τ,R)
corresponding to observers moving on radial timelike geodesics labelled by Schwarzschild radial coordinate
R. This yields a non – diagonal metric whose line element is of the form [30, 31]

ds2 = −dτ2 +

(

dR+

√

Rs

R
dτ

)2

+R2dΩ2 (5.15)

where we used τ for the Lemaitre and PG time coordinate. We present in appendix B.2 how to transform
from Schwarzschild to PG coordinates. For a pedagogical introduction to PG coordinates and more details
see for instance [32]. Often one uses Kruskal coordinates to obtain a maximally extended Schwarzschild
spacetime. The PG coordinates do not cover the total Kruskal manifold. In the form given in equation
(5.15) they cover the black hole horizon and the black hole singularity at R = 0 hence the physically inter-
esting part of the manifold for our discussion. If we choose the sign of Ṙ = ±

√

E + F/R to be negative then
we obtain another set of coordinates with a line element similar to that in (5.15) but with a minus sign in
front of the off diagonal term. These PG – coordinates will then describe the so called ”white hole region”
of the Kruskal manifold. One of the properties of Kruskal coordinates is that R is given only implicitly
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therefore for our purpose of discussing the Newtonian limit GPG coordinates are more appropriate. One of
the interesting properties of the ordinary PG metric shown in (5.15) is that the spatial hypersurfaces (that
is dτ = 0) are flat since then ds2 = dR2 + R2dΩ2 and all information about the curvature is encoded in
the shift vector given by ~N = (NR :=

√

Rs/R, 0, 0). Furthermore, asymptotically (R → ∞) the PG metric
coincides with the Minkowski metric.

Now we transform the LTB coordinates (τ, σr, θ, φ) into GPG coordinates (τ,R, θ, φ). Following [29] this
yields the metric:

ds2 = −dτ2 +

(

dR+

√

E(τ,R) + F (τ,R)
R dτ2

)

1 + E(τ,R)
+R2dΩ2 (5.16)

subject to E(τ,R) > −1. The functions E and F that are functions of σr only in LTB coordinates now
become functions depending on τ and R in GPG coordinates. Therefore the time dependence of E and F
in these coordinates is restricted by the partial differential equations

∂E(τ,R)

∂τ
−
√

E(τ,R) +
F (τ,R)

R

∂E(τ,R)

∂R
= 0

∂F (τ,R)

∂τ
−
√

E(τ,R) +
F (τ,R)

R

∂F (τ,R)

∂R
= 0 (5.17)

More details about the transformation from LTB to GPG coordinates can be found in appendix B.4. We
will not comment on the full class of solutions of this system of PDE’s but just remark that e.g. (local)
analytic solutions can be found by providing analytic initial data F (0, R), E(0, R) and determining the
coefficients of the Taylor expansion (in terms of τ) of E(τ,R), F (τ,R) by taking higher derivatives of (5.17)
at τ = 0 (Kovalevskaja method). For instance, a trivial solution is given by taking E =const. and F =const.
In the special case E(τ,R) = 0 and F (τ,R) = Rs = const the GPG metric coincides with the PG metric
justifying the name generalised Painleve – Gullstrand metric. In contrast to the PG solution in general the
spatial hypersurfaces of the GPG metric are no longer flat due to the 1/(1 + E) factor in front of dR2. So
one could think that in the limit of vanishing dust density ǫ(t, R) → 0 a transformation to Schwarzschild
coordinates is only possible in the marginally bound case E = 0. As discussed in [29] this is not the case
and we summarise their discussion in the following:
Let us consider the case of vanishing dust density ǫ(t, R) = 0. Since ǫ(τ,R) ∼ F ′ it follows F = Rs. The
equation for F in (5.17) is thus trivially satisfied. For each function E satisfying the equation in (5.17) there
exists a transformation from GPG coordinates (τ,R, θ, φ) to Schwarzschild coordinates (T,R, θ, φ) given by

(

∂τ

∂T

)2

= 1 + E

∂τ

∂R
=

√

E + Rs

R

1− Rs

R

(5.18)

Thus one obtains a family of coordinate transformations parametrised by the functions E. Indeed, the
integrability condition for the system (5.18) leads back to the first condition in (5.17) (notice that one has
to write E(T,R) ≡ E(τ(T,R), R) in order to derive it).
Therefore by first transforming the LTB to GPG coordinates it is possible to transform to Schwarzschild
coordinates in the limit of vanishing dust density for all (allowed) functions E. Thus we can transform to
Schwarschild coordinates not only in the marginally bound case E = 0 but also in the elliptic (E < 0) and
hyperbolic (E > 0) cases provided F =const. Consequently, the Newtonian limit is correctly implemented
for all values of E and F =const.
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6 Semistatic properties

Now we want to analyse whether the physical spacetime (M,G) under consideration is semistatic in a certain
sense or not. We already know that the physical metric Gµν takes the form of a Lemâıtre metric in the limit
ǫ(σr) → 0 which in turn is just a Schwarzschild spacetime written in comoving coordinates (see appendix
B.1). So one would expect to recover its static properties in some limit.
Let us have a look at the Killing equation

(L~ξ
Gµν)

!
= 0 (6.1)

for the observable metric Gµν and examine whether there exists a timelike Killing vector field ~ξ. For the

Lemâıtre metric such a Killing vector field is given by ~ξ = [1, 1, 0, 0]T , at least outside the event horizon, so
we would expect to find something similar here. We will start with the ansatz

~ξ =
[

ξτ (τ, σr), ξ
σr (τ, σr), 0, 0

]T
. (6.2)

For the physical metric described above (6.1) reduces to

ξ̇τ = 0 (6.3)

ξτ Ṙ′ + ξσrR′′ +R′(ξσr )′ = 0 (6.4)

ξτ Ṙ+ ξσrR′ = 0 (6.5)

−(ξτ )′ +R′2ξ̇σr = 0 . (6.6)

From (6.5) we get

ξσr = − Ṙ

R′
ξτ , (6.7)

and using (6.3) we obtain

ξ̇σr =
[

− R̈

R′
+

ṘṘ′

R′2

]

ξτ . (6.8)

(6.6) can be solved for

(ξτ )′ =
[

−R′R̈+ ṘṘ′
]

ξτ , (6.9)

and using this in (6.7) we see that

(ξσr)′ =
[

− Ṙ′

R′
+

ṘR′′

R′2
+ ṘR̈− Ṙ2Ṙ′

R′

]

ξτ . (6.10)

Putting all this together we obtain a condition on the solution

R′R̈− ṘṘ′ !
= 0 , (6.11)

and using the explicit form of the solution (5.12) we see that this holds only if

F ′(σr)
!
= 0 . (6.12)
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This means that there exists a timelike Killing vector field ~ξ only if ǫ(σr) = 0, that is if the dust matter
fields are vanishing.
Nevertheless, as one can easily check, the metric is invariant under the action of the vector field

~ξ0 :=
[

1,− Ṙ

R′
, 0, 0

]T
(6.13)

up to terms of at least O(ǫ(σr)). So with

(L~ξ0
G)µν = O(ǫ(σr)) (6.14)

there is a precise sense in which the physical metric Gµν can be called “semistatic”. For vanishing ǫ(σr) this
would be an exact symmetry and the metric would be isomorphic to the standard Schwarzschild metric.
ǫ(σr) = 0 would be inconsistent because we are real dust fields as dynamical clocks rather than ideal ones
and vanishing ǫ(σr) would mean that the clocks do not carry any energy at all8. Nevertheless, ǫ(σr) is a
free function in the theory and we can choose it arbitrarily small9. So by tuning ǫ(σr) in the right way we
can get as close to a static spacetime as we wish.

7 Discussion of Singularities

In this section we will discuss the possible singularities which might appear for the metric given in (5.9) and
displayed again below:

ds2 = −dτ2 +
R′2

1 + E(σr)
dσr

2 +R2dΩ2 . (7.1)

As is well known from earlier studies concerning LTB spacetimes (see for example [33, 27]) there appear
two different kinds of singularities: Recalling that the dust density was given by ρdust = F ′

R′R2 there are
potentially two cases when it can diverge. The first one, if R(τ, σr) = 0, is called a collapse singularity in
the literature, and the second, if R′(τ, σr) = 0, is known as a shell crossing singularity. It was pointed out
by [34] for the first time that in the latter case an appropriate decay behaviour for F ′ when σr → ∞ can
avoid the divergence of ρdust in the shell crossing case. From the line element above we can read off that
in the case of a collapse singularity the metric components Qθθ and Qφφ vanish while for a shell crossing
singularity only Qσrσr is zero.

7.1 Shell crossing singularities

For standard LTB spacetimes with positive dust densities one can always choose the arbitrary functions
E(σr), F (σr) in such a way that shell crossing singularities will not appear [33]. This holds not only for the
marginally bound case (E(σr) = 0) but also for the hyperbolic (E(σr) > 0) and elliptic (−1 < E(σr) < 0)
case.
In our framework the dust energy density enters with negative sign. Therefore F ′(σ) has negative sign.
Furthermore we have the requirement F/R+E > 0. Consequently we arrive at slightly different conditions
on E(σr), F (σr) in order to avoid shell crossing singularities.
The analysis for E(σr) 6= 0 involves the parametric solutions for R(τ, σr) shown in (5.10) and (5.11).
A singularity discussion becomes more involved in these two cases and we will restrict ourselves to the
marginally bound case (E(σr) = 0) here, similar results can also be obtained for the hyperbolic and elliptic

8The dust part of the Hamiltonian constraint would vanish.
9There are certain restrictions on ǫ(σr) which have to be fulfilled in order to avoid singularities, see section 7 for further

comments on this issue.
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case.
If E = 0 then Qσrσr is given by

R′2(τ, σr) =
1

4R(τ, σr)F (σr)

[

F ′(σr)(σr − τ) + 2F (σr)
]2

. (7.2)

Considering the constraints F > 0, F ′ < 0, σr − τ ≥ 0, in order to avoid shell crossing, i.e. R′ 6= 0 for all
τ, σr we obviously must have

0 < −F ′ <
2F

σr − τ
or − F ′ >

2F

σr − τ
> 0 (7.3)

for all σr, τ . Since F only depends on σr, for any given σr we can choose σr − τ arbitrarily small so that for
any choice of F the second possibility can be violated. Hence the only dynamically stable condition is

0 < −F ′ <
2F

σr − τ
(7.4)

Since σr ≥ σr − τ ≥ 0, this condition is certainly implied by

0 < −F ′ <
2F

σr
⇔ 0 < [ln(Fσr

2)]′ (7.5)

Since the logarithm is an increasing function, we obtain that Fσr
2 should be an increasing function while F

should be a decreasing function. This leaves us with a large class of possible F , for instance F (σr) =
Rs

1+σr

which also fulfills F ≤ Rs. Inserting this form of F into R and R′ yields the following density for the dust

ρdust = −2

3

1
(

1 + 1
2 (σr + τ)

)

(σr − τ)
(7.6)

The dust density diverges at τ = σr as expected because this is exactly the singularity at R = 0 that can
not be avoided, see also discussion in the next section. If we take the limit σr → ∞ for fixed values of τ
then ρdust → 0. Hence, ρdust shows a physically reasonable behaviour.

7.2 Collapse singularities

The second kind of singularities are those where R = 0 and therefore besides the dust density ρdust also the
expression for Ṙ2 in (5.9) becomes singular. These singularities occur for all three cases – marginally bound,
hyperbolic and elliptic – when τ → σr. Having collapsing dust shells in mind this is exactly the moment
when the dust shell labelled by σr reaches the singularity. Note that close to R = 0 the expression for Ṙ2

is dominated by the E = 0 regime and thus we will again restrict our discussion to the marginally bound
case. Looking at the explicit form of R(τ, σr) written down in (5.12) we can analyse how the different sign
of the dust alters the behaviour during the collapse. In contrast to the shell crossing singularity there is no
way to get around this collapse singularity for the system gravity plus pressureless dust. As long as we do
not introduce additional matter fields and take their non–gravitational interactions into account10 we end
up with a singularity after τ = σr, just as in the gauge variant framework using standard LTB – models.

Finally we want to summarise all the physical selection criteria for ǫ(σr) in the marginally bound case

10In phenomenological matter models this is usually done by introducing matter with non vanishing pressure. This pressure
is mandatory in order to describe stable configurations such as stars. In the gauge invariant formalism discussed in this article
one would essentially follow the same steps, but one has to take into account the additional component ρdust when setting up
the equation of state. For non–collapsing configurations ρdust could be tuned arbitrarily small.
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we have encountered so far: First, due to the special role of the dust fields in our formalism, we demand
F ′ < 0 or equivalently ǫ > 0. Second we need to ensure that 0 < F (σr) ≤ Rs, otherwise (5.12) is not a

solution anymore; in terms of ǫ this means that
∞
∫

0

dσrǫ(σr) < 2Rs. Third, we need to choose ǫ(σr) such that

|F ′(σr)| = −F ′(σr) <
2F (σr)

σr
is fulfilled in order to not run into any shell crossing singularities. Given these

conditions the physical metric Gµν is well defined until τ → σr when a free falling observer approaches the
central singularity.

8 Conclusions

The task of finding Dirac observables for General Relativity involves the construction of quantities that
commute with all constraints of General Relativity. Dirac observables are thus the associated to gauge
invariant objects for General Relativity where the gauge group is closely related to Diff(M), the group of
diffeomorphism of the underlying manifold M. The reason why it is more complicated to construct gauge
invariant quantities in the framework of General Relativity is that the mathematical structure of Diff(M) is
richer than the structures of the gauge groups used for instance in the standard model of particle physics. In
the context of the Relational formalism one can at least formally construct Dirac observables , with respect
to chosen clocks, one for each occurring constraint. Choosing these clocks means choosing an observer that is
dynamically coupled to the system. Considering the case of vacuum gravity these clocks must necessarily be
four components of the four metric gµν . If one applies the techniques developed in the relational framework
and tries to compute (Dirac) observables for pure GR then one realises that the physical time evolution
of those observables does not resemble the Einstein equations. This is because their dynamics is described
by an observer who sits in a laboratory whose motion through spacetime is defined through the dynamics
of these four metric components. Of course, theoretically there always exist a coordinate transformation
from this observer to for instance a free falling observer, however, practically such a transformation will
be hard to find. Fortunately, for certain types of matter coupled to gravity, the constraints, consisting of
the gravitational and the matter contribution, can be rewritten in (partially) deparametrised form. Hence,
these enlarged systems fall into the class of deparametrisable theories for which the question of observables
can be addressed technically easier then in the general case. This idea was used in [19, 20] where instead
of considering pure gravity (i.e. the Einstein–Hilbert action) one considers gravity plus pressureless dust–
matter fields (i.e. Einstein–Hilbert plus dust action). The dust fields become the clocks of the system and
correspond to a dynamically coupled free falling observer. One obtains physical equations of motion for the
observable 3–metric Qjk and observable momenta P jk in the dynamical reference frame defined through
the dust fields. Of course, when introducing a dynamically coupled observer, we have to ensure that the
occurring fingerprints of the observer are still in agreement with experimental data.

That this is the case for the cosmological sector was already shown in [19, 20] and in this article we
demonstrated that this framework also describes gravitational physics in the spherically symmetric sector
to arbitrary precision. We showed that within this sector the dynamical evolution of Qij , P

ij, generated by
a physical Hamiltonian Hphys, is in one—to–one correspondence with the class of Lemaitre–Tolman–Bondi
(LTB) solutions for standard GR. Interpreted in our language, the choice of lapse and shift considered for
the LTB solutions correponds to a gauge fixing of the (spherically symmetric) spacetime diffeomorphism
invariance whose gauge invariant extension is precisely induced by our choice of clocks. In addition, while in
the usual LTB framework one starts with a spherically symmetric, pressure free, perfect fluid Ansatz for the
energy momentum tensor whose dynamics is then derived from the Bianchi identity, here we start with a
fully covariant matter Lagrangian whose equations of motion then reduce to the usual ones. In other words,
our framework provides a Lagrangian underpinning of the usual LTB framework. That this works so well is
non trivial as we discuss in appendix C.

The LTB class of solutions has been carefully investigated in the literature and its dynamics in the
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comoving frame is well understood. One might object that that the LTB class does not contain static
solutions, at least for non–vanishing dust energy which is mandatory if one wants to use the dust fields as
clocks. But this had to be expected when taking into account the influence of a realistic observer (i.e. an
observer which is dynamically coupled to the system as opposed to a mere test observer). In a sense one has
to abandon the idealisation of a static (vacuum11) spacetime when describing physics in terms of observable
quantities.

Nevertheless, we showed that there exists a well defined notion of a semistatic spacetime and one can
get as close to the standard Schwarzschild solution as desired by appropriately choosing certain constants of
motion (which are related to the dust energy density). Additionally, we discussed that by transforming the
LTB system to generalised Painleve – Gullstrand coordinates and considering the limit of vanishing dust
density there exists a well defined coordinate transformation to Schwarzschild coordinates for the elliptic,
hyperbolic and marginally bound case. Consequently, in the limit where the dust density can be neglected
the Newtonian limit is correctly implemented. Finally, although we consider phantom dust rather than usual
dust, there exists a range of solutions for which shell crossing singularities are avoided while the collapse
singularity is unavoidable.

To conclude, the framework presented in [19, 20] seems to be compatible with observations, at least in
the cosmological and spherically symmetric sectors which are the most relevant analytically solvable ones
when it comes to phenomenological applications. This framework might also be useful when it comes to
quantising General Relativity. The fact that the constraints have already been solved at the classical level
opens the door for a reduced phase space quantisation as opposed to the Dirac programme which is usually
employed in Loop Quantum Gravity [22, 23]. First steps into this direction have already been performed in
[21] and a detailed analysis of this framework in the context of spherical symmetry is the subject of future
work [24].
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A Boundary conditions

We are dealing with asymptotically flat spacetimes and hence must impose suitable boudary conditions.
For the full theory, these boundary conditions for the gauge invariant observables as obtained via Brown
– Kuchař dust reduction were discussed extensively in [19]. Here we need their reduction to spherical
symmetry. Consider, as in the main text, a spherically symmetric coordinate system as (σr, σθ, σφ). Tensor
indices on the dust manifold S are denoted by i, j, k, · · · = 1, 2, 3. The reduced observables are Qij(σ) and
their canonically conjugate momenta P ij(σ), both of which are observables in the sense described above. As
usual, spherical symmetry constrains these fields to the following non vanishing components and coordinate

11These considerations do not necessarily hold for more realistic models with additional matter fields, i.e. equilibrium states
for complex systems such as stars still exist, just the point of equilibrium will be slightly shifted due to the influence of the dust.
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dependence respectively

Qij(σr) = diag
[

Λ2(σr), R2(σr), R2(σr) sin
2 σθ

]

(A.1)

P ij(σr) = sinσθdiag
[PΛ(σr)

2Λ(σr)
,

PR(σr)

4R(σr)
,

PR(σr)

4R(σr)
sin−2 σθ,

]

. (A.2)

Following [35], in particular the parity conditions derived there, the following decay behaviour is sufficient
to guarantee a well defined symplectic sytructure

Λ → 1 +
µ

σr
+O(σr

−(1+ǫ))

R → σr +O(σr
−(1+ǫ))

PΛ → O(σr
−ǫ)

PR → O(σr
−(1+ǫ)) , (A.3)

In order to derive well defined equations of motion one should also make sure that the Hamiltonian is
finite and functionally differentiable. In contrast to the gauge variant framework, it is not the canonical
Hamiltonian (with independent lapse and shift fields) but rather the physical Hamiltonian (with prescribed,
field dependent lapse and shift) that one has to consider. While their variations are algebraically almost
identical, the field dependence of lapse and shift prevents one from adding the usual ADM counterterms
under the usual decay behaviour.

In [19] it was already emphasised that, due to the dynamical nature of lapse and shift in this framework
(see (2.24)), the (geometry parts of the) diffeomorphism constraints Ci must fall off strictly faster than the
(geometry parts of the) Hamiltonian constraint C in order to accommodate asymptotically flat spacetimes:

lim
σr→∞

Ci

C
→ 0 (A.4)

So one has to be careful in choosing elementary fields Qij , P
ij such that these conditions hold. As we have

seen in the last section the standard conditions are generally not strong enough for this purpose, they only
guarantee that C → O(σr

−(1+ǫ)) and Cσr → O(σr
−(1+ǫ)). In this work we did satisfy this stronger fall

off behaviour by demanding that the shift (or equivalently the momentum density) N i = −QijCj/H = 0
vanishes. It is then sufficient to add to the physical Hamiltonian the ADM mass term

EADM =
1

κ
8π lim

r→∞

[

Λ2σr +
R2

σr
− 2RR′

]

= µ . (A.5)

In the general case one has to choose dynamical fields Λ, R, PΛ, PR such that, in addition to (A.3), also
(A.4) holds. This means that the physical Hamiltonian decays as H → O(σr

−(1+ǫ)) and asymptotically
lapse and shift behave as

N :=
C

H
→ 1 (A.6)

N i := −QijCj

H
→ 0 . (A.7)

B Spherically Symmetric Coordinate Systems

In the main text we have worked with various presentations of spherically symmetric metrics in various
coordinate systems. For the benefit of the reader we recall here how these coordinate systems are related with
each other. Our notation is as follows: We call (τ, σr) the Lemaitre time and radial coordinate which coincide
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with our dust time and radial coordinate. Schwarzschild coordinates are denoted by (T,R). The (generalised)
Painleve – Gullstrand hybrid coordinates are (τ,R). The Lemaitre, Schwarzschild and strict Painleve –
Gullstrand solutions are nothing else than coordinate transformations of the static vacuum Schwarzschild
solution into comoving coordinates (on restricted patches of the fully extended Kruskal spacetime). The
LTB family are not vacuum solutions and are expressed most easily in Lemaitre coordinates. Transforming
the non trivial LTB solutions (i.e. non vanishing dust energy density) into Schwarzschild coordinates is not
possible without picking up a non vanishing shift since these spacetimes are neither stationary nor static.
However, there is a notion of semi staticity as elaborated on in the main text.

B.1 Lemâıtre solution

Starting from the usual Schwarzschild solution for vacuum spacetimes one can perform a coordinate trans-
formation into comoving coordinates and arrive at what is known as the Lemâıtre solution [28].

Let us start with the Schwarzschild solution in a spherical coordinate chart (T,R, θ, φ), where T and R
approach the usual Minkowskian temporal and radial coordinates of an observer located at spatial infinity.
In this coordinate system the line element can be written as

ds2 = −
(

1− Rs

R

)

dT 2 +
1

1− Rs

R

dR2 +R2dΩ2 , (B.1)

where Rs = 2MG/c2 is the Schwarzschild radius, M the central mass and dΩ2 := dθ2 + sin2 θdφ2 the area
element on the unit sphere. That means the metric components are given by

gSchwµν := diag
[

−
(

1− Rs

R

)

,
1

1− Rs

R

, R2, R2 sin θ
]

, (B.2)

Then we perform the following coordinate transformation

dτ := dT +

√

Rs

R

( 1

1− Rs

R

)

dR (B.3)

dσr := dT +

√

R

Rs

( 1

1− Rs

R

)

dR , (B.4)

or in integrated form

τ(T,R) = T + 2
√

RsR−Rs log





1 +
√

R
Rs

∣

∣1−
√

R
Rs

∣

∣



 (B.5)

σr(τ,R) = t(T,R) +
2

3

√

R

Rs
R . (B.6)

Obviously this coordinate transformation is only valid for R 6= Rs where the Schwarzschild coordinates are
not well defined. The inverse coordinate transformation is given by

R(τ, σr) =
[

3/2
√

Rs(σr − τ)
]2/3

(B.7)

T (τ, σr) = τ − 2
√

RsR(τ, σr) + log
(

1 +

√

R(τ, σr)

Rs

)

− log
∣

∣

∣1−
√

R(τ, σr)

Rs

∣

∣

∣ , (B.8)

or in differential form

dT =
1

1− Rs

R

dτ +
1

1− Rs

R

dσr (B.9)

dR = −
√

Rs

R
dτ +

√

Rs

R
dσr . (B.10)
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This leads to the following line element for a vacuum spacetime in the coordinate chart (τ, σr, θ, φ)

ds2 = −dτ2 +
Rs

R(τ, σr)
dσr

2 +R2(τ, σr)dΩ
2 . (B.11)

This solution is known as Lemâıtre metric and as one can easily read of the metric components in this
coordinate chart

gLemµν = diag
[

− 1,
Rs

R(τ, σr)
, R2(τ, σr), R2(τ, σr) sin

2 θ
]

. (B.12)

This metric describes the local coordinate system of an observer who is freely falling under the the influence
of the central mass. It it not obvious (as for the Schwarzschild solution) right from the beginning that this
solution describes a static spacetime, but one can easily calculate that for R > Rs there exists a timelike,
hypersurface–orthogonal Killing vector ~ξK ∝ [1, 1, 0, 0]T .

B.2 Painleve – Gullstrand – Solution

In order to transform the Schwarzschild solution shown in equation (B.1) and (B.2) respectively to Painleve
– Gullstrand coordinates, we introduce an observer that moves along ingoing radial, timelike geodesics of
the Schwarschild spacetime. Thus the observer’s time is identical with the Lemaitre time τ introduced in the
last section in equation (B.3) in differential form and in equation (B.5) in integrated form. In contrast to the
Lemaitre metric the Painleve – Gullstrand solution [30, 31] has as the radial component the Schwarzschild R.
Hence, we want to perform a transformation from the Schwarzschild coordinates (T,R, θ, φ) to the Painleve
– Gullstrand coordinates (τ,R, θ, φ). This coordinate transformation has the following differential form

dτ := dT +

√

Rs

R

(

1

1− Rs

R

)

dR (B.13)

The vacuum spacetime in the coordinate chart (τ,R, θ, φ) is then given by the following line element [30, 31]

ds2 = −dτ2 +

(

dR+

√

Rs

R
dτ

)2

+R2dΩ2 (B.14)

The components of the Painleve – Gullstrand metric are given by

gPG
µν =













−1
√

Rs

R 0 0
√

Rs

R 1 0 0

0 0 R2 0
0 0 0 R2 sin2 θ













(B.15)

This metric is no longer diagonal but still has a simple form. In particular the spatial hypersurfaces
associated to this spacetime are flat because for dt = 0 we get ds2 = dR2 + R2dΩ2. All information about
the curvature is encoded in the shift vector ~N = (NR =

√

Rs/R, 0, 0). As in the case of the Lemaitre
solution the coordinate transformation from Schwarzschild to Painleve – Gullstrand coordinates can only
be performed when R 6= Rs. This coordinate transformation corresponds to a negative Ṙ in Schwarzschild

coordinates (in general Ṙ = ±
√

Rs

R ), R decreases in time since we are considering observers moving along

ingoing geodesics. Choosing the opposite sign for Ṙ yields the transformation

dτ := dT −
√

Rs

R

(

1

1− Rs

R

)

dR (B.16)
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For this form of dt we end up with the following line element

ds2 = −dτ2 +

(

dR−
√

Rs

R
dt

)2

+R2dΩ2 (B.17)

This line element corresponds to the so called ”white hole region” of the extended Schwarzschild spacetime.

B.3 Lemâıtre–Tolman–Bondi solutions

The Lemâıtre–Tolman–Bondi solution (LTB) is a family of exact solutions to Einstein’s field equations (see
e.g. [28, 36, 25]) that describe dynamics of a spherically symmetric spacetime filled with inhomogeneous,
pressureless dust with energy momentum tensor Tµν = ρDUµUν where ρD is the dust’s energy density and
Uµ = [1, 0, 0, 0]T its velocity vector field in comoving coordinates12.
A general solution to this problem (in a spherical coordinate chart (τ, σr, θ, φ)) is given by

ds2 = −dτ2 +
R

′2(τ, σr)

1 + E(σr)
dσr

2 +R2(τ, σr)dΩ
2

ρD(τ, σr) =
2F ′(σr)

R2(τ, σr)R′(τ, σr)

Ṙ(τ, σr) = ±
√

E(σr) +
F (σr)

R(τ, σr)
, (B.18)

where slash and dot denote derivatives with respect to σr and τ respectively.
So one can characterise a particular model by choosing particular σr-dependent functions E(σr) and F (σr).
Then the physical radius R(τ, σr) is fixed up to an arbitrary function β(σr) which characterises different
initial conditions for R(σr, 0). The quantity E(σr) determines the evolution of R as well as the local geometry
and F (σr) is related to the mass inside a shell with radial label σr, see [25] or for a more detailed explanation
of the physical relevance of this model.
For different values of E(σr) one obtains different solutions, which using the notation of [26] can be given
in parametric form as follows:

• E(σr) > 0:

R(τ, σr) =
F (σr)

2E(σr)
(cosh η − 1)

(sinh η − η) =
2E3/2(σr)(β(σr)− τ)

F (σr)
(B.19)

• E(σr) = 0:

R(τ, σr) =
[3

2

√

F (σr)(β(σr)− τ)
]2/3

(B.20)

• E(σr) < 0:

R(τ, σr) =
F (σr)

2(−E(σr))
(1− cos η)

(η − sin η) =
2(−E(σr))

3/2(β(σr)− τ)

F (σr)
(B.21)

12See appendix C for a covariant derivation of the equations of motion for this model.
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The LTB–family of solutions is widely used to describe astrophysical situations, for example it can be used
to model the gravitational collapse of a (only gravitationally interacting) matter cloud. Furthermore it can
be applied to cosmological models which go beyond the standard assumptions of homogeneity in ordinary
FRW–evolution.

B.4 Generalised Painleve – Gullstrand Solutions

Following [29] we present in this section how the LTB metric can be transformed into a metric expressed in
terms of generalised Painleve – Gullstrand coordinates (GPG). As for the ordinary Painleve – Gullstrand
coordinates we want the LTB – time and the GPG – time to coincide and for the radial component we
take the function R(τ, σr) occurring in front of dΩ2 in the LTB line element in equation (B.18). Hence,
the transformation from LTB – coordinates (τ, σr, θ, φ) to GPG – coordinates denoted by (τ,R, θ, φ) is in
differential form given by

dR =
∂R

∂τ
dτ +

∂R

∂σr
dσr = Ṙdτ +R′dσr (B.22)

Let us consider the following general ansatz for the line element

ds2 = −Xdτ2 + Y dR2 + ZdτdR+R2dΩ2 (B.23)

whereX,Y,Z are functions of τ and R. Considering the explicit form of dR in equation (B.22) and comparing
with the LTB line element in equation (B.18) we obtain the following conditions for the functions X,Y and
Z

X − Y Ṙ2 − ZṘ = 1 (B.24)

Y R′2 =
R′2

1 + E
(B.25)

ZR′ + 2Y ṘR′ = 0 (B.26)

This system of equations has the following solutions for X,Y and Z

X(τ,R) = 1− Ṙ2

1 + E(τ,R)
, Y (t, R) =

1

1 + E(τ,R)
, Z(τ,R) = − 2Ṙ

1 + E(τ,R)
(B.27)

where substitution for Ṙ via (D.1) is being understood. The function E(σr) occurring in the LTB solution
becomes a function of E(τ,R) when expressing σr in terms of τ,R. The equation for Ṙ2 in LTB coordinates
given in equation (B.18) has the following expression in the GPG coordinates

Ṙ2 = E(τ,R) +
F (τ,R)

R
⇔ Ṙ = ±

√

E(τ,R) +
F (τ,R)

R
. (B.28)

Since we want to cover the black hole region of the extended Schwarschild spacetime, we choose similar to
the case of the ordinary GP coordinates a negative square root for Ṙ and obtain the following line element

ds2 = −dτ2 +

(

dR+

√

E(τ,R) + F (τ,R)
R dτ

)2

1 + E(τ,R)
+R2dΩ2 (B.29)

This line element is well defined for all values of τ,R for which E(τ,R) > −1 and E(τ,R) +F (τ,R)/R ≥ 0.
The opposite sign choice for Ṙ leads to a minus sign in front of the dt – term in the bracket of the second
term and describes, as before, the generalised ”white hole region” of the spacetime.
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Now when solving the ADM equations that lead to the GPG metric one obtains an evolution equation for
the shift vector ~N(τ,R) = (NR(τ,R), 0, 0) given by

L~n

(

(NR(τ,R))2 − F (τ,R)

R

)

= 0 with nµ = (1,−NR, 0, 0) (B.30)

being the unit vector normal to the spatial hypersurfaces of that spacetime. This is a second order equa-
tion for NR because as shown in [29] the term F (τ,R)/R is related to the shift vector component by
2RL~n(N

R)(τ,R) = F (τ,R)/R. See [29] for more details. From equation (B.29) we can easily read off the
explicit form of the shift vector

NR(τ,R) =

√

E(τ,R) +
F (τ,R)

R
(B.31)

Consequently, the equation for the lapse carries over to an equation for E(τ,R) given by

L~n (E) (τ,R) = 0 ⇔ ∂E(τ,R)

∂τ
−
√

E(τ,R) +
F (τ,R)

R

∂E(τ,R)

∂R
= 0 (B.32)

Furthermore, by applying the Lie derivative L~n onto (NR)2 and using its explicit expression in terms of
E,F and R shown in equation (B.31) we obtain

L~n(F ) = NR

(

2RL~n(N
R)(τ,R)− F (τ,R)

R

)

= 0 (B.33)

which yields a partial differential equation for F (τ,R)

∂F (τ,R)

∂τ
−
√

E(τ,R) +
F (τ,R)

R

∂F (τ,R)

∂R
= 0. (B.34)

Consequently, for the GPG metric only those functions E and F are allowed that satisfy the partial differ-
ential equations in (B.32) and (B.34).

C Covariant analysis of spherically symmetric gravity plus pressureless

dust

For the sake of completeness, we analyse the dynamics of pressureless dust–matter coupled to gravity in
a spherically symmetric setting using the usual covariant framework of GR. The metric gµν is a priori not
a gauge invariant object and the “dynamics” generated by Einstein’s equations has to be interpreted as
gauge transformations in the strict sense. In order to make the framework physically meaningful, we must
fix the spacetime diffeomorphism freedom. We therefore fix a comoving coordinate system with respect to
which the lapse is unity and the shift vanishes. In the Hamiltonian language, this completely fixes the gauge
freedom generated by the radial diffeomorphism and Hamiltonian constraints respectively. The comoving
coordinates will be denoted by (t, r) in order to emphasise that they are measuring proper time t along
ideal test observer geodesics labelled by r. In the usual LTB framework, and in contrast to the Brown
– Kuchař framework, there is no “observer Lagrangian” that actually models these observers and their
graviational interaction and whose proper time and geodesic label we have denoted (τ, σr) throughout the
text. Rather, one constructs a spherically symmetric, pressure free, perfect fluid energy momentum tensor
whose Lagrangian origin remains obscure and whose dynamics is simply induced by the Bianchi identity of
the Einstein equations.

In what follows we will see that one ends up with an exact mathematical match between the two frame-
works although their conceptual starting points are quite different, upon identifying (τ, σr) := (t, r). At first
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sight this may seem mathematically not too surprising because the energy momentum tensor of the Brown
– Kuchař Lagrangian has a perfect fluid form whose pressure is constrained13 to vanish. However, since the
Brown – Kuchař Lagrangian involves altogether eight dust fields to begin with and displays a complicated
gauge symmetry involving first and second class constraints, it is after all not straightforward to see that
one obtains a perfect match. In particular, the velocity field of the Brown – Kuchař Lagrangian is a com-
plicated aggregate composed out of dust fields and a priori cannot be prescribed to take a distinguished form.

We will assume spherical symmetry, therefore we can make the following ansatz for the line–element ds2:

ds2 = −dt2 + Λ2(t, r)dr2 +R2(t, r)dθ2 +R2(t, r) sin2 θdφ2 . (C.1)

This means the metric components are given by:

gµν = diag
[

− 1, Λ2(t, r), R2(t, r), R2(t, r) sin2 θ
]

(C.2)

Now we compute the Christoffel–symbols Γλ
µν := 1

2g
λσ
[

gσµ,ν + gσν,µ − gµν,σ

]

of gµν where we used the

abbreviation gµν,σ := ∂
∂xσ gµν .

The Christoffel–symbols are given by:

Γt =









0 0 0 0

0 ΛΛ̇ 0 0

0 0 RṘ 0

0 0 0 RṘ sin2 θ









(C.3)

(C.4)

Γr =











0 Λ̇
Λ 0 0

Λ̇
Λ

Λ′

Λ 0 0

0 0 −RR′

Λ2 0

0 0 0 −RR′

Λ2 sin2 θ











(C.5)

(C.6)

Γθ =











0 0 Ṙ
R 0

0 0 R′

R 0
Ṙ
R

R′

R 0 0
0 0 0 − sin θ cos θ











(C.7)

(C.8)

Γφ =











0 0 0 Ṙ
R

0 0 0 R′

R
0 0 0 cot θ
Ṙ
R

R′

R cot θ 0











. (C.9)

This leads to the following non–vanishing components of the Ricci–curvature tensor

13That is, the vanishing of the pressure is an equation of motion and not put in by hand.
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Rµν = Γρ
µν,ρ − Γρ

µρ,ν + Γρ
µνΓσ

ρσ − Γσ
µρΓ

ρ
νσ:

Rtt = − Λ̈

Λ
− 2

R̈

R

Rrr = ΛΛ̈− 2
R′′

R
+

2ΛΛ̇Ṙ

R
+

2Λ′R′

ΛR

Rθθ = RR̈− RR′′

Λ2
+ Ṙ2 − R

′2

Λ2
+

RΛ′R′

Λ3
+

RΛ̇Ṙ

Λ
+ 1

Rφφ = sin2 θRθθ

Rtr = −2
Ṙ′

R
+ 2

Λ̇R′

ΛR
. (C.10)

The Ricci–scalar R := gµνRµν then takes the form

R = 2
Λ̈

Λ
+ 4

R̈

R
− 4

R′′

Λ2R
+ 2
(Ṙ

R

)2
− 2

Λ2

(R′

R

)2
+ 4

Λ̇Ṙ

ΛR
+ 4

Λ′R′

Λ3R
+

2

R2
(C.11)

Now we want to couple matter to the system, more precisely we will use inhomogeneous pressureless dust–
matter. Assuming spherical symmetry the pressure free dust stress–energy tensor is given by

Tµν = ρD(t, r)UµUν , (C.12)

where ρD(t, r) can be interpreted as the dust energy density and Uµ is the dust velocity vector field which
in comoving coordinates takes the form Uµ = δµt .
Having collected all ingredients we can now write down Einstein’s equations Rµν − 1/2 (4)Rgµν = κ/2Tµν

with κ = 16πG/c4 for the system under consideration:

− 2R′′

Λ2R
− 1

Λ2

(R′

R

)2
+
( Ṙ

R

)2
+ 2

Λ′R′

Λ3R
+ 2

Λ̇Ṙ

ΛR
+

1

R2
= κ

ρD
2

tt-comp.

−2
R̈Λ2

R
− Λ2

(Ṙ

R

)2
+
(R′

R

)2
− Λ2

R2
= 0 rr-comp.

−RR̈+
RR′′

Λ2
− R2Λ̈

Λ
− RΛ′R′

Λ3
− RΛ̇Ṙ

Λ
= 0 θθ- and φφ-comp.

Ṙ′ − Λ̇R′

Λ
= 0 tr-comp. . (C.13)

Imposing the Bianchi identity (energy momentum conservation) we find

∇µTµν = −δtρD
∂

∂t
[ln(ρDΛR

2)] = 0 (C.14)

which obviously constrains ρD to have the form −ǫ(r)/[Λ(t, r)R2(t, r)] for some free function ǫ of r only.
One can easily see that this system of partial differential equations coincides formally with the one

obtained in section 4, equations (4.9) - (4.12). So we can map the problem of finding spherically symmetric
solutions in the framework of gauge invariant observables to the problem of finding spherically symmetric
solutions for gravity coupled to pressureless dust–matter in the usual framework of Einstein’s General
Relativity in the comoving gauge N = 1, N r = 0.
The system of solutions to this system of partial differential equations is the so called
Lemâıtre-Tolman-Bondi family (see appendix B.3).
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