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1. Introduction

This work reports on an extension of a certain cosmologicadeh based on the Poincaré
gauge theory of gravity (PGT), which was first announced_ihddd then presented in
considerable detail in [2]. In the latter work it was showattthe dynamic Riemann-Cartan
geometry (with curvature and torsion) could contribute aailtating aspect to the Universe
expansion which could account for the present day obsereeelexation. Since then two
new works have appeared analyzing the dynamics of this nasdkhddressing its fit to the
cosmological observations![3, 4]. These works have alreasgred many features of the
original model in considerable detail. Here we wish to fiesiew the results of the application
of certain theoretical principles to the PGT. That will naily lead us to a more appropriate
description and our extension of the original model.

One of the outstanding successes of theoretical physickerlatter part of the last
century which led to a much deepened understanding was ¢bgniion that all the known
fundamental physical interactions, the strong, weak, dadtremagnetic—rot excepting
gravity—can be well described in terms of a single unifying prineipthat of local gauge
theory. Although there are other possible gauge approad¢begravity it seems highly
appropriate to regard it a gauge theory for the local symyggtsup of Minkowski space time:
the Poincaré group [5] 6]. Such a consideration led to theldpment of the Poincaré Gauge
Theory of gravity (PGT)[[7,8,19, 10,11,12]. The PGT lagziori independent local rotation
and translation gauge vector potentials: the Lorentz ¢netric compatible) connection and
the orthonormal co-frame; their associated field strengtbghecurvature andtorsion. The
space-time then has generically a Riemann-Cartan geonigtoause of its gauge structure
and geometric properties the PGT has been regarded as actiattralternative to general
relativity.

The theory includes as exceptional cases Einstein’s gemelativity (GR) with
vanishing torsion, the Einstein-Cartan theory witbn-dynamic torsion algebraically coupled
to the intrinsic spin of the source, as well as the teleparatieories—wherein curvature
vanishes but torsion does not. The generic PGT has, in addiii the metric familiar from
GR, a connection with some independent dynamics, maniféstgoth the torsion tensor and
additional non-vanishing post-Riemannian curvature camepts.

Investigations (especially [8, 13]) of the linearized thebave identified six possible
dynamic connection modes, carrying certain spins andypaxrit 1+, 0*. Itis not possible for
all of the modes to have good dynamics. The possible combirsabf well behaved (carrying
positive energy at speed c) propagating modes in the linear PGT theory were identiflde:
Hamiltonian analysis revealed the related constraint [[d4en detailed investigations of the
Hamiltonian and propagatioh [16,|15,/17] 18] concluded é#fifatcts due to nonlinearities in
the constraints could be expected to render all of theses qgasgesically unacceptable except
for the two “scalar modes”, carrying spin-and spine~.

One mode (referred to as the “pseudoscalar” because(of gpin content) is reflected in
the axial vector torsion. Axial torsion is naturally drivby the intrinsic spin of fundamental
fermions; in turn it naturally interacts with such sourc@ws for this mode one has some
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observational constraints [19,/20]. Note that except inetludy universe one does not expect
large spin densities. Consequently it is generally thotiggitaxial torsion must be small and
have small effects at the present time. The other good nidd¢he so-called “scalar” mode,
is reflected in the vector torsion. There is no known fundaadesource which directly excites
this mode. Conversely this part of the connection does rtetant in any direct obvious
fashion with any familiar type of matter [21]. Hence we do hawve much in the way of
constraints as to its magnitude. We could imagine it as lgasignificant magnitude and yet
not being dramatically noticed—except indirectly throulga non-linear equations.

Thus the theoretical PGT analysis led to just two dynamiehtar connection modes. An
obvious place where one might see some physical evidentedse modes is in cosmological
models. The cosmological homogeneous and isotropic asgumpgreatly restrict the
possible types of non-vanishing fields. Curiously, for tl@mection and torsion there are
only two possibilities, which reflect precisely the two sfitonnection modes. The scalar
0" which gives rise to a special vector torsion which has onlyregetcomponent, and the
pseudoscalafi— mode, which gives rise to an axial torsion which is the dual @éctor with
only a time component. Hence the homogeneous and isotropicaogies areaturally very
suitable for the exploration of the physics of the dynamidP&alar modes”.

Thus cosmological models offer a situation where a dynanmiehtz connection may
lead to observable effects. Here we will not focus on theyeaniverse, where one could
surely expect large effects (although their signature ddialve to be disentangled from other
large effects), and instead inquire whether one could sgeetiacts of the PGT dynamic
connection in the present day universe. In particular weheile consider accounting for the
outstanding present day mystery: the accelerated univerderms of an alternate gravity
theory with an additional natural dynamic geometric qusnta Lorentz connection [1] 2].

The observed accelerating expansion of the Universe steghtdse existence of a kind
of dark energy with a negative pressure. The idea of a darkygne one of the greatest
challenges for our current understanding of fundamentgbiob [22,/ 23] 24]. Among a
number of possibilities to describe this dark energy conepbonthe simplest may well be
by means of a cosmological constant Another popular idea is the quintessence field —
some unusual type of minimally coupled scalar field — which received much attention
over the past few years and a considerable effort has beea mathderstanding the role of
quintessence fields on the dynamics of the Universe (see[25¢26, 27]).

An alternative is to consider some other gravity theory. dtirings us to our specific
topic: the possibility of explaining the accelerating werse using a well tested alternative
gravity theory, one well motivated by both geometrical ahgigical gauge theory principles.
We explore the possibility that the dynamic PGT Lorentz @mion modes can drive the
acceleration of the universe. As noted above, there are pjweGmodes which could have
dynamical behavior. Iri]2] it was shown that the the spinmode can make the expansion
rate oscillate, naturally having an accelerating expangisome periods and a decelerating
expansion at other times. For suitable choices of parasatat initial data the model can
account for the supernova observations. Here we show tbladimg the0— mode allows for
an improved matching.
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Over the years there have been many studies of PGT cosmekqgggially by Minkevich
and coworkers (see, e.d., [28,29] 30,31, 32]). Using varinadels they found that it was
possible for the PGT to avoid singularities, account foaitidin, and produce the acceleration
of the universe (as discussed later in Section 3, their rmmesimais different from that of our
dynamicO™ mode). A comprehensive early survey of the PGT cosmologiaadels was
presented quite some time ago by Goenner and Miiller-Hoif@3jn Although that work
only solved in detail a few particular cases, it developeddtjuations for all the PGT cases—
including those for the particular model we consider hereweler that work was done prior
to the discovery of the accelerating universe, and torsias tlvus imagined as playing a big
role only at high densities in the early universe. More rélgeinvestigators have begun to
consider various models with torsion as a possible causbeo&tcelerating universe (see,
e.g., [32]34] 35, 36]).

We have taken another step in the exploration of the possidRition of the Universe
with dynamic Lorentz connection spin-0 modes of the PGT. fifa@n motivation is two-
fold: (1) to have a better understanding of the PGT, in paldicthe possible physics of the
dynamic spin-0 modes; (2) to consider the prospects of atoapfor the outstanding present
day mystery—the accelerating universe—in terms of an ratere gravity theory, more
particularly in terms of the PGT. With the usual assumptiohgsotropy and homogeneity
in cosmology, we find that, under the model, the Universe egtillate with generic choices
of the parameters. Th&" dynamic mode in the model plays the role of the imperceptible
“dark energy”. With a certain range of parameter choicegait account for the current
status of the Universe, i.e., an accelerating expandingetse with a value of the Hubble
constant which is approximately the present one. Theseipnogresults should encourage
further investigations of this model, along with a detaitanparison of its predictions with
the observational data.

The remainder of this work is organized as follows: We sunimedahe formulation of the
PGT in general and our model with scalar and pseudoscalagsrin@ec. 2, and then consider
the PGT scalar mode cosmological model in Section 3. In &eetian effective Lagrangian
and Hamiltonian for our cosmological model is presentedis Thfollowed by a late-time
asymptotic expansion in Section 4 in which certain normatiesoare identified. Section 6
includes the results of our numerical demonstrations faoua choices of the parameters and
the initial data along with a comparison with the superndwsesvations. The implications of
our findings are discussed in Section 7 and Sec. 8 is a coanlusi

Throughout the paper our conventions are as follows: Theedjpae signature is
(—,+,+,+) ande = h = 1. The Greek indicesg, 3,~..., are 4d orthonormal (an-
holonomic) indices, whereas the Latin indiceg, k... are 4d coordinate (holonomic)
indices; they both range ovér1,2,3. On the other hand the Latin indicesb, ¢, d are 3-
dimensional, with rangg, 2, 3.
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2. The Poincaré Gauge Theory

In the Poincaré gauge theory of gravity (PGT)[[7, 8], the twtsf local gauge potentials
are, for “translations”, the orthonormal co-franté = e*;dz’, where the metric igy =
99 @ 9° + 6,97 ® 9P, and, for “rotations”, the metric-compatible (Lorentz takgebra
valued) connection 1-formg*® = T'[*fl,d2*. The associated field strengths are the torsion
and curvature 2-forms

1
T* = a0 + D% A9 = ST, 0" A9, (1)

R = dl 4T AT = %Raﬁww A, 2)

which satisfy the respective Bianchi identities:
DT*=R*sN9°, DR =0. (3)
The PGT Lagrangian density is taken to have the standardai@tbrm; qualitatively,

5. (n) 5. ()
LW~ A—aR+ > a7+ bR, 4)
n=1 n=1

(n) (n)
whereT and R are the algebraically irreducible parts of the torsion amdature and\ is the

cosmological constant. The gravitational field equatidosimed from varying with respect
to the respective gauge potentidls, '*”; have the qualitative form
- () () LN
A —agG,' + Z an(DT + T?) + Z b, R? ~ source energy-momentum density (5)

n=1 n=1

3 6
(n) (n)
aogT + E anT + E b,D R ~ source spin density (6)

n=1 n=1
These are, respectively, second order equﬂi(msﬁ% andI"';. In conjunction with the
Bianchi identities [(B), these two equations yield, respebt, the conservation of source
energy-momentum and angular momentum statements.

Here, generalizing an earlier work [2], we wish to examine dignamics of the special
case describing the two good PGT dynamic scalar modes inmaatogical model. For this
two spin-0 modes case we should take= 0 except forbg — b™ andb; — —b~ (see
Appendix A). For more convenient signs we also make the ceptents, — —A,.

The gravitational Lagrangian of our model has the specifimfo
bt

b_
— R+ —F? 7
12R + 12 ’ (7)

3

1 1 (n)

LT =5 | =20+ AR — 5 > AT+
n=1

K

1 It should be noted that the PGT is obtained from an actionatointy quadratic curvature terms, but with the

connection as a variable they yield 2nd order equationshétigrder equationsould result from such an action

if one used the Christoffel connection—or decomposed theitpownnection into a Christoffel part plus torsion

terms and then treated the torsion and the metric as the fiugatal dynamical fields. Such a decomposition is
alien to gauge principles.
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wherex = 87 G, R is the scalar curvature and is the pseudoscalar curvature (specifically
E /6 = Ry123) is the magnitude of the one component of the totally antisgtnimcurvature).
The cosmological constant has been included both for gktyeaad a comparison with other
models.

In detail, the first field equation, obtained from variatioithwrespect to the orthonormal
frame, has the components

1 1
Aguu + AOGHV + Al (vaTyua + iTuaﬁTuaﬁ - Tu,uaTa + Zg,uuTaﬁfyTaﬁw - Taﬁ,uTaﬁzx)

Ay — A 1 Az — A
+ : 3 : (QWVQTO‘ -V, 1, - igWTaTa) * : 18 1 (6VQP5€O‘6W - 4PaTl’ﬁ“f€Bwaﬂ
-
+ 3P, T, — 4T3, P¢,”., — P,P%g,, + 2P,P,) — 2—(E2gw — 2ERap0 ™ ,,)
b+
‘|‘ ﬂ(4RMV - Rgul/)R = K%l/ (8)

whereG,, = R,, — +g,, R is the Einstein tensor and,, is the (in general nonsymmetric)
material energy-momentum density tensor.

The components of the second field equation, obtained fremahation with respect to
the connection, can be decomposed into three algebrain@tucible parts:

(1) - ()
(6(A0 — A1) + b R) T3, = S ET%,¢" 5, =0, 9)
2 1
bYVLR = S(6mT + 0 R)T, + 30 EP, =0, (10)
1 2
b V,E — 5(6m” + 0" R)P, — b ET, =S, =0, (11)
2)

whereT), = T, = T%., P, = 36, T" o5 = %EWQB(BT)VQB are the torsion trace and axial
vectors,m™ = Ay + Ay/2 andm™ = Ay + 2A; are the masses of the respective linearized
modes, andS, is the axial vector spin density which, for simplicity, wevieaassumed to
vanish (this should be a good approximation except at higisides such as those expected
in the very early universe). THe part couples, as indicated here, to the axial spin vector of
spin-1/2 fermions, but thét modedoes not couple to any known source.

From (9) we find the general solutit%i)%7 = 0. From [10) and[(11) we learn that the
torsion trace and axial vectors are controlled by the gradief two functions. This reflects
their respective spifit, spin0~ fundamental nature. However, in view of the non-lineasitie
of these relations as well as the geometric significanceeof@bpective “potential functions”
(i.e., they are the scalar and pseudoscalar curvatures)camsee that it is neither possible
nor appropriate to resolve them to find new, simpler dynareicsvo “scalar potentials”.
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3. The PGT scalar mode cosmological model

For a homogeneous, isotropic FLRW (Friedmann-Lemaitreiimn-Walker) cosmological
model the isotropic orthonormal coframe has the form

9 = dt, 9" = a(t) (1 + ikﬁ)‘l da?, (12)

wherek = —1,0, 41 is the sign of the Riemannian spatial curvature. Here weaaitisider
for simplicity only the flatk = 0 case (as far as the observations can tell, this appears lto wel
describe our physical universe).

Because of isotropy, for this = 0 case the only non-vanishing connection one-form
coefficients are of the form

I% = W(t)dz®,  T% = X(t)e%, da*, (13)

wheree, .. := coupe 1S the usual 3 dimensional Levi-Civita anti-symmetric @ms-rom the
definition of the curvaturé {2), one can now find all the nomsfimg curvature 2-forms:

RY = Wdt Ada® — XWe%dzb Ada®, R™® = Xe®, dt Ada® + (P2 — X?)dz® Ada’.(14)
Consequently, the scalar and pseudoscalar curvaturegspectively,

R =6[a"'W +a 3(V? - X?)], (15)

E=6[a"'X +2a72X7]. (16)

Because of isotropy, the only nonvanishing torsion tensarmonents are of the form

T%0 = f(t)dy, T%e = —=2X(t)€%be- 17)

From the definition of the torsiofl(1) one can find the relabetween the torsion components
and the gauge variables:

f=a'(¥—a), Y =a'X. (18)

(Note: the variabl& = —3 f was used in the earlier workl[2].)

From the isotropic assumption, the material energy mommeriensor must have the
perfect fluid form. In this work we focus on the late time beabavAccordingly we assume
that the fluid pressure can be neglected, so that the giagtaaterial behaves like dust with
a density satisfyinga® = constant. Also, we remind the reader that, although we éxpec
spin density to play an important role in the early univeitsig,reasonable to assume that the
material spin density is negligible at late times.

Due to isotropy, the first field equationl (8) has only two niwf distinct components.
Expressed in terms of the tensorial quantities and the Hutdnlametef/ = a/a they are the
“00” piece

3As

+ A+ THQ —3mT(H + f)? 4+ 3m™
. bt L, BT 2 .2
VB B Py B DRI X = e (19)
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which contains only first time derivatives of the potentiésid is hence an initial value
constraint), and the “space-space” piece

— A+ m—+[R —3(H + f)’] + 2m" —m7)x* — &@H + 3H?)

3 2
+b—_E2—b—_E(H+f) +ER2—ER[(H+f)2— = —kp=0 (20)
72 3 X7 6 Xl=—rp=5

a dynamical equation fat.
From the components of the second field equafioiti (10,11) bisgro

bTR =2(b"R+6m™)f + 20~ Ex, (21)
b"E=20"Ef —2(b"R+6m™)y, (22)

which—along with the definition of the curvature scaldrs)(1@6) — are second order
dynamical equations for the connection coefficients.

Before we present our more detailed discussion of thesendigahequations equations
it should be noted that there are some special “non-dynaffieictere cosmological constant”
cases—that is special cases having one constant magniéldeviien certain coefficients
a/o other field components vanish. Such field componentsdaaaritribute to the dynamical
eqguations certain constant terms that would act like effectosmological constants. Since
here we are interested in the generic case with both modesydgnwe only mention these
special cases briefly and cite other works where they have d@esidered in more detail. In
particular [2] discussed the case with vanishing xy and R = —6m™ /b*, while [32] has
considered the case with vanishibig f, andR = —6m~/b". It should also be mentioned
that the earlier investigators have tended to decomposmtirgection into its Christoffel part
plus some torsion. Using such a decomposition leads to himjlder equations—unless one
takesA; = 0, as these investigators were prone to do (see, e.g., [2802R82,/33]. Here
we do not make such a decomposition of the connection and need not make such a parameter
restriction—which would in fact render tlieg mode non-dynamic.

Instead of considering the three second-order differkatjaations[(210,2L,22,), we can
transform these second-order equations into six firstratiferential equations by including
the definition of # and [15)-{(1B) for the six unknown variables; H, f, x, R, and E
(where all except: and H are gauge covariant tensor fields). For some purposes this is
more convenient; in particular first-order differentiabetjons are more suitable for numerical
calculations. Combining Eq$. (19) aind{20) gives

— 3Ay(H +2H?*) + mTR —4A 4+ 6(m* — m™)x? = k(p — 3p) = kp. (23)

Eq. (23) is considered as a first-order differential equetar /. Moreover, Eqs.[(21) and
([22) are already first-order differential equations foand E. After replacingH in Eq. (I5)
by using(28), itis clear that Eq$. (15) andl(16) give the-finster equations fof andy. With
a straightforward re-organization, the six equations are
a =aH, (24)
mt 2(mT —m7) ,

H=—R )Y ; (e — 25
sA, T a4, X 34, 34, (25)
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= — —R— f*—3H 26
=X "aatt UREEYS 3,42 T34y (26)
. E
X =+~ BH+2f)x (27)
- 2b” 6m™
R:b+XE+2f<R+ b+), (28)

20" 6m-
=2fF — — 29
e =S (R ), 29)

with the constraint equation
A+ 3 H?* 4+ 3m x* —=3m™(f + H)* + iR2 + b pe
277 24 24
_ bt

— b0 E(f+H)x— 73[@” + H)? = x* = —kp. (30)

The constraint equation can be used to replaea Eqgs. [2H,26) to give alternative versions
of these two equationS'

3 2 2mT —m~ , m* 5
+i{b+RZ—ER[(f+H)2— ]+b E*— b E(f 4 H)x } (31)
34, | 24 24
; Ag 2 24; Ao 2 2
= A2A 3A2R——f —2Hf+—— +—[(f+H) — X’
! {b+R2—iR[(f+H)2— }+b E?> — b E(f + H)x } (32)
34, 2 24

These two alternative equations along with the four othst érder equations make a closed
system for the geometric variables which is more practioalniumerical evolution. This
alternative system will be obtained in another way in thet sextion.

For a comparison with GR models, the “00” constralnt| (19) banconsidered as a
generalized Friedman equation:

3A0H? = k(p+ pr) + A, (33)

where the effective energy due to the dynamic connection is

bt b~ bt
kpr = 3m x> —6m T H f— 3m+f2+24R2+ 4E2 b~ Ex(H+f)——R[(H+f) x?], (34)
Moreover, the “space-space” EQ.(20) may be considered@se-balance equation:
a 3 3 A
A (F) = _#lp+3p) _ Klpr +3pr) A (35)
a 6 6 3

where the effective pressure due to the dynamic connedion i

kpr =2m* f +m* f(4H + f) = m™y’
+ o Prpelp g (H+f)—iR[(H+f)2—X2]. (36)
72 72 3 6
It can here be seen how + 3pr < 0, which is indeed possible, could produce an

accelerated universe. Although these relations are ueftbmparison with other models, an
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examination of the dynamical terms implicitpp andpr shows that their PGT dynamic nature
differs fundamentally from that of their GR counterpartsphrticular the ratiaur := Pr/pr
can take on any value and should not be given the usual equaitistate interpretation.

4. Effective Lagrangian and Hamiltonian

Our cosmological model system of ODEs resemble those oftecleawith three degrees of
freedom. One may suspect that they can be obtained direotty & variational principle. To
achieve such a goal it is natural to consider imposing thedgemeous-isotropic symmetry
into the field theory Lagrangian density. We note that it leegylbeen known that imposing
symmetries and variations do not commute in general. HowéweGR they are known to
commute for all Bianchi class A cosmologiés|[37]. We conjeetthat this is also true for
the PGT. In particular ouk = 0 model is an isotropic Bianchi | (class A) model, so there
is good reason to be hopeful. Here we show that (at least fodwst fluid model) imposing
the FLRW symmetry on the PGT Lagrangian does indeed lead ih& teame expressions as
were found from imposing the symmetry on the field equations.

Imposing the FLRW symmetry on the Lagrangian densily (7jdeto the effective
Lagrangian

0,3

Leg = — |—A+ @R + §Agf? — 6A3x% + ER2 + b—_E2 . (37)
K 2 2 24 24

It should be noted that (for least action) the coefficienthefquadratic kinetic termgt, 122,

E?) which contain the time derivatives—see the specific exgioes for the curvature and

torsion Eqs.[(1/5,16,18)—must be non-negative.

Now we use this effective Lagrangian (along with the just tioered expressions for the
curvature and torsion) to obtain a conserved energy and geeond order equations for the
gauge parameters: the connection coefficigntX and the frame/metric scale factor We
also note that the second order Lagrange equations cantemged and combined with the
formulas for curvature and torsion to give exactly the sigtforder equations obtained from
the general 4D covariant field equations specialized t&the) FLRW geometry. Following
this we will then find the associated Hamiltonian equations.

Making use of the formulas for the torsion and curvature conemts in terms of the
gauge variables, (15,116]18), the conserved energy funatisociated witti..; is found to be

3
&= cjk&Lf — Lo = “ {A+ 3—AzH2 —3m™T(f 4+ H)> + 3m™x*
dq K 2
+ b po b"E(H + f)x + ER2 — iR[(H + )2 =X}, (38)
24 X9 2 X

whereg, = {V, X, a}. This is a combination that we recognize from our earliefysis, it is
just the “00 constraint'[(30); its constant magnitude isjthgsical combination-a?p, which
is indeed a constant because of the dust fluid energy-momesdnservation relation.
Making use of the formulas for the torsion and curvature congmts in terms
of the gauge variables[ (I5]L6/18) we now obtain the Eulgrdrge equations
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iaLeﬂ B aLelcf —0
dt 0g; dg;
For theW equation:
dOLg d , bt _ OLeg n - 2

This is a second order equation f&ér (Here and below we dropped for simplicity the overall
factor ofx~1.) It can alternately be rearranged usingl (18) to dive (28 first order equation
for R.

For theX equation:

daLeff d ]. — 2 aLeff —
— == E| = = EV —b"aXR—6ApaX —12450X. (4
T ox 7 (26 a ) X b a bTaXR — 6Apa 3Q (40)

This second order equation fof can be rearranged using_{18) info |(29), the first order
equation forE.

For thea equation:
dOLg d
dt da  dt

0L, bt bt
(—3Aqd%f) = 8; = Ao[a’R — 3(¥? — X?)] + ﬁOLZRZ - 73(\1/2 - X%

b 3
+ ﬂazE2 — b XUE + §A2a2 f?—6A5X% — 3Aa*. (41)

This is a second order equation far It can be rearranged into a first order equation fipr
the result is exactly (32), the aforementioned alternativ@6) obtained by using (80). Now
using [18) one can calculate

d

H= E(a—lxp) —f=—-HH+f)+a 'V - f, (42)

then using the just mentioned expression faand [15) one get§ (81). Moreover, from¥16)
using [18) one gets thg equation[(2]7).

It is remarkable that here in these Lagrange equations améghkociated conserved
energy we get (at least for this dust case) exactly the doerp@tions for our modelwithout
including any explicit source coupling!

We have cast our system into six first order equations for (&D¥orial quantities,
equations which are suitable for numeric evolution and camspn with observations.
However these equations are probably not in the most saifahin for the most penetrating
analytic analysis. So we here also present the Hamiltorgaateons for our PGT cosmology.

From the above one can introduce the canonical conjugatecmiom variables:

_ L __34

P, = — = a? f, (43)
oa K
o 0Leff 92 3A0 b+
Py =—5 —a(m +2f<¢R>’ (44)
. 3LCH o b~ 9
v =2 = 5d'E. (45)

Now one can construct the effective Hamiltonian:

. . K P2 P2 P2 A0a2 Pq;
Hyg=Pa+PyVU+PyX —Lyg=— 2 +-X4+-%)_ U2 x?2) =2
r = Lot AW f 6a(A2+b—+b+) (b++ )a
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A A2 3
+UP, — —X wpy + g xzy (340 ) (46)
K 2b+ K’
and obtain the six Hamilton equations:
BHeﬂr KJPa
yo— — ] 47
a oP, 34y (47)
. OH. ¢ K U2 X2 A
R T T e o R (48)
. BHeﬂr K 2
X = = Py — XU 4
0PX 3b—a X a ’ ( 9)
. H, Hg—VP, 124 2A2 2A
B, = e _ Hea L2y 245 T80, 24 p s0)
Oa a K bt bt
. OH,
Py = — wﬂ” — P, 4= (xppq, + Py X), (51)
. OHg 12A3
Px— — 8X = — o CLX—FE(PX\I/—P\I;X) (52)

This canonical reformulation should be of considerablerigdt for further studies of this
model, since the Hamiltonian formulation is the framewaook the most powerful known
approaches for analytically studying the dynamics of aeysincluding such techniques as
the Hamilton-Jacobi method and phase space portraits.

5. Asymptotic Expansion

At late times in an expanding universe as the scale fadb@comes larger the field amplitudes
should be decreasing. We can then expect the quadratic tel@8) to be dominant; hence,
when the cosmological constant vanishes the late time asyimpehavior ofH, f, x, R, and

E should have a—%/2 fall off. So we reparametrize them according to

H=ha3"? f=ya®? x=2a"%? R=ra? FE =ea 2 (53)
The current Universe corresponds:fd? >> 1. Substituting[(58) intd(24)E(30) gives
a=a"?h, (54)
: [2(m* —m™) h? K m* 4\
h = =3/2 |<\'fe w2 v v 3 e 3/2_ 55
¢ s By WA LG Iy W v (53)
[4A 3 A 4A
Y —3/2 3.2 ——h _ 0 3/2 56
e y? y+3A2poa (0)] 54, T 3 (56)
) _ 3 2b~ 12m™
’/’ICL3/2 2y7’+ rh+b—+ex}—|—b—+y, (57)
i =a"%? {—2xy — §hx} + E, (58)
2 6
20T 12m~
é=a3? [Qey + 3he — b—m’] — b—Tx, (59)
3A2 b~ b+

IR+ 3m a4+ e+ —r = 3mT(y + h)?

B 3(0) — 3
a’kp kpoa”(0) = a°A + o4 o
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+

—a™%? b ex(h +y) + %r((h +y)? —2?)]. (60)

Now let us restrict our further considerations to the vaimiglcosmological constant case.
With ¢*? > 1, Eqgs. [54)-H59) show that the spiri- mode and the spifi- mode are
becoming decoupled and the asymptotic Hubble rate influenced purely by the spibit
mode. Dropping the higher order terms (with= 0), gives the energy constraint

3 3 34z 5 g b, 0T, n 2
—amp:—mpoa(O):Th +3mx+ﬂe —i-ﬂr —3m™(y+h)* (61)
and three natural pairs of linear equations:
. + A 12m™* e 12m~
- —1/2 _m - 0 . . ° s
(a’_a h? h_ 3A2T)7 (y_ 3A2T7 r= b+ y)? (l’— 67 € = b_ JI) (62)

The last two pairs(y,r) and (z,e), are clearly harmonic oscillators. To analyze these
equations further along with the first pair, we introducernke variable combination

2 :=mTy + Agh. (63)
We then find three late time normal modes:
o
P4+ wlr =0, where w? = bi— (64)
. 4A0m+
ji+wliy =0, where w? = e (65)
Z =0. (66)
Reexpressed in terms of the late time normal modes theitageenergy constraint is
3 3A, bt b~
t = —adkp = —— 22 oAz 492 Y2 -2, 9 9 7
cons a’kp AOZ +<2A0my+247’ + 3mx+246 , (67)

where each bracket is constant. The physical and geomigmiisance of two of the normal
modes is clear, since they directly correspond to the twasidarmagnitudes (alternately the
associated curvature scalars). Thus for this model atitagewe find that the twalynamical
connection modes are essentiallgynamical torsion modes and the description “torsion
cosmology” is phenomenologically appropriate, althougtould lead to a misapprehension
as to the true fundamental dynamical fiefds.

The remaining mode corresponds to a certain combination of the frame/metiabesc
expansion factor and the" torsion:

Z=mTf+ AH (68)
which evolves according to
Z:m‘XQ—m+f(f+3H)—2AOH2+%. (69)

¢ Although the terminology “torsion cosmology” has often bersed in the past to describe the sort of model
we are considering here, it has recently come to our attetiiat such terms are fundamentally inappropriate
and can inhibit a deeper understanding. The basic dynamiables in this theory are the orthonormal frame
and connection.
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(With a nonvanishing cosmological constant this equationla/pick up an extraA /3 term.)
From the above we see that at late time (with vanishing cosgicdl constant) the Hubble
expansion rate has the form

+

H = a%? x const. — Z—Of, (70)

with the0™ torsion amplitudef oscillating at the frequenay, . Only the0™ mode effects the
expansion rate at late times. The late time acceleration is
+
w12 71
a=a 34, T, ( )
which has periodic oscillations at the raie. In this model sometimes the expansion rate is
accelerating and sometimes it is slowing down.

5.1. Numerical test

The validity of our late time analytic results has been wstemerically. Taking the
parameters ad, = 1, A, = 0.23, A3 = —0.35, b7 = 1.1, andb™ = 0.3, we findw, = 4.20
andw_ = 1.4. They have the relation, = 3w_. Using the same parameters, we plot a full
and a linear asymptotic normal mode evolution of all the Gashlgital equations. The behavior
of the normal mode equations has been observed with seetsadfanitial values.

We have plotted one typical case in Hig. 1. Here we show attilate the asymptotic
amplitudes: first, the Hubble function, h, second, the ndmuale combination of the torsion
and Hubble functionz, third, the spind~ normal modey, fourth, the spir3* normal mode,
y. The (black) dashed lines represent the exact evolutiortla¢red) solid lines represent
the late time asymptotic normal mode behavior.

As expected, we found that the late time equations are indegabd approximation.
The z(t) function approaches a flat line at late time. The plots shawtte frequency and
amplitude of the full and the linear approximatioh and0~ asymptotic equations are very
close, although there are apparently still some nonlintects.

6. Numerical Demonstration

In this section, we present the results of a numerical eiiutf our cosmological model.

For all these calculations we take= 0. Since there is one scalar mode and one pseudoscalar
mode in this model, it is natural to investigate the intdmacbetween these two modes. We
find that the pseudoscalar connection mode can generatedla sonnection mode, but not
conversely. This offers a reason for the existence of thiaisozode, since it is believed that
the pseudoscalar mode exists and plays an important rdie iearly universe due to its direct
interaction with matter. In Sectidn 6.2, we first extend tlhnerical demonstration of the
earlier work [2] by including the spif- mode, and then compare our numerical results with
the observational supernovae data. Not surprisingly wetfiatithe supernovae data can be
better fitted with the two-scalar-connection-mode model.
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Figure 1. Asymptotic evolution of the Hubble function, h, the late éinmormal mode
combination of torsion and Hubble function, (note the scale), the late time spin-
normal mode,r, and the late time spiA¥ normal mode,y. The (black) dashed lines
represent the actual late time asymptotic evolution andrt® solid lines represent the linear

approximation normal modes.

We need to look into the scaling features of this model befegecan obtain the sort of
evolution results we seek on a cosmological scale. In tefrfismdamental units we can scale

the variables and the parameters as

a—a, H—(H, f—!lf, x—{x, R—/CR E—(’E,

t—t/¢,
bt bt b b2 A — PA, (72)

Ag — Ay, Ay — Ay, Az — Az,
where/? = x = 87G. So the variables and the scaled parametérsind b~ become
dimensionless (from the Newtonian limit, = 1). Equations.[(24=29) remain unchanged
under such a scaling. However, as we are interested in tlmeatogical scale, it is practical

to use another scaling—mathematically to make the numeritaes of the scaled variables
less stiff for the numerical integration, and physicallyse®e changes on the scale of the age
of our Universe. In order to achieve this goal, let us intimela dimensionless constafri,
which represents the magnitude of the Hubble tiffie-¢ H,' = 4.41504 x 10'" seconds).

Then the scaling is

t—Tot, a—a, H—H/Ty, f— f/To, x—x/To, R— R/T;, E— E/T§,
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AO —)Ao, A2 —)AQ, Ag —)Ag, b —)T()Zb+, b~ —)T02b_, A—>A/TO2 (73)
With this scaling, all the field equations are kept unchangkete the periodl” — T,T.

6.1. The interaction between the scalar and pseudoscalar mode

10

4 6
Tlme/T0

Figure 2. Evolution of the components of the torsion. The top panetswsthe evolution
for nonvanishingf and R, and vanishingy and £ initially, corresponding to Case (a). The
bottom panels show the evolution for nonvanishingnd £, and vanishing’ and R initially,
corresponding to Case (b).

To understand the interaction of these two propagatingas@nnection modes, we
consider two different situations: (a) the pseudoscaladenwanishes initially with a
non-vanishing scalar mode; (b) the scalar mode vanishéislliyiwith a non-vanishing
pseudoscalar mode. The parameters and the initial valu€afe (a) are set as

Ay =05, A3=1 b =2 b =1, (74)
and

f(0)=-03, R(0)=03, x(0)=0, E0)=0, (75)
wherea(0) = 50 and H(0) = 1 in both the cases. The parameters and the initial values for
Case (b) were chosen as

Ay =10, Ay=-0.1, bt=15 b =1, (76)
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and
f(0)=0, R(0)=0, x(0)=0.3, FE0)=0.3. (77)

The numerically calculated evolution of these two caseslhogvn in FigL2. Case (a), which
corresponds to the top two panels of Hig. 2, shows that tharsceode cannot generate an
initially vanishing pseudoscalar mode. It is clear thadnd £ stay zero with a dynamic
spin0™ mode. The two bottom panels of Fig. 2, which correspond te ¢ay show that
the pseudoscalar mode can generate an initially vanistual@rsmode. It is known that the
pseudoscalar connection mode will couple to elementaryngpg particles. One can expect
that this mode will be excited by spinning particles in theyelniverse, since there could be
a high spin density during this epoch. Once the pseudoscatarection mode is generated,
the scalar connection mode will be excited through the augon with the pseudoscalar
connection mode.

6.2. Accelerating universes

We would like to compare the numerical evolution values fos model (withA = 0) with
the observational data of our Universe. The Hubble constigmtesentH (t, = 1), is

1 1 km
= == 70 . 78
4.41504 x 10'7 s s - Mpc (78)
The initial data is set at the current timg= 1, and current value of the Hubble function is
scaled to unity in this work, just as inh!/[2]. The parameterd nitial conditions chosen for

our first case are as follows:

Ay =0.83, A;=-035 bt=11, b =0.001, (79)

and
a(to=1) =50, H(to=1)=1, f(to=1)=-0.335,

The results of the evolution with these parameters andlmitinditions are plotted in Figl 3.
The expansion factod is plotted in the top-left panel. In the top-right panel thabtle
function H is damped-oscillating at late time. In the bottom-rightelait is obvious thati is
damped and oscillating during the evolution and is pos#ivthe current time ~ 1, which
means the expansion of the universe is currently accetgratiThe torsion and curvature
scalarsf(t), x(t), R(t), andE(t), are also plotted in the middle panels of Kij. 3 to show the
correlation of the evolution between these variables. Weeple that the frequencies of the
pairs (y,F) and (f,R) are usually different. The behavior is consistent with @nalysis in
Sec[b. In order to have a deeper understanding of the setifitbis case, the matter density
p and the effective mass density of the dynamical connegiiaare plotted in the bottom-left
panel. The value of is decreasing as the universe is expanding and is alwaysveosith
pa’ =const, whilepr, plotted in the same panel, shows a “damped-oscillatingab®r. The
damped-oscillating behavior of- simply indicates that the effective energy dengityis not
positive-definite in general. We also plot the phase diagramCase | in Fig. 4 to show that
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Figure 3. Evolution of the expansion factar, the Hubble functionH, the scalar and the
pseudoscalar torsion componenfsand y, the affine scalar curvatur&, the pseudoscalar
curvature F, the mass densitieg,andpr, and the 2nd time derivative of the expansion factor,
a, as functions of time with the parameter choice and theainitata in Case I.
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Figure 4. The phase diagrams for Case I. The phase diagrarfi,of(a) is shown in the left
panel. The (red) solid line is the trajectory of th, (y, a) evolution starting from the initial
value (~0.335, 0.378, 50). The (gray) dashed line is the convergence line( a) for this
diagram. The phase diagrams @f,(H, R) and of (¢, H, E) are shown in the right panel.
The (red) solid line is the trajectory of thé&'( H, R) evolution starting from the initial value
(—0.335, 1, 2.18), the (blue) dashed line is the trajectory of the {f, F) evolution starting
from the initial value (.378, 1, 2.21), and the (black) filled point marks the asymptotic focus

point (O, 0, 0).

Table 1. The initial data and parameters for cases I, Il, and lll. Hheeparameter, = 1,
a(t =1) =50, andH (t = 1) = 1 in all three caseg; = 1 means = now, under the scaling
of Egs. [72E7B).

Case A, A, b b f() x(1) R() BE(1)

| 083 -035 1.1 0091 -0.335 0378 218 221 0.23
Il 052 0475 1.05 035 -0.318 0225 27 -1.2 0.29
Il 0.635 05 1.06 042 -0.361 0058 2.442 -18 027

the orbit of (f,x,a) is convergent to a lined(0,a), and the orbits of {,H,R) and of (,H,F)
both converge to the poind,0,0).

In this case the scaled value pft = 1) = 0.68 and its physical value ip(t =
Ty) = 2.15 x 1073%/cm®. The Universe is supposed to be very close to the criticasitien
pe = 3c2H?/87G = 9.47x 107 g /cm?; we find the ratid,, = p/p. ~ 23%. In the standard
ACDM model,Q,, ~ 30% with 5% baryonic matter an@5% dark matter. For our model
Qr = pr/p. = 77% acts like the energy density of dark energy. Therefore, diiisamic
connection model is able to describe a presently accelgratipansion of the Universe with
a proper amount of matter density. From the field equationsamesee that theffect of the
“dark energy" mainly comes from the nonlinearity of the fietflation driven by the dynamic
scalar and pseudoscalar connection modes. We also fouadaatbes, two of which are listed
in Table[1 along with Case I; they are obtained by taking dkifé values for the parameters
and the initial conditions. We find that the results for thkesttwo cases have a behavior
qualitatively similar to that of Case I.
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Figure 5. Comparison of different spin-zero connection models ardsfandard\CDM
model with the observational data via the relation betwéendistance modulug and the
redshiftz. The supernovae data points, plotted with (brown) circbesne from[38]. The
result of the standardCDM model €, = 0.3, Qx = 0.7) is plotted by the bold solid
line. The results of Case I, I, and Il are represented by(ted) dashed line, the (green)
dot-dashed line, and the (blue) dotted line, respectivelyhe inset, the models and data are
shown relative to an empty universe model-€ 0).

We compare our results with the supernovae data. Distaniceadss from SN la light
curves are derived from the luminosity distance

if; = Tya(1)(1 + z)/1 %, (81)

where L;,; and F are the intrinsic luminosity and observed flux of the SN, am&liedshift
z = a(1)/a(t) — 1. Logarithmic measures of the flux (apparent magnitudleand luminosity
(absolute magnitudey/) were used to derive the predicted distance modulus

dLE

wherem is the flux (apparent magnitude)/ is the luminosity (absolute magnitude), and
d;, in the formula should be in units of megaparsecs. We founddlaions between the
predicted distance modulusand the redshift in the three cases; they are plotted in [Fig. 5.
For comparison, we also plot the prediction of tteDM model with(2,, = 0.3 and2, = 0.7
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by employing the following formula [38]
z dz

dr, cTo(1+z)/0 N L (S
The astronomical observational ddta![38, 39] are alsogalati Fig.[5 for comparison. The
plots show that for small redshiit(e.g.,z < 1.9) all three cases of the dynamical connection
models give an accelerating universe just like Al@DM model does. For largerthese cases
might turn the Universe into a deceleration mode, which rsseient with the behavior of the
various quantities shown in Figl 3. We can see that Case bdhe closest curve behavior
to the one from the\CDM model. In Fig[5, we demonstrate the possibility of thensgero
connection fields accounting for the effect of dark energhwaisuitable set of parameters and
initial data. A comparison of Fid.l5 with the results In [2]osts that this two-scalar-mode
model can give (not surprisingly) a better fitting of the suypea data than the one-scalar-
mode model can.

(83)

7. Discussion

From a series of earlier works [16,/15,/ 17, 18] it was conadluteat the Poincaré Gauge
Theory of gravity has two good dynamic Lorentz connectiordew) the “scalar” mode (spin
07) and the “pseudoscalar’ mode (sjpin) which satisfy 2nd order equations.

Here we extended a previous work [2], which considered a P@mological model
with one dynamic Lorentz connection mode having spin to the case where both the
scalar and pseudoscalar connection modes are dynamic. bjeetiees are (i) to study
this PGT cosmological model (and in particular how well ihcaatch the present universe
observations) and (ii) to get a deeper understanding ofyhardics of the PGT.

From the cosmological homogeneous and isotropic assungpttbe scalar and
pseudoscalar curvaturég £ and the temporal components of the trace torgiand axial
torsiony survive and affect the evolution of the universe in this wamnection-mode model.
Recognizing the equivalence of the model to one describipgrécle with three degrees
of freedom, we constructed an effective Lagrangian and ¢meesponding Hamiltonian by
imposing the FLRW symmetry on the field theory action. Theteysof ODEs obtained
therefrom are the same as the evolution equations obtajnieddosing the FLRW symmetry
on the equations derived from the PGT Lagrangian density.

With the evolution equations (24)—(29) and the associatextgy constraint[(30) we
analyzed the late time asymptotic expansion. We found the¥eéhree normal modes: one
related to the Hubble expansion and two dynamic modes repies by the torsion and
curvature components. It was found that only the scalar naffdets the late-time expansion
rate. The numerical analysis focused on the interactiowdst these two modes, the study
of the possible behavior of the Universe, and the fitting ® dbserved supernova data. It
was shown that the dynamical activity of the pseudoscalatencould excite the scalar mode
via the nonlinear coupling of these two modes, but the caaveipes not happen: one can
have the scalar mode excited without any pseudoscalamlaérait Like the one-mode model
in [2], the present model allows for an expanding universh a&n oscillating component in
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the expansion rate. Consequently, although on the avehggexpansion is slowing down,
the universe can have an accelerating expansion at thenpteése. The additional degree
of freedom in this two-mode model compared to the onéelin [@],surprisingly, allows us to
obtain a better fit to the supernova data.

From the evolution equations (26)—{29), we can see the meaulicoupling between the
scalar and pseudoscalar modes. In $ed. 6.1 we demonstnatexkditation of the scalar
mode through the dynamical activity of the pseudoscalaran&dich a nonlinear interaction
between these two modes offers a natural mechanism to feistteéngth of the scalar mode
in the evolution of the Universe. We stress that there is nowknfundamental material
source which directly excites the scalar mode; this patieliorentz connection simply does
not interact in any obvious fashion with any familiar typeroétter [21]. Conversely, the
pseudoscalar mode is naturally driven by the intrinsic spiiandamental fermions; in turn it
naturally interacts with such sources. Indirectly, themode could be enhanced and activated
dynamically through the aforementioned non-linear meigmanin addition to any possible
primordial amplitude from the early universe.

From the late-time analysis in Séd. 5, we showed that onlysttadar mode, not the
pseudoscalar mode, plays a direct role in affecting theresipa rate of the Universe. This
result is perfectly consistent with our understanding ef¢haracteristics of these two modes:
Due to the ability of interacting with fermionic matter, & generally thought that the axial
torsion (controlled by the pseudoscalar part of the Lor@otznection) must be small and
have small effects at the present time![19]. Converselystadar Lorentz connection mode
could be considered as a “phantom" field, at least in the mdttminated epoch, since it will
not interact directly with matter, and yet can drive the &mse in an oscillating fashion with
an accelerating expansion at the present time.

As discussed in_]J2], the two Lorentz connection spin-zeralesoin this model are in
some ways effectively like a scalar field and a pseudoscelal, fret these two “scalar” fields
are fundamentally different from the various scalar fielddels of unknown matter, e.g., the
guintessence models, in the following ways:

¢ this cosmological model is derived naturally from a geoinejravitational theory, the
PGT, which is based on fundamental gauge principles, idstéan the hypothesis of
the existence of a dark energy tailored to producing an egpian of an accelerating
universe;

¢ there are, consequently, only a few free parameters indsisiological model, instead of
an ad hoc potential that can be rather arbitrarily chosen tiofiobservations. Therefore,
this PGT cosmological model should be more restrictive, simould be easier to be
confirmed or falsified;

e based on its geometric character, the coupling of the dymaarts of the Lorentz
connection to the other fields is nothing like that which hesréeen advocated for
hypothetical scalar fields.

Thus this PGT cosmology with a Lorentz connection havingaghyic “scalar” modes and the
guintessence models are characteristically differern élrough there are some similarities.
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As mentioned in our previous work, if we consider the spacesias Riemannian instead
of Riemann-Cartan, by absorbing the contribution of theé4fiemannian terms of this model
into the stress-energy tensor on the rhs of the Einsteirtieqsaas indicated if (#3,84,)85]36),
then this contribution will act as a source of the Riemanmigatric, effectively like arexotic
fluid with its mass densityr and pressurer varying with time (although the time evolution
of these torsion and curvature terms are not like that of ang)fl Moreover, the effective
fluid will appear to have presently a negative pressure, andequently a negative parameter
in the effective equation of state, i.e; = pr/pr, which drives the universe into accelerating
expansion. Note that there is no constraint on the valueroivhich appears here, and its
value could vary from time to time. It should be stressed thigtis not a real physical fluid
situation; the truth is thatr is nothing like “a connection field equation of state”, it is{

a proportionality factor betweesr andpr, two expressions which effectively summarize the
contribution of the connection (via the curvature and tmrsiacting as a source of the metric.
The ratiowr is of interest only to help understand the accelerationisfrttodel and to enable
a limited comparison with other dark energy proposals.

By imposing the FLRW symmetry on the Lagrangian density, aestructed an effective
Lagrangian as well as the corresponding Hamiltonian. Onefiteof the former is a simpler
derivation of the dynamic equations {24)4(29). The latteoudd also prove useful, as
the Hamiltonian formulation is the framework for the mosimgoful known techniques for
analytically investigating the dynamics of a system. Bysthéechniques one can to apply
the experience accumulated in dealing with conservatiassiatal mechanical systems. An
effective Lagrangian and the corresponding Hamiltonidowad one to visualize the system
as a particle moving in a potential. This would be very hdlpfgaining a better appreciation
of the dynamics of any sophisticated model. (Note, it is remtassarily true that an effective
Lagrangian can be found in an arbitrary cosmological modéeitrapolating from GR, one
can conjecture that this is possible for all PGT Class A Bimanwodels with suitable sources,
including pressure and spin). As we have seen in Sec. 5, tbetigé mechanical system
methods were also useful for the late time normal mode aisalys

There have been some studies on PGT cosmology with dynaaiar sonnection modes
since the model proposed In [1, 2]. Wang and YWu [36] consdiamelated, but fundamentally
different model, which turns out to have only the dynafitianode. They considered the early
universe and showed how in their model such a dynamic PGTexdiom could account for
inflation (for another approach to using the PGT to accounirfilation, seel[31]). Liet
al. [3,!4] presented a nice analysis of the scalar mode modge] &fd& a more mathematical
angle in order to get a deeper insight into the behavior oflymamical system. In their work,
they found the critical points of the system and the corredpw ranges of the parameters.
In the latter work they also fit the model to the supernova tatind the best fit values of
the parameters. These works considered quite generalgarfigbe parameters and found
several interesting dynamical effects. We note that marthede interesting effects happen
in parameter ranges which are outside of the restrictionsidered by[[2] to be physically
necessary in order to have good linear modes (longlado [&h&3jonditions were found so
that the propagating modes should carry positive energysatigfy the no-faster-than-light
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condition). Also, a matter density of aba2i% of the critical density was also imposed in
[2] to give a more physical meaning to the a curve fitting. Rarinvestigations and a careful
study of the model will be needed to pin down the acceptaligas of the parameters. In the
present work, we have chosen the range of the related paesrielowing the result of [17]
for good propagating scalar linear modes, just aslin [2]. )Npg the methods used inl[B] 4]
to the present extended model would surely lead to furthseglims.

One may wonder: how large must the post-Riemannian fields lmeder to produce
observable effects in the the present day universe, eegoldberved acceleration? Conversely,
how large can the torsion or curvature scalars be withoulatii@y some observational
constraint? The questions merit a detailed study. Here impls argument that indicates
a magnitude. Let us compare the terms in the Lagrangiantgiearsi the field equations for
the model in which the PGT Lorentz connection has scalarmycal modes and the Einstein
theory with a cosmological constant. (In our present workhaee deliberately included in
most of the dynamical equations a possible cosmologicadtent; this was done not only for
greater generality but also to facilitate just such a comspar In our numerical evolution for
our model we used = 0.) Note that the presumed cosmological constant is “so St
it has no noticeable effect in the laboratory, nor on thersefatem scale, nor on the galactic
scale. Nevertheless it is large enough to have the domifii@&at en the cosmological scale.
Hence we are led to infer that we should consider that one oe mibthe post-Riemannian
terms (A, f2, A3x?, bTR?, b~ E?) should be comparable to the cosmological constant (which
is about3p) in the ACDM model. With such a choice we can expect that the post-BRmngrian
terms may be able to accelerate the universe and yet not Bpicaous on smaller scales.

The introduction of a new ingredient (i.e., the connection mode which is reflected
in the axial torsion and the pseudoscalar curvature) in Wosk raises the concern of
the experimental and observational constraints on thid.fi@flhere have also been some
laboratory tests in search of torsidn [40,/ 41]. The main ide®ng these experiments is
the spin interaction between matter and torsion. The thieat@nalyses and the high energy
experimental data on four-fermion vertices sets the lowenkl for the (pseudoscalar) torsion
mass> 200 Gev [19,[20, 21| 42]. The cosmological tests on torsion havestigated
the effect of torsion-induced spin flips of neutrinos in therly Universe—which could
alter the helium abundance and have other effects on thg eadeosynthesis [43, 44].
From Table[ 1L, the parameters chosen for the range of the thimomass are consistent
with the aforementioned analyses. Our model is also coatftatwith the most restrictive
experimental limits found on torsion [45]. For torsion bgiapplied to the cosmological
problem, Capozziell@t al. [35,[46] have done a serious study on replacing the role of the
cosmological constant in the accelerating Universe. Witiotally antisymmetric torsion
without dynamical evolution, their model is consistenthwtihie observational data by tuning
the amount of the torsion density. Compared with them, thdehm this work allows the
pseudoscalar torsion to evolve dynamically. This diffeeemight enable a more fruitful
physics to be studied.
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8. Conclusion

In this work we considered the two “scalar” dynamical modiethe PGT Lorentz connection
in a cosmological setting and have proposed it as a viableshfod explaining the current
status of the Universe. Besides seeking a better undemstpoithe PGT, we have considered
the prospects of accounting for the outstanding present rgstery—the accelerating
universe—in terms of an alternative gravity theory, moreipalarly in terms of the PGT
with a dynamic Lorentz connection having only two dynamicde®, carrying spin-0 with
even and odd parity. With the usual assumptions of isotroyyleomogeneity in cosmology,
we find that, under the model, the Universe will have with gienehoices of the parameters
an expansion rate which oscillates. The connection in tlidehcould play the role of dark
energy. With a certain range of parameter choices, it caouatdor the current status of the
Universe, i.e., an accelerating expanding universe withlaevof the Hubble constant which
is approximately the present one. Thus we have consideeegdhksibility that a certain
geometric field, a dynamic Lorentz connection—which is relty expected from spacetime
gauge theory—could fully account for the accelerated usie

The 0™ mode, which directly drives the acceleration of the uniggidoes not couple
directly to any known material source. By way of non-lineamnts it could come indirectly
from the huge density of the particles with sufficient spilg@inent in the early universe
which directly excite thed~ connection mode. Thé" mode could be considered as a
“phantom” field, at least in the matter-dominated epochgesiih will not interact directly
with matter; it only interacts indirectly via the gravitatial equations. Then the dynamics of
the scalar torsion mode could drive the Universe in an @ikl fashion with an accelerating
expansion at present. Itis quite remarkable that a gaugeytioé dynamic geometry naturally
presents us with such a “phantom” field. This natural geamé#ld could act like a dark
energy.

Acknowledgments

This work was supported in part by the National Science Cbwifiche R.O.C. (Taiwan)
under grant Nos. NSC97-2112-M-006-008, NSC97-2112-M-008. This work was also
supported in part by the National Center of Theoretical iBms and the (NCU) Center
for Mathematics and Theoretical Physics. Some of the caficuls were performed at the
National Center for High-performance Computing in Taiwahe encouragement and helpful
advice of F. W. Hehl and C. Soo was much appreciated.

Appendix A: The choice of parameters

Regarding our choice of parameters. From the table whichbeafound in any one of
[15,[17,[18], we find that to kill the dynamics of the, 2%, 17, 2~ modes we want to take,
respectively,

by +bs =0, by +by=0, bitbs=0, bi+by=0. (84)
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For dynamid)™ and0~ we want, respectively,
by +bs >0, and by+ b3 <0, (85)

from Table 3 in[18]. Now, due to the Bach-Lanczos identitg, @an choose any one of the
parameters, to vanish. Taking, say, = 0 we then get that we also walt = b, = b5 = 0,
leavingbs > 0, b3 < 0. We also find for the dynamiet and0~ modes, from Table 3 in[18]
the respective restrictions

apas(2ag + az) <0, and ag+ 2az < 0. (86)
In terms of the parameters used in the present work, i.e.,
bt =bg, b =-bs, Apr=—ap, mt=Ag+ A/2, m = Ay+24;3, (87)
these restrictions become
bt >0, b >0, AgAdsm™ >0, m~ >0. (88)

The Newtonian limit givesi, = 1. A positive kinetic term in the action requires > 0.

In order to facilitate a comparison of the works of variousugs, we here include the
parameter conversion between those of the Cologne grouplafahd coworkers (which we
follow), Minkevich and coworkers [28, 29, 30,131,/ 32], andgBaer and Miller-Hoissen [11].
In Hehl's work, the parameters related to the model desdribbé¢his paper areg, as, as, bs,
bs. Goenner and Miller-Hoissen used - - ¢y as the parameters in their work. The Goenner
and Mduller-Hoissen parameters are related to Hehl’s by

a a a,
Cl+3c2:§37 0501+303:§2, 042—507
b b
CQ—C8:Z37 052(6c5+206+207—08—09):56, (89)
and thus
-
204—U:m+, C4—201 —602 = 7 (90)
The parameters used by Minkevich are related to Hehl’s by
a a b b — b b
b:a37 _520’27 f(]:_gou q22237 q1 = 64 37 f:§67 (91)
and thus
ot L=m*, fo—b=""" (92)
4 2
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