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Abstrat

We onsider the Proa �eld with dynamial term given by the exterior

derivative with respet to the most general onnetion; the most general

Proa �eld equations are given, and a disussion about the propagation

and the geometrial properties are presented: it is shown that this gen-

eralization is inonsistent. So the standard theory is already the most

general Proa Theory possible.

Introdution

As the existene of the massive vetor bosons has learly shown, the Proa

vetor �eld is a very important �eld in physis.

Its importane resides on the fat that, being it a vetor �eld with dynam-

ial term given by the exterior derivative and having mass, it allows for the

desription of all vetor �elds that are gauge �elds before eventually getting

their masses through a mass generation mehanism; another fundamental rea-

son is that, sine the dynamial term is the divergene of the url of the vetor

�eld and there is the mass term, then this partiular struture of its �eld equa-

tions automatially provides the subsidiary ondition that redues the number

of degrees of freedom to those needed to de�ne massive vetor �elds.

However, the fat that this �eld has dynamial term written in terms of the

antisymmetri part of the derivative, whih an be de�ned without torsion, does

not prevent us to try to generalize it up to the the exterior derivative alulated

with respet to the most general onnetion, in whih torsion is present in a

natural way; this most general onnetion is ommonly not used beause as it

is known it would spoil the gauge invariane, but there is no gauge invariane

to save in this ase for this �eld is massive: therefore suh a general onnetion

an be employed.

In this paper we will onsider suh a theory, deriving its onsequenes and

disussing its impliations regarding the Proa �eld, its propagation and its

most important geometrial properties.

1 Fundamental De�nitions

In a given geometry, the metri struture is given in terms of two symmetri

metri tensors gαβ and gαβ that are one the inverse of the other, and di�erential
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operations Dµ are de�ned through the onnetions Γρ
αβ ; the metri tensor are to

be suh that they an be loally redued to the Minkowskian form of signature

(1,−1,−1,−1), and the ovariant derivatives applied upon the metri tensors

are required to vanish aording to what is alled metriity ondition Dµg = 0,
as disussed in [1℄. Furthermore, requiring this ondition of metriity for any

onnetion leads to the omplete antisymmetry of Cartan torsion tensor Qαµρ,

as explained in [2℄.

In this bakground, we will de�ne Riemann urvature tensor Gαβµν as

Gα
λµν = ∂µΓ

α
λν − ∂νΓ

α
λµ + Γα

ρµΓ
ρ
λν − Γα

ρνΓ
ρ
λµ (1)

antisymmetri in both the �rst and the seond ouple of indies, allowing only

one independent ontration, Rii urvature tensor Gλ
αλβ = Gαβ , whose on-

tration is Rii urvature salar Gαβg
αβ = G and this will set our onvention.

Riemann urvature tensor, Rii urvature tensor and salar, together with

Cartan torsion tensor verify

DρQ
ρµν +

(

Gνµ
−

1

2
gνµG

)

−

(

Gµν
−

1

2
gµνG

)

≡ 0 (2)

and

Dµ

(

Gµρ
−

1

2
gµρG

)

−

(

Gµβ −

1

2
gµβG

)

Qβµρ +
1

2
GµκβρQβµκ ≡ 0 (3)

whih are geometri identities in the form of onservation laws, alled Jaobi-

Bianhi identities.

We remark that from the metri tensor it is possible to de�ne the Levi-Civita

tensor ε for whih Dµε = 0 preisely beause of the omplete antisymmetry of

torsion.

In turn, sine torsion is ompletely antisymmetri then we an write

Qβµρ = εβµρσWσ (4)

in terms of what is alled axial torsion vetor.

Within this bakground, to de�ne matter �elds that an be lassi�ed a-

ording to the value of their spin we have to onsider that a given matter �eld

of spin s possesses 2s+ 1 degrees of freedom, whih have to orrespond to the

2s+ 1 independent solutions of a system of equations that speify the highest-

order time derivative for all omponents of the �eld, alled system of matter

�eld equations.

However, sine it may happen that �eld equations are not enough to deter-

mine the orret rank of the solution, restritions need to be imposed in terms

of equations in whih all omponents of the �eld have highest-order time deriva-

tives that never our, alled onstraints; these onstraints an be imposed in

two ways, either being implied by the �eld equations, or being assigned as sub-

sidiary onditions that ome along with the �eld equations themselves.

Although the former proedure seems more elegant, whenever interations

are present it an give rise to two types of problems, the �rst of whih on-

erning the fat that the presene of the interating �elds ould inrease the

order derivative of the onstraining equation up to the same order derivative of

the �eld equations themselves, reating the possibility that highest-order time
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derivatives of some omponent our, onverting the onstraint into a �eld equa-

tion, then spoiling the ounting of degrees of freedom.

Before proeeding we have to remind the reader that to hek ausal propaga-

tion, the general method is to onsider in the �eld equations eventually modi�ed

by onstraints the terms of the highest-order derivative of the �eld, formally re-

plaing the derivatives with the vetor n in order to obtain the propagator, of

whih one has to ompute the determinant setting it to zero in order to get an

equation in terms of n alled harateristi equation, whose solutions are the

normal to the harateristi surfaes, representing the propagation of the wave

fronts: if there is no time-like normal among all the possible solutions, then

there is no spae-like harateristi surfae, and therefore these is no aausal

propagation of the wave front.

If in the onstraining equation the highest-order time derivative never ap-

peared, or if it atually appeared but ould be removed by means of �eld equa-

tions, then the onstraint is a onstraint indeed, but in this ase a seond type of

problem an arise, regarding the fat that the interating �elds ould let appear

terms of the highest-order derivative in the propagator, allowing these terms to

in�uene the propagation of the wave fronts themselves, as it is explained in [3℄.

One this analysis is performed, ausal propagation of wave fronts is heked,

and the exat number of degrees of freedom of the matter �eld solution is es-

tablished, the last requirement for this system of matter �eld equations is that

they have to ensure the omplete antisymmetry of the spin, so that taking the

spin Sνσρ
with the energy T σρ

they have to be suh that the relationships

DρS
ρµν +

1

2
(T µν

− T νµ) = 0 (5)

and

DµT
µρ

− TµβQ
βµρ

− SβµκG
µκβρ = 0 (6)

are veri�ed, implying the whole set of �eld equations

(

Gσρ
−

1

2
gσρG

)

= −

1

2
T σρ

(7)

and

Qνσρ = Sνσρ
(8)

to be suh that the onservation laws (2) and (3) are satis�ed automatially.

This determines the set-up of the fundamental �eld equations in minimal

oupling, that is taking the least-order derivative possible in both sides of the

�eld equations.

2 Propagation and Geometrial Properties

Having settled the bakground in this way, and beause the bakground is har-

aterized by these restritions, then matter �elds will behave in a orrespond-

ingly restrited way, as it is also explained in [4℄.

Now, we begin to onsider the issue of whih matter vetor �elds ould

possibly be de�ned within this bakground.
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In the ase of a vetor Vµ it is possible to de�ne beside the standard ovariant

derivative given in terms of the onnetion another most speial di�erential

operation given by Zµν = ∂µVν − ∂νVµ in terms of no additional �eld and

alled url or exterior derivative, whih an be generalized up to the di�erential

operator given by Zρµ = DρVµ −DµVρ that is formally the exterior derivative

but now with respet to the most general onnetion.

So given the vetor �eld Vµ, we postulate the most general Proa matter

�eld equations as

DµZ
µα +

λ

2
DµZηρε

µηρα +m2V α = 0 (9)

whih speify the seond-order time derivative for only the spatial omponents,

but whih also develop the onstraint

m2DµV
µ
−

λ
4
QρµνD

ρZαβε
αβµν

−
1

2
QραβDρZαβ − (10)

−
λ
2
DµQ

ρ
βνZραε

αβµν
−

1

2
DρQ

ραβZαβ = 0

and where the onserved quantities are given by the energy

Tαµ = −
1

2
gαµm2V 2 +

(

1

4
gαµZρηZ

ρη
− ZµθZα

θ

)

+

+DρV
µ
(

Zρα + λ
2
Zσθε

σθρα
)

(11)

and the spin

Sραβ =
1

2

[

V α

(

Zρβ +
λ

2
Zσθε

σθρβ

)

− V β

(

Zρα +
λ

2
Zσθε

σθρα

)]

(12)

so that, whereas the ondition

V α

(

Zρβ +
λ

2
Zσθε

σθρβ

)

+ V ρ

(

Zαβ +
λ

2
Zσθε

σθαβ

)

= 0 (13)

ensures the omplete antisymmetry of the spin, this form of the spin with the

energy is suh that the onservation laws (11) and (12) are veri�ed. We notie

a ouple of fats about the onstraints (11) and the ondition of omplete an-

tisymmetry of the spin (13): �rst, due to the presene of torsion the onstraint

ontains terms with the seond-order time derivative of spatial omponents,

whih an anyway be removed by means of �eld equations, and thus it is a

real onstraint that an then be plugged bak into the �eld equations allow-

ing them to speify the seond-order time derivative of all omponents; seond,

the ondition of omplete antisymmetry of the spin admits only one indepen-

dent ontration that eventually yields VρQ
ραβ = 0 and W νV ρ = W ρV ν

, and

therefore allowing us to write Zµν = ∂µVν − ∂νVµ, i.e. although we originally

began with the di�erential operator given by the formal exterior derivative with

respet to the most general onnetion we �nally get the exterior derivative

without additional �elds: the onsequene of this fat is that in this way the

expression of the spin tensor an be inverted to let us write the torsion tensor

as

Qραβ =
1

2

[

V α

(

Zρβ +
λ

2
Zσθε

σθρβ

)

− V β

(

Zρα +
λ

2
Zσθε

σθρα

)]

(14)
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and equivalently the axial torsion vetor as

Wν =
1

6

(

λ2
− 1

)

V αZρβεαρβν (15)

in terms of the vetor �eld in the �eld equations allowing them to aount for

the bak-reation e�ets. Finally we have that 3λW ν = (λ2
− 1)ZνρVρ is an

important relationship between the axial torsion vetor and the vetor �eld.

First of all we easily see that in general ases in whih the parameter λ is

di�erent from zero, we have that we an substitute torsion through the torsion

vetor in terms of the vetor �eld in the �eld equations, getting third-order

derivatives within the �eld equations themselves; this problem an be solved by

deomposing the vetor �eld as Vµ = Uµ +DµB with DµU
µ = 0 in terms of its

transversal and longitudinal parts: the harateristi equation is given by

n2
(

m2 + (λ2
− 1)W 2

)

= (2λ2
− 1) (n ·W )

2
(16)

in terms of the torsion vetor itself.

Clearly this harateristi equations shows that to avoid time-like solutions

to our in the irumstane of weak torsion we have to require 2λ2 < 1 whih

expresses the �ne-tuning of the parameter of the model; in this ase we have that

the ondition of ausality beomes W 2 < 2m2
whih is a ondition expressing

that torsion has a limit ontrolled from above by the mass of the vetor �eld.

However, even restriting the disussion to the ase in whih the propagation

is aeptable, we see that the ondition of omplete antisymmetry of the spin

onstitute a problem for the ounting of degrees of freedom; indeed this ondition

aounts at least for an additional onstraint that redues the number of degrees

of freedom to 2 at most: this is not the right number of degrees of freedom

possessed by the massive vetor �eld.

We notie that for the partiular ase given by λ2
≡ 0 we do not get the

harateristi equation (16) beause in this ase we have ZνρVρ ≡ 0 whih gives

ZµνQ
ρµν = 0 and therefore the �eld equations redue to those we would have

had in absene of torsion; however, although torsion is not oupled to the vetor

�eld, it is nonetheless present with the ondition of omplete antisymmetry

aounting for the additional onstraint that redues to 2 the maximum number

of degrees of freedom: even in this ase the right amount of degrees of freedom

is not ahieved.

Finally, we onsider the speial ase λ2
≡ 1 for whih we have ausality,

whih is due to the vanishing of torsion; however in this ase too, although

torsion would be zero and hene already ompletely antisymmetri, nevertheless

the very vanishing of torsion is itself a ondition that aounts for additional

onstraints whih redue to 2 the maximum number of degrees of freedom:

therefore in this ase the right balane of degrees of freedom is not aomplished

as well.

So, the most general Proa �eld an be �ne-tuned to give a ausal model,

but all these ausal models are overdetermined, and thus inonsistent.

Conlusion

In this paper, we have onsidered the Proa vetor �eld in whih the dynam-

ial term is written in terms of the url or equivalently the exterior derivate,
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alulated with respet to the most general metri onnetion with ompletely

antisymmetri Cartan torsion tensor; the most general system of �eld equations

has been given, and disussed from the point of view of ausal propagation and

the geometrial properties onstraining the degrees of freedom of the �eld.

It has been shown that the parameter λ determines the features of the model:

regarding the propagation, we proved that ausality is ensured by the �ne-tuning

of the parameter given by λ2 < 1

2
, or else by λ2

≡ 1; regarding the geometri

properties, we have seen that when λ2 < 1

2
torsion undergoes the limitation

given by W 2 < 2m2
, while for the speial ase λ2

≡ 1 the dynamial term

is self-dual and torsion vanishes identially, so that in any ase we have that

the maximum value of torsion an never exeed a value given in terms of the

mass of the �eld, and �nally we have seen that this massive vetor �eld is always

overrestrited by the onstraints arisen within the model. One point that should

be stressed is that the speial ase λ2
≡ 1 is of fundamental interest beause this

speial instane of self-dual dynamial term gives rise to a vanishing spin tensor,

although a non-trivial spin tensor should be present in general for vetor �elds,

and it is also intriguing that the ourrene of the ondition W 2 < 2m2
giving

to torsion an upper value in terms of the mass of the �eld, whih is a fat that

admits no lear interpretation; on the other hand, the fat that this �eld never

possesses the 3 degrees of freedom that de�ne massive vetor �elds onstitutes

an unsurmountable barrier. As this disussion has extensively underlined, any

attempt to add the ompletely antisymmetri torsion to the metri onnetion

in the exterior derivatives of the dynamial term for the Proa �eld implies

inonsistenies.

So, albeit the inlusion of torsion ould be a possible generalization for the

Proa �eld, no suh generalization atually leads to a onsistent set of Proa

�eld equations; therefore no suh generalization gives rise to any onsistent

Proa �eld theory.

This shows that it is already in its most general instane that the standard

Proa theory is de�ned.
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