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Abstract

The orbital angular momenta Lu and L
d of up and down quarks in the proton are estimated as

functions of the energy scale as model-independently as possible, on the basis of Ji’s angular

momentum sum rule. This analysis indicates that Lu − L
d is large and negative even at low

energy scale of nonperturbative QCD, in contrast to Thomas’ similar analysis based on the

refined cloudy bag model. We pursuit the origin of this apparent discrepancy and suggest

that it may have a connection with the fundamental question of how to define quark orbital

angular momenta in QCD.

1 Introduction

The so-called “nucleon spin puzzle” is still one of the most fundamental problems in hadron

physics [1]. The recent precise measurements of the deuteron spin structure function by the

COMPASS and HERMES groups established that about 1/3 of the nucleon spin is carried

by the intrinsic quark polarization [2],[3], so that the missing spin fraction is now believed to

be of order of 2/3. However, there is no widely-accepted consensus on the decomposition of

the remaining part. (Still, it should be kept in mind that a lot of recent attempts to directly

measure the gluon polarization ∆g were all led to the conclusion that ∆g is likely to be small

or at least it cannot be large enough to resolve the puzzle of the missing nucleon spin based

on the UA(1) anomaly scenario [4]-[7].)

Recently, Thomas claims that the modern spin discrepancy can well be explained in terms

of standard features of the nonperturbative structure of the nucleon, i.e. relativistic motion

of valence quarks, the pion cloud required by chiral symmetry, and an exchange current con-

tribution associated with the one-gluon-exchange hyperfine interaction [8]-[11]. His analysis

starts from an estimate of the orbital angular momenta (OAM) of up and down quarks based
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on the improved (or fine-tuned) cloudy bag model taking account of the above-mentioned ef-

fects. Another important factor of his analysis is the observation that the angular momentum

is not a renormalization group invariant quantity, so that the above predictions of the model

should be associated with a very low energy scale, say, 0.4GeV. Then, after solving the QCD

evolution equations for the up and down quark angular momenta, first derived by Ji, Tang

and Hoodbhoy [12], he was led to a remarkable conclusion that the orbital angular momenta

of up and down quarks cross over around the scale of 0.5GeV. This crossover of Lu and Ld

seems absolutely necessary for his scenario to hold. Otherwise, the prediction Lu − Ld > 0 of

the improved cloudy bag model given at the low energy scale is incompatible with the cur-

rent empirical information or lattice QCD simulations at the high energy scale, which gives

Lu < 0, Ld > 0.

Actually, the importance of specifying the scale when discussing the nucleon spin contents,

has been repeatedly emphasized in a series of our papers [13] -[18]. (The observation on

the scale dependence of the nucleon spin matrix elements has much longer history. See [19]

and [20], for instance.) In particular, we have recently carried out a semi-empirical analysis

of the nucleon spin contents based on Ji’s angular momentum sum rule, and extracted the

orbital angular momentum of up and down quarks as functions of the scale. (See Fig.6 of

[18].) Remarkably, we find no crossover of Lu and Ld when Q2 is varied, in sharp contrast

to Thomas’ analysis. This difference is remarkable, since if there is no crossover of Lu and

Ld, Thomas’ scenario for resolving the proton spin puzzle is not justified. The purpose of the

present paper is to pursue further the cause of this discrepancy, which is expected to provide

us with a valuable insight into a very fundamental physical question, i.e. the role of orbital

angular momentum in the nucleon spin.

2 Semi-empirical extraction of quark orbital angular mo-

menta in the proton

There is no doubt about the fact that the nucleon spin consists of quark and gluon parts as JQ+

Jg = 1/2. (Here, Q = u+ d+ s for three quark flavors.) The point is that this decomposition

can be made experimentally through the GPD (generalized parton distribution) analysis of

high energy deeply-virtual Compton scatterings and of deeply-virtual meson productions. Our

semi-phenomenological estimate of JQ starts with Ji’s angular momentum sum rule [21],[22]

given as JQ = 1
2
[ 〈x〉Q +BQ

20(0) ], where 〈x〉Q is the net momentum fraction carried by all the

quarks, while B20(0) is the net quark contribution to the anomalous gravitomagnetic moment

of the nucleon. For flavor decomposition, we also need flavor nonsinglet combinations, i.e.

J (NS) = 1
2
[ 〈x〉(NS) + B

(NS)
20 (0) ], with J (NS) = Ju−d, or Ju+d−2s etc. The quark momentum

fractions and the angular momentum fractions are both scale dependent quantities. Ji showed
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that they obey exactly the same evolution equations. At the leading order (LO), the solutions

of the flavor singlet part JQ is given by

2 JQ(Q2) =
3nf

16 + 3nf
+

(

α(Q2)

α(Q2
0)

)2 (16+3nf )/9β0

×
(

2 JQ(Q2
0)−

3nf

16 + 3nf

)

, (1)

with β0 = 11 − 2
3
nf and similarly for 〈x〉Q. On the other hand, the scale dependence of the

flavor nonsinglet combinations is given by

2 J (NS)(Q2) =

(

α(Q2)

α(Q2
0)

)32/9β0

2 J (NS)(Q2
0), (2)

and similarly for 〈x〉(NS).

A key observation now is that the quark and gluon momentum fractions are basically known

quantities at least above Q2 ≃ 1GeV2, where the framework of perturbative QCD is safely

applicable. For instance, the familiar MRST2004 and CTEQ5 fits give almost the same quark

and gluon momentum fractions below 10GeV2 [23],[24]. In the following analysis, we shall use

the values corresponding to the scale Q2 = 4GeV2 from MRST2004 fits.

Neglecting small contribution of strange quarks, which is not essential for the present

qualitative discussion, we are then left with two unknowns, i.e. Bu+d
20 (0) and Bu−d

20 (0). For these

quantities, we need some theoretical information, for example, from lattice QCD simulations.

(One must remember the fact that the lattice QCD simulations at the present stage have a

lot of problems, for instance, the omission of disconnected diagrams, the estimate of the finite

volume effects, and the difficulty of simulations in the realistic chiral region. The problem is

then to judge to what extent we can trust the predictions of the lattice QCD at the present

stage. This point will be discussed later.) Fortunately, the available predictions of lattice

QCD corresponds to the renormalization scale Q2 ≃ 4GeV2, which is high enough for the

framework of perturbative QCD to work. Then, assuming that all the necessary quantities for

the decomposition of the proton spin are prepared at this high energy scale, an interesting idea

is to use the QCD evolution equations to estimate the corresponding values at lower energy

scales. This is just the opposite to what was done in Thomas’ analysis [8],[11] as well as in

our previous analyses [17],[18]. As already mentioned, Thomas uses the predictions of the

improved cloudy bag model as initial values given at the low energy scale, i.e.
√
Q2 = 0.4GeV.

Strictly speaking, there is no rigorous theoretical basis for this choice of starting energy. It

is basically motivated by the fact that a similar scale is needed to match parton distribution

functions calculated in various modern quark models to high energy experimental data. An

advantage of starting from high energy scale and using downward evolution is that we can

avoid this problem, although the precise matching energy with the low energy models are left
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undetermined. Keeping this in mind, one may continue the downward evolution to the scale

µ2, where 〈x〉Q = 1, and 〈x〉g = 0. (Numerically, we find that µ2 ≃ 0.070GeV2 in the case

the leading-order evolution equation is used, while µ2 ≃ 0.195GeV if the next-to-leading order

evolution equation is used.) This scale may be regarded as a matching scale with the low

energy effective quark models as advocated in [25] and [26]. Or, one may take a little more

conservative viewpoint that the matching scale would be between µ2 and somewhere below

1GeV2. At any rate, it is at least obvious that the use of the evolution equation below this

scale, i.e. the unitarity violating limit, is meaningless.

Now we concentrate on getting reliable information for two unknowns, i.e. Bu+d
20 (0) and

Bu−d
20 (0). The situation is better for the isovector quantity Bu−d

20 (0). One finds that the

newest predictions of two lattice QCD groups given at the scale Q2 = 4GeV2, i.e. Bu−d
20 (0) =

0.274±0.037 from the LHPC Collaboration [27] and Bu−d
20 (0) = 0.269±0.020 from the QCDSF-

UKQCD Collaboration [28], are remarkably close to each other. There also exists an estimate

based on the chiral quark soliton model (CQSM). Its prediction evolved to the scale Q2 =

4GeV2 from the starting energy scale µ2 = 0.30GeV2 with the next-to-leading (NLO) evolution

equation gives Bu−d
20 (0) ≃ 0.289 [18], which is also close to the lattice QCD estimates of two

groups. To avoid initial scale dependence of the CQSM estimate, we simply use here the

central value of the LHPC Collaboration, Bu−d
20 (0) = 0.274 given at the scale Q2 = 4GeV2.

In contrast to the isovector case, the situation for the isoscalar combination Bu+d
20 (0) is

not very satisfactory, because the predictions of the lattice QCD simulations are quite sensi-

tive to the adopted method of chiral extrapolation and dispersed. The result of the LHPC

group obtained with covariant baryon chiral perturbation theory is Bu+d
20 (0) = − 0.094±0.050,

while the result of the same group obtained with heavy baryon chiral perturbation theory

is Bu+d
20 (0) = 0.050 ± 0.049. On the other hand, the result of the QCDSF-UKQCD group

is Bu+d
20 (0) = − 0.120 ± 0.023. Fortunately, from an analysis of the forward limit of the un-

polarized generalized parton distribution Eu+d(x, ξ, t) within the CQSM, the 2nd moment of

which gives Bu+d
20 (0), we were able to give a reasonable theoretical bound for this quantity,

i.e. 0 ≥ Bu+d
20 (0) ≥ − 0.12 (= κp+n ) with κp+n being the isoscalar magnetic moment of the

nucleon [18], which works to exclude some range of lattice QCD predictions. In the following,

we therefore regard Bu+d
20 (0) as an unknown constant within this bound. (Note that it is a

conservative bound since it is actually given at the low energy model scale and the magnitude

of Bu+d
20 (0) is a decreasing function of the scale parameter Q2.)

The information on the quark orbital momenta can be obtained from Ju, Jd and Js by

subtracting the corresponding intrinsics spin contributions, ∆Σu, ∆Σd and ∆Σs. Basically,

they are all empirically known quantities. (Note that, at the leading order, any of these three

are scale independent.) Among the three combinations ∆ΣQ, ∆Σu−d, and ∆Σu+d−2s, the flavor

singlet one has a largest uncertainty. For simplicity, here we use the central value of the recent
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Figure 1: The left panel shows the results of the present semi-phenomenological extraction of

the total angular momenta as well as the orbital angular momenta of up and down quarks,

while the right panel shows the corresponding results of Thomas [11]. In both panels, the open

circle, open triangle, filled circle, and filled triangle respectively represent the predictions of

the LHPC lattice simulations for 2 Ju, 2 Jd, 2Lu, and 2Ld [27].

HERMES analysis, i.e. ∆ΣQ = 0.33, by neglecting the error-bars.

For completeness, we list below all the initial conditions at Q2 = 4GeV2, which we shall

use in the present analysis :

〈x〉Q = 0.579, 〈x〉u−d = 0.158, 〈x〉s = 0.041, (3)

Bu−d
20 = 0.274, 0 ≥ BQ

20 = Bu+d−2s
20 ≥ − 0.12, (4)

∆ΣQ = 0.33, ∆Σu−d = 1.27, ∆Σu+d−2s = 0.586. (5)

(The inclusion of the strange quark contributions to the momentum fractions and the longitudi-

nal quark polarization appears inconsistent with the neglect of the corresponding contribution

to B20. It is however clear that the influence of the strange quark components are so small

that they never affect the main point of the present analysis.)

After preparing all the necessary information, we now evaluate the total angular momentum

as well as the orbital angular momentum of any quark flavor as functions of Q2. The answers

for 2 Ju, 2 Jd as well as for 2Lu, 2Ld are shown in the left panel of Fig.1, respectively by the

solid, short-dashed, long-dashed, and dash-dotted curves with shaded areas. The open circle,

open triangle, filled circle, and filled triangle in the same figure represent the predictions of the
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latest LHPC Collaboration for 2 Ju, 2 Jd, 2Lu, and 2Ld. For comparison, the corresponding

predictions of Thomas’ analysis [8] are shown in the right panel. One immediately notices

that the difference between our analysis and Thomas’ one is sizable. The most significant

qualitative difference appear in the orbital angular momenta. As already mentioned, Thomas’

analysis shows that the orbital angular momenta of up and down quarks cross over around

the scale of 0.5GeV. In contrast, no crossover of Lu and Ld is observed in our analysis : Ld

remains to be larger than Lu down to the scale where the gluon momentum fraction vanishes.

Comparing the two panels, the cause of this difference seems obvious. Thomas claims that

his results are qualitatively consistent with the empirical information as well as the lattice

QCD data at high energy scale. (We recall that the sign of Lu−d at the high energy scale is

constrained by the asymptotic condition Lu−d(Q2 → ∞) = − 1
2
∆Σu−d, which is a necessary

consequence of QCD evolution [18],[8].) However, the discrepancy between his results and the

recent lattice QCD predictions seems to be never small as is clear from the right panel of Fig.1.

It can also be convinced from a direct comparison with the empirical information on Ju

and Jd. In Fig.2, we compare the prediction of our semi-empirical analysis, that of Thomas’

analysis, and that of the recent LHPC Collaboration, with the HERMES [29],[30] and JLab

[31] determinations of Ju and Jd. One sees that, by construction, the result of our analysis

is fairly close to that of the lattice QCD simulation. A slight difference between them comes

from the fact that we use the empirical information (not the lattice QCD predictions) for

the momentum fractions and the longitudinal polarizations of quarks. On the other hand,

Thomas’ result considerably deviates from the other two predictions. Although it is consistent

with the HERMES data, it lies outside the error-band of JLab analysis. The latter observation

is mainly related to the fact that his estimate for Jd is sizably larger than the lattice QCD

data or our estimate and his estimate for Jd is smaller in magnitude than the other two. (One

must be careful about the fact, however, that experimental extraction of Ju and Jd has a

large dependence on the theoretical assumption of the parametrization of relevant GPDs and

it should be taken as qualitative at the present stage.)

So far, to avoid introducing inessential complexities into our simple analysis, we did not

pay enough care to the errors of the empirical and semi-empirical information given at the

scale Q2 = 4GeV2, except for the quantity Bu+d
20 (0) having the largest uncertainty. One may

worry about how strongly the conclusion of the present analysis depends on the ambiguities

of the other quantities prepared at Q2 = 4GeV2. Fortunately, for the isovector quantity

Lu−d ≡ Lu − Ld, which is of our primary concern in the present paper, one can convince that

our central conclusion is not altered by these uncertainties. To see it, let us first recall the

relation

2Lu−d =
[

〈x〉u−d + Bu−d
20 (0)

]

− ∆Σu−d. (6)

Here, ∆Σu−d = g
(I=1)
A is scale independent and known with high precision, i.e. within 0.3%.
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Figure 2: The HERMES and JLab Hall A determination of the quark angular momentum

Ju and Jd [29],[30], [31] in comparison with our semi-empirical prediction. Also shown for

comparison are the recent lattice QCD prediction by the LHPC Collaboration [27] and the

result of Thomas’ analysis [11].

The momentum fraction 〈x〉u−d is also known with fairly good precision. In fact, the difference

between the familiar MRST2004 and CTEQ5 fits at Q2 = 4GeV2 turns out to be within 1%.

The main uncertainty then comes from the isovector anomalous gravitomagnetic moment of

the nucleon Bu−d
20 (0). We recall again the predictions of the two lattice QCD collaborations

at Q2 = 4GeV2, i.e. Bu−d
20 (0) = 0.274 ± 0.037 from the LHPC Collaboration and Bu−d

20 (0) =

0.269± 0.020 from the QCDSF-UKQCD Collaboration, and also the prediction of the CQSM

evolved to the same energy scale Bu−d
20 (0) ≃ 0.289. In the analysis so far, we have used the

central value of the LHPC prediction by simply neglecting the error-bar. Now let us take

account of the error-bar and see how large this uncertainty would propagate and affect the

value of Lu−d at the low energy model scale. (Note that, the error estimate of the LHPC group

is most conservative and the prediction of the QCDSF-UKQCD group and that of the CQSM

are contained in the error-band of this LHPC analysis.)

The filled area with dark grey in Fig.3 show the result of this downward evolution of

2Lu−d by starting with the initial condition given at Q2 = 4GeV2 on account of this error-

band. In consideration of the possibility of incomplete nature of the present-day lattice QCD

predictions (and also small uncertainties of the other two quantities 〈x〉u−d and ∆Σu−d), we

7



-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Q

2

[GeV

2

℄

2 (L

u

� L

d

)

Figure 3: The sensitivity of the quark orbital angular momentum difference 2 (Lu −Ld) to the

initial condition given at Q2 = 4GeV2. The filled area with dark grey is obtained with the

LHPC prediction Bu−d
20 (0) = 0.274 ± 0.037 given at Q2 = 4GeV, while filled area with light

grey is obtained by artificially doubling the error of LHPC prediction [27]. Also shown by the

filled square is the prediction of the improved cloudy bag model corresponding to the scale

Q2
0 = 0.16GeV2 [8].

have also carried out a similar analysis in which the error-bar of the LHPC prediction is

artificially doubled. The result of this latter analysis is shown by the filled area with light

grey. One can clearly see that the quantity 2Lu−d remains negative even down to the lower

energy scale close to the unitarity-violating bound, which appears to be very different from

the prediction of the refined cloudy bag model shown by the filled square in the same figure.

In any case, our semi-phenomenological analysis, which is consistent with the empirical

information as well as the lattice QCD data for Ju and Jd at high energies, indicates that

Lu − Ld remains fairly large and negative even at the low energy scale of nonperturbative

QCD. If this is in fact confirmed, it may as well be called “new or another nucleon spin puzzle”.

The observation is in fact a serious challenge to any low energy models of nucleon, since they

must now explain small ∆ΣQ and large and negative Lu−d simultaneously. The refined cloudy

bag model of Thomas and Myhrer appears to be incompatible with this observation, since it

predicts 2Lu ≃ 0.50 and 2Ld ≃ 0.12, or 2 (Lu−Ld) ≃ 0.38 at the model scale. (See TABLE I of

[8].) Is there any low energy model which can reproduce this feature ? Surprisingly, the CQSM
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can explain both of these peculiar features of the nucleon observables at least qualitatively. It

has been long known that it can explain very small ∆ΣQ (∆ΣQ ≃ 0.35 at the model scale)

due to the very nature of the model, i.e. the nucleon as a rotating hedgehog object [32],[33].

Very interestingly, its prediction for Lu−d given in [34], i.e. Lu−d ≃ − 0.33 at the model scale,

also matches the conclusion obtained in the present semi-empirical analysis. (This could be

anticipated from the fact that its prediction for Bu−d
20 (0) matches the lattice QCD predictions

after account of the scale dependence.)

3 Note on the nucleon spin decomposition

To understand the cause of the apparent mismatch between our observation and the picture

of standard quark models, typified by the refined cloudy bag model, it may be of some help

to remember the important fact that the decomposition of the nucleon spin is not unique at

all. There are two widely-known decompositions of the nucleon spin, i.e. the Ji decomposition

[21] and the Jaffe-Manohar one [35],[36]. (See also recent yet another proposal [37],[38].) The

Ji decomposition is given in the form

1

2
= JQ + Jg, (7)

whose terms are defined as nucleon matrix elements of the corresponding operators

Ĵ
Q

=
∫

ψ†

[

1

2
Σ + x× (− iD )

]

ψ d3x, (8)

Ĵ
g

=
∫

[x× (E ×B ) ] d3x, (9)

with Σ = γ0 γ γ5. On the other hand, the Jaffe-Manohar decomposition is given in the form

1

2
= J ′Q + J ′g, (10)

whose terms are defined as nucleon matrix elements of the following operators

Ĵ
′Q

=
∫

ψ†

[

1

2
Σ + x× (− i∇ )

]

ψ d3x, (11)

Ĵ
′g

=
∫

[ (E ×A ) − Ei (x×E )Ai ] d
3x. (12)

Very recently, Burkardt and BC have studied both the Jaffe-Manohar as well as the Ji

decomposition of angular momentum for two simple toy models, i.e. in the scalar diquark

model as well as for an electron in QED in order α = e2/4 π [39]. They demonstrated that

both decomposition yield the same numerical value for the fermion OAM in the scalar diquark

model, but not in QED. They have also shown that the fermion OAM distributions in the

Feynman-x space in both decompositions dot not coincide even in the scalar diquark model.
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Their investigation throws a renewed interest in the difference existing between the quark

OAM resulting from the Jaffe-Manohar decomposition and that obtained from the Ji decompo-

sition. It has been long recognized that the quark OAM in the Ji decomposition is manifestly

gauge invariant, and accordingly it contains an interaction term with the gluon. On the other

hand, the quark OAM appearing in the Jaffe-Manohar decomposition has simpler physical

interpretation as a canonical orbital angular momentum in that it is given as a nucleon matrix

element of free-field expression of quark OAM. Unfortunately, no reliable information exists

on the difference between the magnitudes of these two definitions of the quark OAMs from

lattice QCD simulations.

Since the CQSM is an effective quark theory that contains no gauge field, one might

naively expect that there is no such ambiguity problem in the definition of the quark OAM.

It turns out that this is not necessarily the case, however. The point is that it is a highly

nontrivial interaction theory of quark fields. To explain it, we recall the past analyses of Ji’s

angular momentum sum rule within the framework of the CQSM. The analysis for the isoscalar

combination was carried out by Ossmann et al. [40]. Starting with the theoretical expression

for the unpolarized GPD Eu+d
M (x, ξ, t) ≡ Hu+d(x, ξ, t) + Eu+d(x, ξ, t), they analyzed its 2nd

moment, which is expected to give 2 Ju+d on the basis of general argument of Ji. In fact, by

using the equation of motion of the model, they could show that

1

2

∫ 1

−1
xEu+d(x, 0, 0) dx = Lu+d

f +
1

2
∆Σu+d, (13)

where the terms in the r.h.s are respectively given as proton (with spin up) matrix elements

of the following operators within the model :

L̂u+d
f =

∫

ψ†(x) [x× (− i∇) ]3 ψ(x) d
3x, (14)

Σ̂u+d =
∫

ψ†(x) Σ3 ψ(x) d
3x. (15)

As anticipated, the answer is given as a sum of the proton matrix element of the free-field

expression for the quark OAM operator and that of the isoscalar quark spin operator. This is

nice, but still we must be careful about the following fact. The net quark OAM distribution

in x-space defined through the unintegrated version of Ji’s sum rule written as

Lu+d(x) =
1

2
xEu+d

M (x, 0, 0) − 1

2
∆Σu+d(x), (16)

does not seem to coincide with the OAM distribution corresponding to the Jaffe-Manohar

decomposition numerically evaluated within the same CQSM in [14]. This observation just

corresponds to the recent finding by Burkardt and BC in the scalar diquark model [39].

A similar analysis for the isovector combination was carried out in [34]. It was found there

that the 2nd moment of the isovector GPD Eu−d
M (x, 0, 0) is now given as a sum of three pieces

10



Table 1: The CQSM predictions for Lu−d
f and δLu−d as well as their sum at the leading order

in the collective angular velocity Ω.

Lu−d
f δLu−d Lu−d = Lu−d

f + δLu−d

Valence 0.147 - 0.289 - 0.142

Sea - 0.265 0.077 - 0.188

Total - 0.115 - 0.212 - 0.330

as

1

2

∫ 1

−1
xEu−d

M (x, 0, 0) dx =
(

Lu−d
f + δLu−d

)

+
1

2
∆Σu−d. (17)

Here, Lu−d
f and ∆Σu−d terms are naively anticipated ones, i.e. a proton matrix element of

free-field expression for the isovector quark OAM operator and that of the isovector quark

spin operator respectively given as

L̂u−d
f =

∫

ψ†(x) τ3 [x× (− i∇) ]3 ψ(x) d
3x, (18)

Σ̂u−d =
∫

ψ†(x) τ3 Σ3 ψ(x) d
3x. (19)

Somewhat embarrassingly, we found an extra piece represented as

δLu−d = −M
Nc

18

×
∑

n∈occ

〈n | r sinF (r) γ0 [Σ · r̂ τ · r̂ −Σ · τ ] |n〉. (20)

Here, |n〉 stand for the eigenstates of the Dirac Hamiltonian H = − iα · ∇+M β e i γ5 τ ·r̂ F (r)

with hedgehog mean field. The symbol
∑

n∈occ denotes the sum over all the occupied eigenstates

of H . This extra term is highly model-dependent and its physical interpretation is far from

self-evident. It is nevertheless clear that there is no compelling reason to believe that the quark

OAM defined through Ji’s sum rule must coincide with the canonical one, i.e. the proton matrix

element of the free-field OAM operator. Since the CQSM is a nontrivial interacting theory

of effective quarks, which mimics the important chiral-dynamics of QCD, it seems natural to

interpret this peculiar term as a counterpart of the interaction dependent part of the quark

OAM in the Ji decomposition of the nucleon spin.

A natural next question is how significant the influence of this peculiar term is. For

illustration, we show in table 1 the predictions of the CQSM for Lu−d
f and δLu−d as well

11



as their sum. (The numerical values are from the leading-order prediction of the CQSM given

in [34].) Here, shown in the 2nd and the 3rd rows are respectively the contributions of the

three valence quarks and those of the negative energy Dirac-sea quarks, while shown in the 4th

row are their sums. One sees that the valence quark contribution to Lu−d
f is positive but the

Dirac-sea contribution to it is negative and larger in magnitude than the valence quark one, so

that the net contribution to Lu−d
f is negative. Concerning the term δLu−d, it is dominated by

the valence quark contribution, which is large and negative. Adding up the two contributions,

Lu−d
f and δLu−d, we thus find that the CQSM prediction for the isovector quark OAM Lu−Ld

is sizably negative. We again emphasize that this prediction of the CQSM is totally different

from the corresponding prediction of the refined CB model, which gives that Lu−Ld is sizably

large and positive at the model scale. A word of caution here. The calculation of the quark

OAM in the CB model does not seem to use Ji’s way of defining the quark OAM, although

the detail is not clear from the papers. It would be interesting if one can check whether the

two ways of calculating the quark orbital angular momenta make any difference also in the

framework of the refined CB model or not.

4 Summary and Conclusion

To sum up, we have estimated the orbital angular momenta Lu and Ld of up and down quarks

in the proton as functions of the energy scale, by carrying out a downward QCD evolution of

available information at high energy, to find that Lu − Ld remains to be large and negative

even at the low energy scale of nonperturbative QCD, in remarkable contrast to Thomas’

conclusion based on the refined cloudy bag model. Although the orbital angular momenta of

quarks are not direct observables, they can well be extracted since Ju and Jd are measurable

quantities from GPD analysis and since the intrinsic quark polarizations are basically known

quantities by now. (One should not forget about the fact that the orbital angular momenta

of quarks extracted in this way correspond to the Ji decomposition.) Then, what is required

for future experiments is to determine Ju and Jd as precisely as possible including their scale

dependence. Ideal would be to confirm the predicted strong scale dependence between 1GeV

and several hundreds MeV region. In practice, the GPD analysis far below 1GeV may not

be so easy because of uncontrollable higher-twist effects. However, the precise determination

of Ju and Jd around 1GeV region should give crucial information to judge which of the two

scenarios, Thomas’ one and the present one, for Lu and Ld, are close to the truth, thereby

providing us with a valuable insight into unexpected role of quark orbital angular momenta as

ingredients of the nucleon spin.
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