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Abstract
We consider the Proca field with dynamical term given by the exterior
derivative with respect to the most general connection; the most general
Proca field equations are given, and a discussion about the propagation
and the geometrical properties are presented: it is shown that this gen-
eralization is inconsistent. So the standard theory is already the most
general Proca Theory possible.

Introduction

As the existence of the massive vector bosons has clearly shown, the Proca
vector field is a very important field in physics.

Its importance resides on the fact that, being it a vector field with dynam-
ical term given by the exterior derivative and having mass, it allows for the
description of all vector fields that are gauge fields before eventually getting
their masses through a mass generation mechanism; another fundamental rea-
son is that, since the dynamical term is the divergence of the curl of the vector
field and there is the mass term, then this particular structure of its field equa-
tions automatically provides the subsidiary condition that reduces the number
of degrees of freedom to those needed to define massive vector fields.

However, the fact that this field has dynamical term written in terms of the
antisymmetric part of the derivative, which can be defined without torsion, does
not prevent us to try to generalize it up to the the exterior derivative calculated
with respect to the most general connection, in which torsion is present in a
natural way; this most general connection is commonly not used because as it
is known it would spoil the gauge invariance, but there is no gauge invariance
to save in this case for this field is massive: therefore such a general connection
can be employed.

In this paper we will consider such a theory, deriving its consequences and
discussing its implications regarding the Proca field, its propagation and its
most important geometrical properties.

1 Fundamental Definitions

In a given geometry, the metric structure is given in terms of two symmetric
metric tensors g,g and ¢*” that are one the inverse of the other, and differential
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operations D,, are defined through the connections I'? 8 the metric tensor are to
be such that they can be locally reduced to the Minkowskian form of signature
(1,—1,—1,—1), and the covariant derivatives applied upon the metric tensors
are required to vanish according to what is called metricity condition D, g = 0,
as discussed in [I]. Furthermore, requiring this condition of metricity for any
connection leads to the complete antisymmetry of Cartan torsion tensor Qap,
as explained in [2].

In this background, we will define Riemann curvature tensor G, as

?juu = aﬂl—‘i‘u - 81/1—‘?\‘;1 + Fgul—‘iu - Fglll—‘f\,u (1)

antisymmetric in both the first and the second couple of indices, allowing only
one independent contraction, Ricci curvature tensor G, 5 = Gag, whose con-
traction is Ricci curvature scalar Go59*? = G and this will set our convention.

Riemann curvature tensor, Ricci curvature tensor and scalar, together with
Cartan torsion tensor verify
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and
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which are geometric identities in the form of conservation laws, called Jacobi-
Bianchi identities.

We remark that from the metric tensor it is possible to define the Levi-Civita
tensor € for which D,e = 0 precisely because of the complete antisymmetry of
torsion.

In turn, since torsion is completely antisymmetric then we can write

Qﬂup — Bupa W, (4)

in terms of what is called axial torsion vector.

Within this background, to define matter fields that can be classified ac-
cording to the value of their spin we have to consider that a given matter field
of spin s possesses 2s + 1 degrees of freedom, which have to correspond to the
2s 4+ 1 independent solutions of a system of equations that specify the highest-
order time derivative for all components of the field, called system of matter
field equations.

However, since it may happen that field equations are not enough to deter-
mine the correct rank of the solution, restrictions need to be imposed in terms
of equations in which all components of the field have highest-order time deriva-
tives that never occur, called constraints; these constraints can be imposed in
two ways, either being implied by the field equations, or being assigned as sub-
sidiary conditions that come along with the field equations themselves.

Although the former procedure seems more elegant, whenever interactions
are present it can give rise to two types of problems, the first of which con-
cerning the fact that the presence of the interacting fields could increase the
order derivative of the constraining equation up to the same order derivative of
the field equations themselves, creating the possibility that highest-order time



derivatives of some component occur, converting the constraint into a field equa-
tion, then spoiling the counting of degrees of freedom.

Before proceeding we have to remind the reader that to check causal propaga-
tion, the general method is to consider in the field equations eventually modified
by constraints the terms of the highest-order derivative of the field, formally re-
placing the derivatives with the vector n in order to obtain the propagator, of
which one has to compute the determinant setting it to zero in order to get an
equation in terms of n called characteristic equation, whose solutions are the
normal to the characteristic surfaces, representing the propagation of the wave
fronts: if there is no time-like normal among all the possible solutions, then
there is no space-like characteristic surface, and therefore these is no acausal
propagation of the wave front.

If in the constraining equation the highest-order time derivative never ap-
peared, or if it actually appeared but could be removed by means of field equa-
tions, then the constraint is a constraint indeed, but in this case a second type of
problem can arise, regarding the fact that the interacting fields could let appear
terms of the highest-order derivative in the propagator, allowing these terms to
influence the propagation of the wave fronts themselves, as it is explained in [3].

Once this analysis is performed, causal propagation of wave fronts is checked,
and the exact number of degrees of freedom of the matter field solution is es-
tablished, the last requirement for this system of matter field equations is that
they have to ensure the complete antisymmetry of the spin, so that taking the
spin S$¥?? with the energy 797 they have to be such that the relationships
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are verified, implying the whole set of field equations
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and
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to be such that the conservation laws (2] and (3) are satisfied automatically.

This determines the set-up of the fundamental field equations in minimal
coupling, that is taking the least-order derivative possible in both sides of the
field equations.

2 Propagation and Geometrical Properties

Having settled the background in this way, and because the background is char-
acterized by these restrictions, then matter fields will behave in a correspond-
ingly restricted way, as it is also explained in [4].

Now, we begin to consider the issue of which matter vector fields could
possibly be defined within this background.



In the case of a vector V), it is possible to define beside the standard covariant
derivative given in terms of the connection another most special differential
operation given by Z,, = 9,V, — 0,V,, in terms of no additional field and
called curl or exterior derivative, which can be generalized up to the differential
operator given by Z,, = D,V,, — D,V, that is formally the exterior derivative
but now with respect to the most general connection.

So given the vector field V,,, we postulate the most general Proca matter
field equations as

A
DuZM 4 5Dy Zypet " + m?V® =0 (9)

which specify the second-order time derivative for only the spatial components,
but which also develop the constraint

mQDuVH - %QPWD’)Z&BEWW - %QpaﬂD/ﬂZ@ﬂ - (10)
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and where the conserved quantities are given by the energy
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and the spin
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ensures the complete antisymmetry of the spin, this form of the spin with the
energy is such that the conservation laws (1) and ([I2)) are verified. We notice
a couple of facts about the constraints (II)) and the condition of complete an-
tisymmetry of the spin ([I3): first, due to the presence of torsion the constraint
contains terms with the second-order time derivative of spatial components,
which can anyway be removed by means of field equations, and thus it is a
real constraint that can then be plugged back into the field equations allow-
ing them to specify the second-order time derivative of all components; second,
the condition of complete antisymmetry of the spin admits only one indepen-
dent contraction that eventually yields VPQPO‘ﬁ =0 and W"V?P = WPV, and
therefore allowing us to write Z,,, = 9,V,, — 0,V,,, i.e. although we originally
began with the differential operator given by the formal exterior derivative with
respect to the most general connection we finally get the exterior derivative
without additional fields: the consequence of this fact is that in this way the
expression of the spin tensor can be inverted to let us write the torsion tensor
as

1
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and equivalently the axial torsion vector as
1
W, = (N2 —1)VZPey,p, (15)

in terms of the vector field in the field equations allowing them to account for
the back-reaction effects. Finally we have that 3AW"” = (\? — 1)Z"PV,, is an
important relationship between the axial torsion vector and the vector field.
First of all we easily see that in general cases in which the parameter \ is
different, from zero, we have that we can substitute torsion through the torsion
vector in terms of the vector field in the field equations, getting third-order
derivatives within the field equations themselves; this problem can be solved by
decomposing the vector field as V,, = U, + D, B with D, U* = 0 in terms of its
transversal and longitudinal parts: the characteristic equation is given by

n? (m? 4+ (N2 = 1)W?) = (20 = 1) (n- W)? (16)

in terms of the torsion vector itself.

Clearly this characteristic equations shows that to avoid time-like solutions
to occur in the circumstance of weak torsion we have to require 2\2 < 1 which
expresses the fine-tuning of the parameter of the model; in this case we have that
the condition of causality becomes W2 < 2m? which is a condition expressing
that torsion has a limit controlled from above by the mass of the vector field.

However, even restricting the discussion to the case in which the propagation
is acceptable, we see that the condition of complete antisymmetry of the spin
constitute a problem for the counting of degrees of freedom; indeed this condition
accounts at least for an additional constraint that reduces the number of degrees
of freedom to 2 at most: this is not the right number of degrees of freedom
possessed by the massive vector field.

We notice that for the particular case given by A\ = 0 we do not get the
characteristic equation (I6]) because in this case we have Z”?V,, = 0 which gives
Z,,Q°" = 0 and therefore the field equations reduce to those we would have
had in absence of torsion; however, although torsion is not coupled to the vector
field, it is nonetheless present with the condition of complete antisymmetry
accounting for the additional constraint that reduces to 2 the maximum number
of degrees of freedom: even in this case the right amount of degrees of freedom
is not achieved.

Finally, we consider the special case A = 1 for which we have causality,
which is due to the vanishing of torsion; however in this case too, although
torsion would be zero and hence already completely antisymmetric, nevertheless
the very vanishing of torsion is itself a condition that accounts for additional
constraints which reduce to 2 the maximum number of degrees of freedom:
therefore in this case the right balance of degrees of freedom is not accomplished
as well.

So, the most general Proca field can be fine-tuned to give a causal model,
but all these causal models are overdetermined, and thus inconsistent.

Conclusion

In this paper, we have considered the Proca vector field in which the dynam-
ical term is written in terms of the curl or equivalently the exterior derivate,



calculated with respect to the most general metric connection with completely
antisymmetric Cartan torsion tensor; the most general system of field equations
has been given, and discussed from the point of view of causal propagation and
the geometrical properties constraining the degrees of freedom of the field.

It has been shown that the parameter A determines the features of the model:
regarding the propagation, we proved that causality is ensured by the fine-tuning
of the parameter given by A\? < %, or else by A\? = 1; regarding the geometric
properties, we have seen that when A\? < % torsion undergoes the limitation
given by W2 < 2m?2, while for the special case \> = 1 the dynamical term
is self-dual and torsion vanishes identically, so that in any case we have that
the maximum value of torsion can never exceed a value given in terms of the
mass of the field, and finally we have seen that this massive vector field is always
overrestricted by the constraints arisen within the model. One point that should
be stressed is that the special case A2 = 1 is of fundamental interest because this
special instance of self-dual dynamical term gives rise to a vanishing spin tensor,
although a non-trivial spin tensor should be present in general for vector fields,
and it is also intriguing that the occurrence of the condition W2 < 2m? giving
to torsion an upper value in terms of the mass of the field, which is a fact that
admits no clear interpretation; on the other hand, the fact that this field never
possesses the 3 degrees of freedom that define massive vector fields constitutes
an unsurmountable barrier. As this discussion has extensively underlined, any
attempt to add the completely antisymmetric torsion to the metric connection
in the exterior derivatives of the dynamical term for the Proca field implies
inconsistencies.

So, albeit the inclusion of torsion could be a possible generalization for the
Proca field, no such generalization actually leads to a consistent set of Proca
field equations; therefore no such generalization gives rise to any consistent
Proca field theory.

This shows that it is already in its most general instance that the standard
Proca theory is defined.
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