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Abstract. The Poincaré gauge theory of gravity has a Lorentz connection with both torsion
and curvature. For this theory two good propagating connection modes, carrying spin-0+

and spin-0−, have been found. The possible effects of the spin-0+ mode in cosmology were
investigated in a previous work by our group; there it was found that the0+ mode could
account for the presently accelerating universe. Here, we extend the analysis to also include
the spin-0− mode. The resulting cosmological model has three degrees offreedom. We
present both the Lagrangian and Hamiltonian form of the dynamic equations for this model,
find the late-time normal modes, and present some numerical evolution cases. In the late time
asymptotic regime the two dynamic modes decouple, and the acceleration of the Universe
oscillates due to the spin-0+ mode.
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1. Introduction

This work reports on an extension of a certain cosmological model, based on the Poincaré
gauge theory of gravity (PGT), which was first announced in [1] and then presented in
considerable detail in [2]. In the latter work it was shown that the dynamic Riemann-Cartan
geometry (with curvature and torsion) could contribute an oscillating aspect to the Universe
expansion which could account for the present day observed acceleration. Since then two
new works have appeared analyzing the dynamics of this modeland addressing its fit to the
cosmological observations [3, 4]. These works have alreadycovered many features of the
original model in considerable detail. Here we wish to first review the results of the application
of certain theoretical principles to the PGT. That will naturally lead us to a more appropriate
description and our extension of the original model.

One of the outstanding successes of theoretical physics in the latter part of the last
century which led to a much deepened understanding was the recognition that all the known
fundamental physical interactions, the strong, weak, and electromagnetic—not excepting
gravity—can be well described in terms of a single unifying principle: that of local gauge
theory. Although there are other possible gauge approaches, for gravity it seems highly
appropriate to regard it a gauge theory for the local symmetry group of Minkowski space time:
the Poincaré group [5, 6]. Such a consideration led to the development of the Poincaré Gauge
Theory of gravity (PGT) [7, 8, 9, 10, 11, 12]. The PGT hasa priori independent local rotation
and translation gauge vector potentials: the Lorentz (i.e., metric compatible) connection and
the orthonormal co-frame; their associated field strengthsare thecurvature andtorsion. The
space-time then has generically a Riemann-Cartan geometry. Because of its gauge structure
and geometric properties the PGT has been regarded as an attractive alternative to general
relativity.

The theory includes as exceptional cases Einstein’s general relativity (GR) with
vanishing torsion, the Einstein-Cartan theory withnon-dynamic torsion algebraically coupled
to the intrinsic spin of the source, as well as the teleparallel theories—wherein curvature
vanishes but torsion does not. The generic PGT has, in addition to the metric familiar from
GR, a connection with some independent dynamics, manifested in both the torsion tensor and
additional non-vanishing post-Riemannian curvature components.

Investigations (especially [8, 13]) of the linearized theory have identified six possible
dynamic connection modes, carrying certain spins and parity: 2±, 1±, 0±. It is not possible for
all of the modes to have good dynamics. The possible combinations of well behaved (carrying
positive energy at speed≤ c) propagating modes in the linear PGT theory were identified.The
Hamiltonian analysis revealed the related constraints [14]. Then detailed investigations of the
Hamiltonian and propagation [16, 15, 17, 18] concluded thateffects due to nonlinearities in
the constraints could be expected to render all of these cases physically unacceptable except
for the two “scalar modes”, carrying spin-0+ and spin-0−.

One mode (referred to as the “pseudoscalar” because of its0− spin content) is reflected in
the axial vector torsion. Axial torsion is naturally drivenby the intrinsic spin of fundamental
fermions; in turn it naturally interacts with such sources.Thus for this mode one has some
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observational constraints [19, 20]. Note that except in theearly universe one does not expect
large spin densities. Consequently it is generally thoughtthat axial torsion must be small and
have small effects at the present time. The other good mode,0+, the so-called “scalar” mode,
is reflected in the vector torsion. There is no known fundamental source which directly excites
this mode. Conversely this part of the connection does not interact in any direct obvious
fashion with any familiar type of matter [21]. Hence we do nothave much in the way of
constraints as to its magnitude. We could imagine it as having significant magnitude and yet
not being dramatically noticed—except indirectly throughthe non-linear equations.

Thus the theoretical PGT analysis led to just two dynamic Lorentz connection modes. An
obvious place where one might see some physical evidence forthese modes is in cosmological
models. The cosmological homogeneous and isotropic assumptions greatly restrict the
possible types of non-vanishing fields. Curiously, for the connection and torsion there are
only two possibilities, which reflect precisely the two spin-0 connection modes. The scalar
0+ which gives rise to a special vector torsion which has only a time component, and the
pseudoscalar,0− mode, which gives rise to an axial torsion which is the dual ofa vector with
only a time component. Hence the homogeneous and isotropic cosmologies arenaturally very
suitable for the exploration of the physics of the dynamic PGT “scalar modes”.

Thus cosmological models offer a situation where a dynamic Lorentz connection may
lead to observable effects. Here we will not focus on the early universe, where one could
surely expect large effects (although their signature would have to be disentangled from other
large effects), and instead inquire whether one could see any effects of the PGT dynamic
connection in the present day universe. In particular we will here consider accounting for the
outstanding present day mystery: the accelerated universe, in terms of an alternate gravity
theory with an additional natural dynamic geometric quantity: a Lorentz connection [1, 2].

The observed accelerating expansion of the Universe suggested the existence of a kind
of dark energy with a negative pressure. The idea of a dark energy is one of the greatest
challenges for our current understanding of fundamental physics [22, 23, 24]. Among a
number of possibilities to describe this dark energy component, the simplest may well be
by means of a cosmological constantΛ. Another popular idea is the quintessence field —
some unusual type of minimally coupled scalar field — which has received much attention
over the past few years and a considerable effort has been made in understanding the role of
quintessence fields on the dynamics of the Universe (see, e.g., [25, 26, 27]).

An alternative is to consider some other gravity theory. Which brings us to our specific
topic: the possibility of explaining the accelerating universe using a well tested alternative
gravity theory, one well motivated by both geometrical and physical gauge theory principles.
We explore the possibility that the dynamic PGT Lorentz connection modes can drive the
acceleration of the universe. As noted above, there are two spin-0 modes which could have
dynamical behavior. In [2] it was shown that the the spin0+ mode can make the expansion
rate oscillate, naturally having an accelerating expansion in some periods and a decelerating
expansion at other times. For suitable choices of parameters and initial data the model can
account for the supernova observations. Here we show that including the0− mode allows for
an improved matching.
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Over the years there have been many studies of PGT cosmology,especially by Minkevich
and coworkers (see, e.g., [28, 29, 30, 31, 32]). Using various models they found that it was
possible for the PGT to avoid singularities, account for inflation, and produce the acceleration
of the universe (as discussed later in Section 3, their mechanism is different from that of our
dynamic0+ mode). A comprehensive early survey of the PGT cosmologicalmodels was
presented quite some time ago by Goenner and Müller-Hoissen[33]. Although that work
only solved in detail a few particular cases, it developed the equations for all the PGT cases—
including those for the particular model we consider here. However that work was done prior
to the discovery of the accelerating universe, and torsion was thus imagined as playing a big
role only at high densities in the early universe. More recently investigators have begun to
consider various models with torsion as a possible cause of the accelerating universe (see,
e.g., [32, 34, 35, 36]).

We have taken another step in the exploration of the possibleevolution of the Universe
with dynamic Lorentz connection spin-0 modes of the PGT. Themain motivation is two-
fold: (1) to have a better understanding of the PGT, in particular the possible physics of the
dynamic spin-0 modes; (2) to consider the prospects of accounting for the outstanding present
day mystery—the accelerating universe—in terms of an alternative gravity theory, more
particularly in terms of the PGT. With the usual assumptionsof isotropy and homogeneity
in cosmology, we find that, under the model, the Universe willoscillate with generic choices
of the parameters. The0+ dynamic mode in the model plays the role of the imperceptible
“dark energy”. With a certain range of parameter choices, itcan account for the current
status of the Universe, i.e., an accelerating expanding universe with a value of the Hubble
constant which is approximately the present one. These promising results should encourage
further investigations of this model, along with a detailedcomparison of its predictions with
the observational data.

The remainder of this work is organized as follows: We summarize the formulation of the
PGT in general and our model with scalar and pseudoscalar modes in Sec. 2, and then consider
the PGT scalar mode cosmological model in Section 3. In Section 4 an effective Lagrangian
and Hamiltonian for our cosmological model is presented. This is followed by a late-time
asymptotic expansion in Section 4 in which certain normal modes are identified. Section 6
includes the results of our numerical demonstrations for various choices of the parameters and
the initial data along with a comparison with the supernova observations. The implications of
our findings are discussed in Section 7 and Sec. 8 is a conclusion.

Throughout the paper our conventions are as follows: The spacetime signature is
(−,+,+,+) and c = ~ = 1. The Greek indices,α, β, γ . . ., are 4d orthonormal (an-
holonomic) indices, whereas the Latin indicesi, j, k . . . are 4d coordinate (holonomic)
indices; they both range over0, 1, 2, 3. On the other hand the Latin indicesa, b, c, d are 3-
dimensional, with range1, 2, 3.
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2. The Poincaré Gauge Theory

In the Poincaré gauge theory of gravity (PGT) [7, 8], the two sets of local gauge potentials
are, for “translations”, the orthonormal co-frameϑα = eαidx

i, where the metric isg =

−ϑ0 ⊗ ϑ0 + δabϑ
a ⊗ ϑb, and, for “rotations”, the metric-compatible (Lorentz Lie-algebra

valued) connection 1-formsΓαβ = Γ[αβ]
idx

i. The associated field strengths are the torsion
and curvature 2-forms

T α := dϑα + Γα
β ∧ ϑ

β =
1

2
T α

µνϑ
µ ∧ ϑν , (1)

Rαβ := dΓαβ + Γα
γ ∧ Γγβ =

1

2
Rαβ

µνϑ
µ ∧ ϑν , (2)

which satisfy the respective Bianchi identities:

DT α ≡ Rα
β ∧ ϑ

β , DRα
β ≡ 0. (3)

The PGT Lagrangian density is taken to have the standard quadratic form; qualitatively,

L [ϑ,Γ] ∼ Λ− a0R +

3
∑

n=1

an
(n)

T 2 +

6
∑

n=1

bn
(n)

R2, (4)

where
(n)

T and
(n)

R are the algebraically irreducible parts of the torsion and curvature andΛ is the
cosmological constant. The gravitational field equations obtained from varying with respect
to the respective gauge potentialsϑαi, Γαβ

j have the qualitative form

Λ− a0Gα
i +

3
∑

n=1

an(D
(n)

T +
(n)

T 2) +

6
∑

n=1

bn
(n)

R2 ∼ source energy-momentum density, (5)

a0T +

3
∑

n=1

an
(n)

T +

6
∑

n=1

bnD
(n)

R ∼ source spin density. (6)

These are, respectively, second order equations‡ for ϑαi andΓαβ
j . In conjunction with the

Bianchi identities (3), these two equations yield, respectively, the conservation of source
energy-momentum and angular momentum statements.

Here, generalizing an earlier work [2], we wish to examine the dynamics of the special
case describing the two good PGT dynamic scalar modes in a cosmological model. For this
two spin-0 modes case we should takebn = 0 except forb6 → b+ and b3 → −b− (see
Appendix A). For more convenient signs we also make the replacementan → −An.

The gravitational Lagrangian of our model has the specific form

L [ϑ,Γ] =
1

2κ

[

−2Λ + A0R−
1

2

3
∑

n=1

An

(n)

T 2 +
b+

12
R2 +

b−

12
E2

]

, (7)

‡ It should be noted that the PGT is obtained from an action containing quadratic curvature terms, but with the
connection as a variable they yield 2nd order equations. Higher order equationswould result from such an action
if one used the Christoffel connection—or decomposed the Lorentz connection into a Christoffel part plus torsion
terms and then treated the torsion and the metric as the fundamental dynamical fields. Such a decomposition is
alien to gauge principles.
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whereκ = 8πG, R is the scalar curvature andE is the pseudoscalar curvature (specifically
E/6 = R[0123] is the magnitude of the one component of the totally antisymmetric curvature).
The cosmological constant has been included both for generality and a comparison with other
models.

In detail, the first field equation, obtained from variation with respect to the orthonormal
frame, has the components

Λgµν + A0Gµν + A1

(

∇αTνµ
α +

1

2
TναβTµ

αβ − TνµαT
α +

1

4
gµνT

αβγTαβγ − TαβµT
αβ

ν

)

+
A2 −A1

3

(

gµν∇αT
α −∇νTµ −

1

2
gµνTαT

α

)

+
A3 −A1

18
(6∇αP

βǫαβνµ − 4PαTνβγǫ
βγα

µ

+ 3PαT
α
βγǫ

βγ
νµ − 4T α

βνP
γǫα

β
γµ − PαP

αgµν + 2PµPν)−
b−

24
(E2gµν − 2ERαβγνǫ

αβγ
µ)

+
b+

24
(4Rµν − Rgµν)R = κTµν (8)

whereGµν = Rµν −
1
2
gµνR is the Einstein tensor andTµν is the (in general nonsymmetric)

material energy-momentum density tensor.
The components of the second field equation, obtained from the variation with respect to

the connection, can be decomposed into three algebraicallyirreducible parts:

(6(A0 − A1) + b+R)
(1)

T α
βγ −

b−

2
E

(1)

T α
µνǫ

µν
βγ = 0, (9)

b+∇µR−
2

3
(6m+ + b+R)Tµ +

1

3
b−EPµ = 0, (10)

b−∇µE −
1

3
(6m− + b+R)Pµ −

2

3
b−ETµ = κSµ = 0, (11)

whereTµ ≡ T α
αµ =

(2)

T α
αµ, Pµ ≡ 1

2
ǫµν

αβT ν
αβ = 1

2
ǫµν

αβ
(3)

T ν
αβ are the torsion trace and axial

vectors,m+ ≡ A0 + A2/2 andm− ≡ A0 + 2A3 are the masses of the respective linearized
modes, andSµ is the axial vector spin density which, for simplicity, we have assumed to
vanish (this should be a good approximation except at high densities such as those expected
in the very early universe). The0− part couples, as indicated here, to the axial spin vector of
spin-1/2 fermions, but the0+ modedoes not couple to any known source.

From (9) we find the general solution
(1)

T α
βγ = 0. From (10) and (11) we learn that the

torsion trace and axial vectors are controlled by the gradients of two functions. This reflects
their respective spin0+, spin0− fundamental nature. However, in view of the non-linearities
of these relations as well as the geometric significance of the respective “potential functions”
(i.e., they are the scalar and pseudoscalar curvatures), one can see that it is neither possible
nor appropriate to resolve them to find new, simpler dynamicsfor two “scalar potentials”.
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3. The PGT scalar mode cosmological model

For a homogeneous, isotropic FLRW (Friedmann-Lemaître-Robinson-Walker) cosmological
model the isotropic orthonormal coframe has the form

ϑ0 = dt, ϑa = a(t) (1 +
1

4
kr2)−1 dxa, (12)

wherek = −1, 0,+1 is the sign of the Riemannian spatial curvature. Here we willconsider
for simplicity only the flatk = 0 case (as far as the observations can tell, this appears to well
describe our physical universe).

Because of isotropy, for thisk = 0 case the only non-vanishing connection one-form
coefficients are of the form

Γa
0 = Ψ(t) dxa, Γa

b = X(t)ǫabc dx
c, (13)

whereǫabc := ǫ0abc is the usual 3 dimensional Levi-Civita anti-symmetric tensor. From the
definition of the curvature (2), one can now find all the nonvanishing curvature 2-forms:

R0a = Ψ̇dt∧dxa−XΨǫabcdx
b∧dxc, Rab = Ẋǫabc dt∧dxc+(Ψ2−X2)dxa∧dxb.(14)

Consequently, the scalar and pseudoscalar curvatures are,respectively,

R = 6[a−1Ψ̇ + a−2(Ψ2 −X2)], (15)

E = 6[a−1Ẋ + 2a−2XΨ]. (16)

Because of isotropy, the only nonvanishing torsion tensor components are of the form

T a
b0 = f(t)δab , T a

bc = −2χ(t)ǫabc. (17)

From the definition of the torsion (1) one can find the relationbetween the torsion components
and the gauge variables:

f = a−1(Ψ− ȧ), χ = a−1X. (18)

(Note: the variableΦ = −3f was used in the earlier work [2].)
From the isotropic assumption, the material energy momentum tensor must have the

perfect fluid form. In this work we focus on the late time behavior. Accordingly we assume
that the fluid pressure can be neglected, so that the gravitating material behaves like dust with
a density satisfyingρa3 = constant. Also, we remind the reader that, although we expect the
spin density to play an important role in the early universe,it is reasonable to assume that the
material spin density is negligible at late times.

Due to isotropy, the first field equation (8) has only two nontrivial distinct components.
Expressed in terms of the tensorial quantities and the Hubble parameterH = ȧ/a they are the
“00” piece

+ Λ +
3A2

2
H2 − 3m+(H + f)2 + 3m−χ2

+
b−

24
E2 − b−E(H + f)χ+

b+

24
R2 −

b+

2
R[(H + f)2 − χ2] = −κρ, (19)
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which contains only first time derivatives of the potentials(and is hence an initial value
constraint), and the “space-space” piece

− Λ +
m+

3
[R− 3(H + f)2] + (2m+ −m−)χ2 −

A2

2
(2Ḣ + 3H2)

+
b−

72
E2 −

b−

3
E(H + f)χ+

b+

72
R2 −

b+

6
R[(H + f)2 − χ2] = −κp = 0, (20)

a dynamical equation for̈a.
From the components of the second field equation (10,11), we obtain

b+Ṙ = 2(b+R + 6m+)f + 2b−Eχ, (21)

b−Ė = 2b−Ef − 2(b+R + 6m−)χ, (22)

which—along with the definition of the curvature scalars (15), (16) — are second order
dynamical equations for the connection coefficients.

Before we present our more detailed discussion of these dynamical equations equations
it should be noted that there are some special “non-dynamic effective cosmological constant”
cases—that is special cases having one constant magnitude field when certain coefficients
a/o other field components vanish. Such field components would contribute to the dynamical
equations certain constant terms that would act like effective cosmological constants. Since
here we are interested in the generic case with both modes dynamic, we only mention these
special cases briefly and cite other works where they have been considered in more detail. In
particular [2] discussed the case with vanishingb−, χ andR = −6m+/b+, while [32] has
considered the case with vanishingb−, f , andR = −6m−/b+. It should also be mentioned
that the earlier investigators have tended to decompose theconnection into its Christoffel part
plus some torsion. Using such a decomposition leads to higher order equations—unless one
takesA2 = 0, as these investigators were prone to do (see, e.g., [28, 29,30, 32, 33]. Here
we do not make such a decomposition of the connection and need not make such a parameter
restriction—which would in fact render the0+ mode non-dynamic.

Instead of considering the three second-order differential equations (20,21,22,), we can
transform these second-order equations into six first-order differential equations by including
the definition ofH and (15)–(16) for the six unknown variables:a, H, f , χ, R, andE
(where all excepta andH are gauge covariant tensor fields). For some purposes this is
more convenient; in particular first-order differential equations are more suitable for numerical
calculations. Combining Eqs. (19) and (20) gives

− 3A2(Ḣ + 2H2) +m+R− 4Λ + 6(m+ −m−)χ2 = κ(ρ− 3p) = κρ. (23)

Eq. (23) is considered as a first-order differential equation for H. Moreover, Eqs. (21) and
(22) are already first-order differential equations forR andE. After replacingḢ in Eq. (15)
by using (23), it is clear that Eqs. (15) and (16) give the first-order equations forf andχ. With
a straightforward re-organization, the six equations are

ȧ = aH, (24)

Ḣ =
m+

3A2
R +

2(m+ −m−)

A2
χ2 − 2H2 −

κρ

3A2
−

4Λ

3A2
, (25)
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ḟ =
4A3

A2

χ2 −
A0

3A2

R − f 2 − 3Hf +
κρ

3A2

+
4Λ

3A2

, (26)

χ̇ =
E

6
− (3H + 2f)χ, (27)

Ṙ =
2b−

b+
χE + 2f

(

R +
6m+

b+

)

, (28)

Ė = 2fE −
2b+

b−
χ

(

R +
6m−

b+

)

, (29)

with the constraint equation

Λ +
3

2
A2H

2 + 3m−χ2 − 3m+(f +H)2 +
b+

24
R2 +

b−

24
E2

− b−E(f +H)χ−
b+

2
R[(f +H)2 − χ2] = −κρ. (30)

The constraint equation can be used to replaceκρ in Eqs. (25,26) to give alternative versions
of these two equations:

Ḣ = −
1

A2
Λ+

m+

3A2
R−

3

2
H2 +

2m+ −m−

A2
χ2 −

m+

A2
(f +H)2

+
1

3A2

{

b+

24
R2 −

b+

2
R
[

(f +H)2 − χ2
]

+
b−

24
E2 − b−E(f +H)χ

}

, (31)

ḟ =
1

A2

Λ−
A0

3A2

R−
1

2
f 2 − 2Hf +

2A3

A2

χ2 +
A0

A2

[(f +H)2 − χ2]

−
1

3A2

{

b+

24
R2 −

b+

2
R
[

(f +H)2 − χ2
]

+
b−

24
E2 − b−E(f +H)χ

}

. (32)

These two alternative equations along with the four other first order equations make a closed
system for the geometric variables which is more practical for numerical evolution. This
alternative system will be obtained in another way in the next section.

For a comparison with GR models, the “00” constraint (19) canbe considered as a
generalized Friedman equation:

3A0H
2 = κ(ρ+ ρΓ) + Λ, (33)

where the effective energy due to the dynamic connection is

κρΓ = 3m−χ2−6m+Hf−3m+f 2+
b+

24
R2+

b−

24
E2−b−Eχ(H+f)−

b+

2
R[(H+f)2−χ2], (34)

Moreover, the “space-space” Eq. (20) may be considered as a force-balance equation:

A0

(

ä

a

)

= −
κ(ρ+ 3p)

6
−
κ(ρΓ + 3pΓ)

6
+

Λ

3
, (35)

where the effective pressure due to the dynamic connection is

κpΓ = 2m+ḟ +m+f(4H + f)−m−χ2

+
b+

72
R2 +

b−

72
E2 −

b−

3
Eχ(H + f)−

b+

6
R[(H + f)2 − χ2]. (36)

It can here be seen howρΓ + 3pΓ < 0, which is indeed possible, could produce an
accelerated universe. Although these relations are usefulfor comparison with other models, an
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examination of the dynamical terms implicit inρΓ andpΓ shows that their PGT dynamic nature
differs fundamentally from that of their GR counterparts. In particular the ratiowΓ := PΓ/ρΓ
can take on any value and should not be given the usual equation-of-state interpretation.

4. Effective Lagrangian and Hamiltonian

Our cosmological model system of ODEs resemble those of a particle with three degrees of
freedom. One may suspect that they can be obtained directly from a variational principle. To
achieve such a goal it is natural to consider imposing the homogeneous-isotropic symmetry
into the field theory Lagrangian density. We note that it has long been known that imposing
symmetries and variations do not commute in general. However, for GR they are known to
commute for all Bianchi class A cosmologies [37]. We conjecture that this is also true for
the PGT. In particular ourk = 0 model is an isotropic Bianchi I (class A) model, so there
is good reason to be hopeful. Here we show that (at least for our dust fluid model) imposing
the FLRW symmetry on the PGT Lagrangian does indeed lead us tothe same expressions as
were found from imposing the symmetry on the field equations.

Imposing the FLRW symmetry on the Lagrangian density (7) leads to the effective
Lagrangian

Leff =
a3

κ

[

−Λ +
A0

2
R +

3

2
A2f

2 − 6A3χ
2 +

b+

24
R2 +

b−

24
E2

]

. (37)

It should be noted that (for least action) the coefficients ofthe quadratic kinetic terms (f 2,R2,
E2) which contain the time derivatives—see the specific expressions for the curvature and
torsion Eqs. (15,16,18)—must be non-negative.

Now we use this effective Lagrangian (along with the just mentioned expressions for the
curvature and torsion) to obtain a conserved energy and three second order equations for the
gauge parameters: the connection coefficientsψ, X and the frame/metric scale factora . We
also note that the second order Lagrange equations can be rearranged and combined with the
formulas for curvature and torsion to give exactly the six first order equations obtained from
the general 4D covariant field equations specialized to thek = 0 FLRW geometry. Following
this we will then find the associated Hamiltonian equations.

Making use of the formulas for the torsion and curvature components in terms of the
gauge variables, (15,16,18), the conserved energy function associated withLeff is found to be

E := q̇k
∂Leff

∂q̇k
− Leff =

a3

κ

{

Λ+
3A2

2
H2 − 3m+(f +H)2 + 3m−χ2

+
b−

24
E2 − b−E(H + f)χ+

b+

24
R2 −

b+

2
R[(H + f)2 − χ2]

}

, (38)

whereqk = {Ψ, X, a}. This is a combination that we recognize from our earlier analysis, it is
just the “00 constraint” (30); its constant magnitude is thephysical combination−a3ρ, which
is indeed a constant because of the dust fluid energy-momentum conservation relation.

Making use of the formulas for the torsion and curvature components in terms
of the gauge variables (15,16,18) we now obtain the Euler-Lagrange equations
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d

dt

∂Leff

∂q̇i
−
∂Leff

∂qi
= 0.

For theΨ equation:

d

dt

∂Leff

∂Ψ̇
=

d

dt

(

3A0a
2 +

b+

2
a2R

)

=
∂Leff

∂Ψ
= 6A0aΨ + b+aRΨ+ b−aEX + 3A2a

2f. (39)

This is a second order equation forΨ. (Here and below we dropped for simplicity the overall
factor ofκ−1.) It can alternately be rearranged using (18) to give (28), the first order equation
for Ṙ.

For theX equation:

d

dt

∂Leff

∂Ẋ
=

d

dt

(

1

2
b−a2E

)

=
∂Leff

∂X
= b−aEΨ− b+aXR− 6A0aX − 12A3aX. (40)

This second order equation forX can be rearranged using (18) into (29), the first order
equation forĖ.

For thea equation:

d

dt

∂Leff

∂ȧ
=

d

dt
(−3A2a

2f) =
∂Leff

∂a
= A0[a

2R− 3(Ψ2 −X2)] +
b+

24
a2R2 −

b+

2
R(Ψ2 −X2)

+
b−

24
a2E2 − b−XΨE +

3

2
A2a

2f 2 − 6A3X
2 − 3Λa2. (41)

This is a second order equation fora. It can be rearranged into a first order equation forḟ ;
the result is exactly (32), the aforementioned alternativeto (26) obtained by using (30). Now
using (18) one can calculate

Ḣ =
d

dt
(a−1Ψ)− ḟ = −H(H + f) + a−1Ψ̇− ḟ , (42)

then using the just mentioned expression forḟ and (15) one gets (31). Moreover, from (16)
using (18) one gets thėχ equation (27).

It is remarkable that here in these Lagrange equations and the associated conserved
energy we get (at least for this dust case) exactly the correct equations for our model—without
including any explicit source coupling!

We have cast our system into six first order equations for (3D)tensorial quantities,
equations which are suitable for numeric evolution and comparison with observations.
However these equations are probably not in the most suitable form for the most penetrating
analytic analysis. So we here also present the Hamiltonian equations for our PGT cosmology.

From the above one can introduce the canonical conjugate momentum variables:

Pa ≡
∂Leff

∂ȧ
= −

3A2

κ
a2 f, (43)

PΨ ≡
∂Leff

∂Ψ̇
= a2

(

3A0

κ
+
b+

2κ
R

)

, (44)

PX ≡
∂Leff

∂Ẋ
=
b−

2κ
a2E. (45)

Now one can construct the effective Hamiltonian:

Heff = Paȧ + PΨΨ̇ + PXẊ − Leff =
κ

6a

(

P 2
a

A2
+
P 2
X

b−
+
P 2
Ψ

b+

)

−

(

A0a
2

b+
+Ψ2 −X2

)

PΨ

a
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+ ΨPa −
2

a
X ΨPX +

6A3

κ
aX2 +

[

3A2
0

2b+
+ Λ

]

a3

κ
, (46)

and obtain the six Hamilton equations:

ȧ =
∂Heff

∂Pa
=

κPa

3A2a
+Ψ, (47)

Ψ̇ =
∂Heff

∂PΨ
=

κ

3b+a
PΨ −

Ψ2

a
+
X2

a
−
A0

b+
a, (48)

Ẋ =
∂Heff

∂PX
=

κ

3b−a
PX −

2

a
XΨ, (49)

Ṗa = −
∂Heff

∂a
=
Heff −ΨPa

a
−

12A3

κ
X2 −

[

2A2
0

b+
+ Λ

]

3a2

κ
+

2A0

b+
PΨ,(50)

ṖΨ = −
∂Heff

∂Ψ
= −Pa +

2

a
(ΨPΨ + PXX), (51)

ṖX = −
∂Heff

∂X
= −

12A3

κ
aX +

2

a
(PXΨ− PΨX). (52)

This canonical reformulation should be of considerable interest for further studies of this
model, since the Hamiltonian formulation is the framework for the most powerful known
approaches for analytically studying the dynamics of a system, including such techniques as
the Hamilton-Jacobi method and phase space portraits.

5. Asymptotic Expansion

At late times in an expanding universe as the scale factora becomes larger the field amplitudes
should be decreasing. We can then expect the quadratic termsin (38) to be dominant; hence,
when the cosmological constant vanishes the late time asymptotic behavior ofH, f , χ,R, and
E should have aa−3/2 fall off. So we reparametrize them according to

H = ha−3/2, f = ya−3/2, χ = xa−3/2, R = ra−3/2, E = ea−3/2. (53)

The current Universe corresponds toa3/2 ≫ 1. Substituting (53) into (24)–(30) gives

ȧ = a−1/2h, (54)

ḣ = a−3/2

[

2(m+ −m−)

A2
x2 −

h2

2
−

κ

3A2
ρ0a

3(0)

]

+
m+

3A2
r − a3/2

4Λ

3A2
, (55)

ẏ = a−3/2

[

4A3

A2
x2 − y2 −

3

2
hy +

κ

3A2
ρ0a

3(0)

]

−
A0

3A2
r + a3/2

4Λ

3A2
, (56)

ṙ = a−3/2

[

2yr +
3

2
rh+

2b−

b+
ex

]

+
12m+

b+
y, (57)

ẋ = a−3/2

[

−2xy −
3

2
hx

]

+
e

6
, (58)

ė = a−3/2

[

2ey +
3

2
he−

2b+

b−
rx

]

−
12m−

b−
x, (59)

− a3κρ = −κρ0a
3(0) = a3Λ +

3A2

2
h2 + 3m−x2 +

b−

24
e2 +

b+

24
r2 − 3m+(y + h)2
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− a−3/2

[

b−ex(h + y) +
b+

2
r((h+ y)2 − x2)

]

. (60)

Now let us restrict our further considerations to the vanishing cosmological constant case.
With a3/2 ≫ 1, Eqs. (54)–(59) show that the spin-0+ mode and the spin-0− mode are
becoming decoupled and the asymptotic Hubble rateh is influenced purely by the spin-0+

mode. Dropping the higher order terms (withΛ = 0), gives the energy constraint

− a3κρ = −κρ0a
3(0) =

3A2

2
h2 + 3m−x2 +

b−

24
e2 +

b+

24
r2 − 3m+(y + h)2 (61)

and three natural pairs of linear equations:

(ȧ = a−1/2h, ḣ =
m+

3A2
r), (ẏ = −

A0

3A2
r, ṙ =

12m+

b+
y), (ẋ =

e

6
, ė = −

12m−

b−
x). (62)

The last two pairs,(y, r) and (x, e), are clearly harmonic oscillators. To analyze these
equations further along with the first pair, we introduce thenew variable combination

z := m+y + A0h. (63)

We then find three late time normal modes:

ẍ+ ω2
−
x = 0, where ω2

−
=

2m−

b−
(64)

ÿ + ω2
+y = 0, where ω2

+ =
4A0m

+

A2b+
(65)

ż = 0. (66)

Reexpressed in terms of the late time normal modes the late-time energy constraint is

const. = −a3κρ = −
3

A0
z2 +

(

3A2

2A0
m+y2 +

b+

24
r2
)

+

(

3m−x2 +
b−

24
e2
)

, (67)

where each bracket is constant. The physical and geometric significance of two of the normal
modes is clear, since they directly correspond to the two torsion magnitudes (alternately the
associated curvature scalars). Thus for this model at late time we find that the twodynamical
connection modes are essentiallydynamical torsion modes and the description “torsion
cosmology” is phenomenologically appropriate, although it could lead to a misapprehension
as to the true fundamental dynamical fields.§

The remaining modez corresponds to a certain combination of the frame/metric scale
expansion factor and the0+ torsion:

Z = m+f + A0H (68)

which evolves according to

Ż = m−χ2 −m+f(f + 3H)− 2A0H
2 +

κρ

6
. (69)

§ Although the terminology “torsion cosmology” has often been used in the past to describe the sort of model
we are considering here, it has recently come to our attention that such terms are fundamentally inappropriate
and can inhibit a deeper understanding. The basic dynamic variables in this theory are the orthonormal frame
and connection.
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(With a nonvanishing cosmological constant this equation would pick up an extra2Λ/3 term.)
From the above we see that at late time (with vanishing cosmological constant) the Hubble
expansion rate has the form

H = a−3/2 × const.−
m+

A0

f, (70)

with the0+ torsion amplitudef oscillating at the frequencyω+. Only the0+ mode effects the
expansion rate at late times. The late time acceleration is

ä = a−1/2m
+

3A2

r, (71)

which has periodic oscillations at the rateω+. In this model sometimes the expansion rate is
accelerating and sometimes it is slowing down.

5.1. Numerical test

The validity of our late time analytic results has been tested numerically. Taking the
parameters asA0 = 1, A2 = 0.23, A3 = −0.35, b+ = 1.1, andb− = 0.3, we findω+ = 4.20

andω− = 1.4. They have the relationω+ = 3ω−. Using the same parameters, we plot a full
and a linear asymptotic normal mode evolution of all the 6 dynamical equations. The behavior
of the normal mode equations has been observed with several sets of initial values.

We have plotted one typical case in Fig. 1. Here we show at latetime the asymptotic
amplitudes: first, the Hubble function, h, second, the normal mode combination of the torsion
and Hubble function,z, third, the spin-0− normal mode,x, fourth, the spin-0+ normal mode,
y. The (black) dashed lines represent the exact evolution andthe (red) solid lines represent
the late time asymptotic normal mode behavior.

As expected, we found that the late time equations are indeeda good approximation.
Thez(t) function approaches a flat line at late time. The plots show that the frequency and
amplitude of the full and the linear approximation0+ and0− asymptotic equations are very
close, although there are apparently still some nonlinear effects.

6. Numerical Demonstration

In this section, we present the results of a numerical evolution of our cosmological model.
For all these calculations we takeΛ = 0. Since there is one scalar mode and one pseudoscalar
mode in this model, it is natural to investigate the interaction between these two modes. We
find that the pseudoscalar connection mode can generate the scalar connection mode, but not
conversely. This offers a reason for the existence of the scalar mode, since it is believed that
the pseudoscalar mode exists and plays an important role in the early universe due to its direct
interaction with matter. In Section 6.2, we first extend the numerical demonstration of the
earlier work [2] by including the spin-0− mode, and then compare our numerical results with
the observational supernovae data. Not surprisingly we findthat the supernovae data can be
better fitted with the two-scalar-connection-mode model.
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Figure 1. Asymptotic evolution of the Hubble function, h, the late time normal mode
combination of torsion and Hubble function,z (note the scale), the late time spin-0−

normal mode,x, and the late time spin-0+ normal mode,y. The (black) dashed lines
represent the actual late time asymptotic evolution and the(red) solid lines represent the linear
approximation normal modes.

We need to look into the scaling features of this model beforewe can obtain the sort of
evolution results we seek on a cosmological scale. In terms of fundamental units we can scale
the variables and the parameters as

t→ t/ℓ, a→ a, H → ℓH, f → ℓf, χ→ ℓχ, R → ℓ2R, E → ℓ2E,

A0 → A0, A2 → A2, A3 → A3, b+ → b+/ℓ2, b− → b−/ℓ2, Λ → ℓ2Λ, (72)

where ℓ2 ≡ κ = 8πG. So the variables and the scaled parametersb+ and b− become
dimensionless (from the Newtonian limitA0 = 1). Equations. (24–29) remain unchanged
under such a scaling. However, as we are interested in the cosmological scale, it is practical
to use another scaling—mathematically to make the numerical values of the scaled variables
less stiff for the numerical integration, and physically tosee changes on the scale of the age
of our Universe. In order to achieve this goal, let us introduce a dimensionless constantT0,
which represents the magnitude of the Hubble time (T0 = H−1

0
.
= 4.41504 × 1017 seconds).

Then the scaling is

t→ T0t, a→ a, H → H/T0, f → f/T0, χ→ χ/T0, R → R/T 2
0 , E → E/T 2

0 ,
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A0 → A0, A2 → A2, A3 → A3, b+ → T 2
0 b

+, b− → T 2
0 b

−, Λ → Λ/T 2
0 . (73)

With this scaling, all the field equations are kept unchangedwhile the periodT → T0T .

6.1. The interaction between the scalar and pseudoscalar mode
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Figure 2. Evolution of the components of the torsion. The top panels show the evolution
for nonvanishingf andR, and vanishingχ andE initially, corresponding to Case (a). The
bottom panels show the evolution for nonvanishingχ andE, and vanishingf andR initially,
corresponding to Case (b).

To understand the interaction of these two propagating scalar connection modes, we
consider two different situations: (a) the pseudoscalar mode vanishes initially with a
non-vanishing scalar mode; (b) the scalar mode vanishes initially with a non-vanishing
pseudoscalar mode. The parameters and the initial values for Case (a) are set as

A2 = 0.5, A3 = 1, b+ = 2, b− = 1, (74)

and

f(0) = −0.3, R(0) = 0.3, χ(0) = 0, E(0) = 0, (75)

wherea(0) = 50 andH(0) = 1 in both the cases. The parameters and the initial values for
Case (b) were chosen as

A2 = 1.0, A3 = −0.1, b+ = 1.5, b− = 1, (76)



Cosmological dynamics with propagating Lorentz connection modes of spin zero 17

and

f(0) = 0, R(0) = 0, χ(0) = 0.3, E(0) = 0.3. (77)

The numerically calculated evolution of these two cases areshown in Fig. 2. Case (a), which
corresponds to the top two panels of Fig. 2, shows that the scalar mode cannot generate an
initially vanishing pseudoscalar mode. It is clear thatχ andE stay zero with a dynamic
spin-0+ mode. The two bottom panels of Fig. 2, which correspond to case (b), show that
the pseudoscalar mode can generate an initially vanishing scalar mode. It is known that the
pseudoscalar connection mode will couple to elementary spinning particles. One can expect
that this mode will be excited by spinning particles in the early Universe, since there could be
a high spin density during this epoch. Once the pseudoscalarconnection mode is generated,
the scalar connection mode will be excited through the interaction with the pseudoscalar
connection mode.

6.2. Accelerating universes

We would like to compare the numerical evolution values for this model (withΛ = 0) with
the observational data of our Universe. The Hubble constantat present,H(t0 = 1), is

H =
1

4.41504× 1017
·
1

s
≈ 70

km

s ·Mpc
. (78)

The initial data is set at the current timet0 = 1, and current value of the Hubble function is
scaled to unity in this work, just as in [2]. The parameters and initial conditions chosen for
our first case are as follows:

A2 = 0.83, A3 = −0.35, b+ = 1.1, b− = 0.091, (79)

and

a(t0 = 1) = 50, H(t0 = 1) = 1, f(t0 = 1) = −0.335,

χ(t0 = 1) = 0.378, R(t0 = 1) = 2.18, E(t0 = 1) = 2.21. (80)

The results of the evolution with these parameters and initial conditions are plotted in Fig. 3.
The expansion factora is plotted in the top-left panel. In the top-right panel the Hubble
functionH is damped-oscillating at late time. In the bottom-right panel, it is obvious thaẗa is
damped and oscillating during the evolution and is positiveat the current timet ≈ 1, which
means the expansion of the universe is currently accelerating. The torsion and curvature
scalars,f(t), χ(t), R(t), andE(t), are also plotted in the middle panels of Fig. 3 to show the
correlation of the evolution between these variables. We observe that the frequencies of the
pairs (χ,E) and (f ,R) are usually different. The behavior is consistent with theanalysis in
Sec. 5. In order to have a deeper understanding of the settings of this case, the matter density
ρ and the effective mass density of the dynamical connectionρΓ are plotted in the bottom-left
panel. The value ofρ is decreasing as the universe is expanding and is always positive with
ρa3 =const, whileρΓ, plotted in the same panel, shows a “damped-oscillating” behavior. The
damped-oscillating behavior ofρΓ simply indicates that the effective energy densityρΓ is not
positive-definite in general. We also plot the phase diagrams for Case I in Fig. 4 to show that
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Figure 3. Evolution of the expansion factora, the Hubble function,H , the scalar and the
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ä, as functions of time with the parameter choice and the initial data in Case I.
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Figure 4. The phase diagrams for Case I. The phase diagram of (F , χ, a) is shown in the left
panel. The (red) solid line is the trajectory of the (F , χ, a) evolution starting from the initial
value (−0.335, 0.378, 50). The (gray) dashed line is the convergence line (0, 0, a) for this
diagram. The phase diagrams of (F , H , R) and of (χ, H , E) are shown in the right panel.
The (red) solid line is the trajectory of the (F , H , R) evolution starting from the initial value
(−0.335, 1, 2.18), the (blue) dashed line is the trajectory of the (χ, H , E) evolution starting
from the initial value (0.378, 1, 2.21), and the (black) filled point marks the asymptotic focus
point (0, 0, 0).

Table 1. The initial data and parameters for cases I, II, and III. Herethe parameterA0 = 1,
a(t = 1) = 50, andH(t = 1) = 1 in all three cases;t = 1 meanst = now, under the scaling
of Eqs. (72–73).

Case A2 A3 b+ b− f(1) χ(1) R(1) E(1) Ωm

I 0.83 -0.35 1.1 0.091 -0.335 0.378 2.18 2.21 0.23
II 0.52 0.475 1.05 0.35 -0.318 0.225 2.7 -1.2 0.29
III 0.635 0.5 1.06 0.42 -0.361 0.058 2.442 -1.8 0.27

the orbit of (f ,χ,a) is convergent to a line (0,0,a), and the orbits of (f ,H,R) and of (χ,H,E)
both converge to the point (0,0,0).

In this case the scaled value ofρ(t = 1) = 0.68 and its physical value isρ(t =

T0) = 2.15 × 10−30g/cm3. The Universe is supposed to be very close to the critical density,
ρc ≡ 3c2H2/8πG = 9.47×10−30g/cm3; we find the ratioΩm ≡ ρ/ρc ≈ 23%. In the standard
ΛCDM model,Ωm ∼ 30% with 5% baryonic matter and25% dark matter. For our model
ΩΓ ≡ ρΓ/ρc = 77% acts like the energy density of dark energy. Therefore, thisdynamic
connection model is able to describe a presently accelerating expansion of the Universe with
a proper amount of matter density. From the field equations wecan see that theeffect of the
“dark energy" mainly comes from the nonlinearity of the fieldequation driven by the dynamic
scalar and pseudoscalar connection modes. We also found other cases, two of which are listed
in Table 1 along with Case I; they are obtained by taking different values for the parameters
and the initial conditions. We find that the results for the other two cases have a behavior
qualitatively similar to that of Case I.
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Figure 5. Comparison of different spin-zero connection models and the standardΛCDM
model with the observational data via the relation between the distance modulusµ and the
redshiftz. The supernovae data points, plotted with (brown) circles,come from [38]. The
result of the standardΛCDM model (Ωm = 0.3, ΩΛ = 0.7) is plotted by the bold solid
line. The results of Case I, II, and III are represented by the(red) dashed line, the (green)
dot-dashed line, and the (blue) dotted line, respectively.In the inset, the models and data are
shown relative to an empty universe model (Ω = 0).

We compare our results with the supernovae data. Distance estimates from SN Ia light
curves are derived from the luminosity distance

dL ≡

√

Lint

4πF
= cT0a(1)(1 + z)

∫ t

1

dt

a(t)
, (81)

whereLint andF are the intrinsic luminosity and observed flux of the SN, and the redshift
z ≡ a(1)/a(t)−1. Logarithmic measures of the flux (apparent magnitude,m) and luminosity
(absolute magnitude,M) were used to derive the predicted distance modulus

µ = m−M = 5 log10 dL + 25 , (82)

wherem is the flux (apparent magnitude),M is the luminosity (absolute magnitude), and
dL in the formula should be in units of megaparsecs. We found therelations between the
predicted distance modulusµ and the redshiftz in the three cases; they are plotted in Fig. 5.
For comparison, we also plot the prediction of theΛCDM model withΩm = 0.3 andΩΛ = 0.7
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by employing the following formula [38]

dL = cT0(1 + z)

∫ z

0

dz
√

(1 + z)2(1 + Ωmz)− z(2 + z)ΩΛ

. (83)

The astronomical observational data [38, 39] are also plotted in Fig. 5 for comparison. The
plots show that for small redshiftz (e.g.,z < 1.9) all three cases of the dynamical connection
models give an accelerating universe just like theΛCDM model does. For largerz these cases
might turn the Universe into a deceleration mode, which is consistent with the behavior of the
various quantities shown in Fig. 3. We can see that Case I gives the closest curve behavior
to the one from theΛCDM model. In Fig. 5, we demonstrate the possibility of the spin-zero
connection fields accounting for the effect of dark energy with a suitable set of parameters and
initial data. A comparison of Fig. 5 with the results in [2] shows that this two-scalar-mode
model can give (not surprisingly) a better fitting of the supernova data than the one-scalar-
mode model can.

7. Discussion

From a series of earlier works [16, 15, 17, 18] it was concluded that the Poincaré Gauge
Theory of gravity has two good dynamic Lorentz connection modes, the “scalar” mode (spin
0+) and the “pseudoscalar” mode (spin0−) which satisfy 2nd order equations.

Here we extended a previous work [2], which considered a PGT cosmological model
with one dynamic Lorentz connection mode having spin0+, to the case where both the
scalar and pseudoscalar connection modes are dynamic. The objectives are (i) to study
this PGT cosmological model (and in particular how well it can match the present universe
observations) and (ii) to get a deeper understanding of the dynamics of the PGT.

From the cosmological homogeneous and isotropic assumptions the scalar and
pseudoscalar curvaturesR,E and the temporal components of the trace torsionf and axial
torsionχ survive and affect the evolution of the universe in this two-connection-mode model.
Recognizing the equivalence of the model to one describing aparticle with three degrees
of freedom, we constructed an effective Lagrangian and the corresponding Hamiltonian by
imposing the FLRW symmetry on the field theory action. The system of ODEs obtained
therefrom are the same as the evolution equations obtained by imposing the FLRW symmetry
on the equations derived from the PGT Lagrangian density.

With the evolution equations (24)–(29) and the associated energy constraint (30) we
analyzed the late time asymptotic expansion. We found thereare three normal modes: one
related to the Hubble expansion and two dynamic modes represented by the torsion and
curvature components. It was found that only the scalar modeaffects the late-time expansion
rate. The numerical analysis focused on the interaction between these two modes, the study
of the possible behavior of the Universe, and the fitting to the observed supernova data. It
was shown that the dynamical activity of the pseudoscalar mode could excite the scalar mode
via the nonlinear coupling of these two modes, but the converse does not happen: one can
have the scalar mode excited without any pseudoscalar excitation. Like the one-mode model
in [2], the present model allows for an expanding universe with an oscillating component in
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the expansion rate. Consequently, although on the average the expansion is slowing down,
the universe can have an accelerating expansion at the present time. The additional degree
of freedom in this two-mode model compared to the one in [2], not surprisingly, allows us to
obtain a better fit to the supernova data.

From the evolution equations (26)–(29), we can see the nonlinear coupling between the
scalar and pseudoscalar modes. In Sec. 6.1 we demonstrated the excitation of the scalar
mode through the dynamical activity of the pseudoscalar mode. Such a nonlinear interaction
between these two modes offers a natural mechanism to fuel the strength of the scalar mode
in the evolution of the Universe. We stress that there is no known fundamental material
source which directly excites the scalar mode; this part of the Lorentz connection simply does
not interact in any obvious fashion with any familiar type ofmatter [21]. Conversely, the
pseudoscalar mode is naturally driven by the intrinsic spinof fundamental fermions; in turn it
naturally interacts with such sources. Indirectly, the0+ mode could be enhanced and activated
dynamically through the aforementioned non-linear mechanism, in addition to any possible
primordial amplitude from the early universe.

From the late-time analysis in Sec. 5, we showed that only thescalar mode, not the
pseudoscalar mode, plays a direct role in affecting the expansion rate of the Universe. This
result is perfectly consistent with our understanding of the characteristics of these two modes:
Due to the ability of interacting with fermionic matter, it is generally thought that the axial
torsion (controlled by the pseudoscalar part of the Lorentzconnection) must be small and
have small effects at the present time [19]. Conversely, thescalar Lorentz connection mode
could be considered as a “phantom" field, at least in the matter-dominated epoch, since it will
not interact directly with matter, and yet can drive the Universe in an oscillating fashion with
an accelerating expansion at the present time.

As discussed in [2], the two Lorentz connection spin-zero modes in this model are in
some ways effectively like a scalar field and a pseudoscalar field, yet these two “scalar” fields
are fundamentally different from the various scalar field models of unknown matter, e.g., the
quintessence models, in the following ways:

• this cosmological model is derived naturally from a geometric gravitational theory, the
PGT, which is based on fundamental gauge principles, instead of on the hypothesis of
the existence of a dark energy tailored to producing an explanation of an accelerating
universe;

• there are, consequently, only a few free parameters in this cosmological model, instead of
an ad hoc potential that can be rather arbitrarily chosen to fit the observations. Therefore,
this PGT cosmological model should be more restrictive, andshould be easier to be
confirmed or falsified;

• based on its geometric character, the coupling of the dynamic parts of the Lorentz
connection to the other fields is nothing like that which has ever been advocated for
hypothetical scalar fields.

Thus this PGT cosmology with a Lorentz connection having dynamic “scalar” modes and the
quintessence models are characteristically different, even though there are some similarities.
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As mentioned in our previous work, if we consider the spacetimes as Riemannian instead
of Riemann-Cartan, by absorbing the contribution of the post-Riemannian terms of this model
into the stress-energy tensor on the rhs of the Einstein equations, as indicated in (33,34,35,36),
then this contribution will act as a source of the Riemannianmetric, effectively like anexotic
fluid with its mass densityρΓ and pressurepΓ varying with time (although the time evolution
of these torsion and curvature terms are not like that of any fluid). Moreover, the effective
fluid will appear to have presently a negative pressure, and consequently a negative parameter
in the effective equation of state, i.e.,ωΓ ≡ pΓ/ρΓ, which drives the universe into accelerating
expansion. Note that there is no constraint on the value ofωΓ which appears here, and its
value could vary from time to time. It should be stressed thatthis is not a real physical fluid
situation; the truth is thatωΓ is nothing like “a connection field equation of state”, it is just
a proportionality factor betweenρΓ andpΓ, two expressions which effectively summarize the
contribution of the connection (via the curvature and torsion) acting as a source of the metric.
The ratioωΓ is of interest only to help understand the acceleration of this model and to enable
a limited comparison with other dark energy proposals.

By imposing the FLRW symmetry on the Lagrangian density, we constructed an effective
Lagrangian as well as the corresponding Hamiltonian. One benefit of the former is a simpler
derivation of the dynamic equations (24)–(29). The latter should also prove useful, as
the Hamiltonian formulation is the framework for the most powerful known techniques for
analytically investigating the dynamics of a system. By these techniques one can to apply
the experience accumulated in dealing with conservative classical mechanical systems. An
effective Lagrangian and the corresponding Hamiltonian allows one to visualize the system
as a particle moving in a potential. This would be very helpful in gaining a better appreciation
of the dynamics of any sophisticated model. (Note, it is not necessarily true that an effective
Lagrangian can be found in an arbitrary cosmological model.Extrapolating from GR, one
can conjecture that this is possible for all PGT Class A Bianchi models with suitable sources,
including pressure and spin). As we have seen in Sec. 5, the effective mechanical system
methods were also useful for the late time normal mode analysis.

There have been some studies on PGT cosmology with dynamic scalar connection modes
since the model proposed in [1, 2]. Wang and Wu [36] considered a related, but fundamentally
different model, which turns out to have only the dynamic0− mode. They considered the early
universe and showed how in their model such a dynamic PGT connection could account for
inflation (for another approach to using the PGT to account for inflation, see [31]). Liet
al. [3, 4] presented a nice analysis of the scalar mode model of [2] from a more mathematical
angle in order to get a deeper insight into the behavior of thedynamical system. In their work,
they found the critical points of the system and the corresponding ranges of the parameters.
In the latter work they also fit the model to the supernova datato find the best fit values of
the parameters. These works considered quite general ranges of the parameters and found
several interesting dynamical effects. We note that many ofthese interesting effects happen
in parameter ranges which are outside of the restrictions considered by [2] to be physically
necessary in order to have good linear modes (long ago [8, 13]the conditions were found so
that the propagating modes should carry positive energy andsatisfy the no-faster-than-light
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condition). Also, a matter density of about25% of the critical density was also imposed in
[2] to give a more physical meaning to the a curve fitting. Further investigations and a careful
study of the model will be needed to pin down the acceptable ranges of the parameters. In the
present work, we have chosen the range of the related parameters following the result of [17]
for good propagating scalar linear modes, just as in [2]. Applying the methods used in [3, 4]
to the present extended model would surely lead to further insights.

One may wonder: how large must the post-Riemannian fields be in order to produce
observable effects in the the present day universe, e.g., the observed acceleration? Conversely,
how large can the torsion or curvature scalars be without violating some observational
constraint? The questions merit a detailed study. Here is a simple argument that indicates
a magnitude. Let us compare the terms in the Lagrangian density and the field equations for
the model in which the PGT Lorentz connection has scalar dynamical modes and the Einstein
theory with a cosmological constant. (In our present work wehave deliberately included in
most of the dynamical equations a possible cosmological constant; this was done not only for
greater generality but also to facilitate just such a comparison. In our numerical evolution for
our model we usedΛ = 0.) Note that the presumed cosmological constant is “so small” that
it has no noticeable effect in the laboratory, nor on the solar system scale, nor on the galactic
scale. Nevertheless it is large enough to have the dominant effect on the cosmological scale.
Hence we are led to infer that we should consider that one or more of the post-Riemannian
terms (A2f

2, A3χ
2, b+R2, b−E2) should be comparable to the cosmological constant (which

is about3ρ) in theΛCDM model. With such a choice we can expect that the post-Riemannian
terms may be able to accelerate the universe and yet not be conspicuous on smaller scales.

The introduction of a new ingredient (i.e., the0− connection mode which is reflected
in the axial torsion and the pseudoscalar curvature) in thiswork raises the concern of
the experimental and observational constraints on this field. There have also been some
laboratory tests in search of torsion [40, 41]. The main ideaamong these experiments is
the spin interaction between matter and torsion. The theoretical analyses and the high energy
experimental data on four-fermion vertices sets the lower bound for the (pseudoscalar) torsion
mass> 200 Gev [19, 20, 21, 42]. The cosmological tests on torsion have investigated
the effect of torsion-induced spin flips of neutrinos in the early Universe—which could
alter the helium abundance and have other effects on the early nucleosynthesis [43, 44].
From Table 1, the parameters chosen for the range of the the torsion mass are consistent
with the aforementioned analyses. Our model is also comfortable with the most restrictive
experimental limits found on torsion [45]. For torsion being applied to the cosmological
problem, Capozzielloet al. [35, 46] have done a serious study on replacing the role of the
cosmological constant in the accelerating Universe. With atotally antisymmetric torsion
without dynamical evolution, their model is consistent with the observational data by tuning
the amount of the torsion density. Compared with them, the model in this work allows the
pseudoscalar torsion to evolve dynamically. This difference might enable a more fruitful
physics to be studied.
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8. Conclusion

In this work we considered the two “scalar” dynamical modes of the PGT Lorentz connection
in a cosmological setting and have proposed it as a viable model for explaining the current
status of the Universe. Besides seeking a better understanding of the PGT, we have considered
the prospects of accounting for the outstanding present daymystery—the accelerating
universe—in terms of an alternative gravity theory, more particularly in terms of the PGT
with a dynamic Lorentz connection having only two dynamic modes, carrying spin-0 with
even and odd parity. With the usual assumptions of isotropy and homogeneity in cosmology,
we find that, under the model, the Universe will have with generic choices of the parameters
an expansion rate which oscillates. The connection in this model could play the role of dark
energy. With a certain range of parameter choices, it can account for the current status of the
Universe, i.e., an accelerating expanding universe with a value of the Hubble constant which
is approximately the present one. Thus we have considered the possibility that a certain
geometric field, a dynamic Lorentz connection—which is naturally expected from spacetime
gauge theory—could fully account for the accelerated universe.

The 0+ mode, which directly drives the acceleration of the universe, does not couple
directly to any known material source. By way of non-linear terms it could come indirectly
from the huge density of the particles with sufficient spin alignment in the early universe
which directly excite the0− connection mode. The0+ mode could be considered as a
“phantom" field, at least in the matter-dominated epoch, since it will not interact directly
with matter; it only interacts indirectly via the gravitational equations. Then the dynamics of
the scalar torsion mode could drive the Universe in an oscillating fashion with an accelerating
expansion at present. It is quite remarkable that a gauge theory of dynamic geometry naturally
presents us with such a “phantom” field. This natural geometric field could act like a dark
energy.
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Appendix A: The choice of parameters

Regarding our choice of parameters. From the table which canbe found in any one of
[15, 17, 18], we find that to kill the dynamics of the1+, 2+, 1−, 2− modes we want to take,
respectively,

b2 + b5 = 0, b1 + b4 = 0, b4 + b5 = 0, b1 + b2 = 0. (84)
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For dynamic0+ and0− we want, respectively,

b4 + b6 > 0, and b2 + b3 < 0, (85)

from Table 3 in [18]. Now, due to the Bach-Lanczos identity, we can choose any one of the
parametersbk to vanish. Taking, sayb4 = 0 we then get that we also wantb1 = b2 = b5 = 0,
leavingb6 > 0, b3 < 0. We also find for the dynamic0+ and0− modes, from Table 3 in [18]
the respective restrictions

a0a2(2a0 + a2) < 0, and a0 + 2a3 < 0. (86)

In terms of the parameters used in the present work, i.e.,

b+ ≡ b6, b− ≡ −b3, Ak ≡ −ak, m+ ≡ A0 + A2/2, m− ≡ A0 + 2A3, (87)

these restrictions become

b+ > 0, b− > 0, A0A2m
+ > 0, m− > 0. (88)

The Newtonian limit givesA0 = 1. A positive kinetic term in the action requiresA2 > 0.
In order to facilitate a comparison of the works of various groups, we here include the

parameter conversion between those of the Cologne group of Hehl and coworkers (which we
follow), Minkevich and coworkers [28, 29, 30, 31, 32], and Goenner and Müller-Hoissen [11].
In Hehl’s work, the parameters related to the model described in this paper area0, a2, a3, b3,
b6. Goenner and Müller-Hoissen usedc1 · · · c9 as the parameters in their work. The Goenner
and Müller-Hoissen parameters are related to Hehl’s by

c1 + 3c2 =
a3
2
, σ ≡ c1 + 3c3 =

a2
2
, c4 = −

a0
2
,

c9 − c8 =
b3
4
, c ≡ 2(6c5 + 2c6 + 2c7 − c8 − c9) =

b6
2
, (89)

and thus

2c4 − σ = m+, c4 − 2c1 − 6c2 =
m−

2
. (90)

The parameters used by Minkevich are related to Hehl’s by

b = a3, −
a

2
= a2, f0 = −

a0
2
, q2 =

b3
4
, q1 =

b6 − b3
4

, f =
b6
8
, (91)

and thus

2f0 +
a

4
= m+, f0 − b =

m−

2
. (92)
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