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ABSTRACT

The stability of the chromomagnetic Savvidy vacuum in QCD under

the influence of positive Riemannian curvature is studied. The heat traces of

the operators relevant to SO(2) gauge-invariant Yang-Mills fields and Faddeev-

Popov ghosts are calculated on product spaces of S2 and S1 × S1. It is shown

that the chromomagnetic vacuum with covariantly constant chromomagnetic

field is stable in a certain set of radii and field strengths.
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CHAPTER 1

INTRODUCTION

Quantum Chromodynamics is the highly successful theory of the

strong interaction of elementary particles. It is based on SU(3) Yang-Mills

theory, which is a non-Abelian gauge theory invariant under the gauge group

SU(3), and a set of spin-1/2 quarks, which form the fundamental represen-

tation of the gauge group. The SU(3) degrees of freedom are referred to as

“color.”

The high-energy behavior of Yang-Mills theory is well-understood and

leads to a renormalizable quantum field theory. Gross, Wilczek[12], and Politzer

[17] discovered that at high energies (or short distance scales), the interaction

strength of Yang-Mills fields decreases to zero, a property known as asymptotic

freedom.

However, QCD is not well understood at low energies or large dis-

tance scales, i.e., those comparable to ΛQCD (∼ 10−13 cm), at which point

perturbation theory breaks down. The interaction strength increases, and the

energy required to separate quarks becomes infinite. This leads to the property

of confinement, which is exhibited by the experimental absence of free quarks,

but has not been demonstrated theoretically. At energy scales less than ΛQCD,

QCD has to be replaced by an effective theory of composites of quarks in the

form of color-neutral hadrons.

1
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The low-energy behavior of QCD can be examined through the effec-

tive potential. The effective potential is a function of the background Yang-

Mills field which is minimized by the absolute lowest energy state of the physical

system. This minimum defines the physical vacuum.

The physical vacuum is considered trivial when the effective potential

takes a minimum with a zero background Yang-Mills field. If the minimum of

the effective potential occurs when the Yang-Mills field is non-zero, the vacuum

state will consist of a non-zero background field. The first attempt to study

the Yang-Mills vacuum in this manner was by Savvidy[18] in 1977.

Savvidy introduced a background chromomagnetic field of constant

field strength lying in the Cartan algebra of the Lie group SU(2). He found

that the minimum of the one-loop effective action occurs at a non-zero value

of the background field, which causes the vacuum to be infrared unstable.

It was later pointed out by H.B. Nielsen and P. Olesen [16] that the

chromomagnetic vacuum discovered by Savvidy has an energy density with an

imaginary part, which implies that it has a tachyonic mode, leading to instabil-

ity of the vacuum. Further corrections[15] were made to the chromomagnetic

vacuum to show that the energy is lower when the chromomagnetic vacuum

consists of tube-like domain structures, with the chromomagnetic field pointed

along the axis of each tube. The finite width of the tubes serves as an infrared

cutoff, which destroys the low-energy instability. The minimum energy density

of this type of state has been found by [14] to be a superposition of domains

separated by a fixed distance. This model is known as the “spaghetti vacuum.”

It is important to note that these calculations pertain to a chromo-
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magnetic field in flat space. In this paper, we will consider the related problem

of the stability of the Yang-Mills vacuum on a curved space. The addition of the

curvature will make the operator corresponding to the second variation of the

action positive definite for large enough values of curvature, which will change

the tachyonic mode into a physical state and cause the vacuum to stabilize.

In particular, we will consider non-zero covariantly constant SO(3) Yang-Mills

fields on product spaces of spheres, valued in the sub-algebra SO(2). By an-

alyzing the spectrum of the second variation of the action and computing the

effective action, it will be shown that the vacuum will stabilize on spaces that

have sufficiently strong curvature.

This paper is organized as follows. Chapter Two of this paper dis-

cusses the effective action approach to quantum field theory and how it applies

to gauge theories, as well as the technique of zeta-function regularization. In

order to compute the effective action, we need the spectrum of the Yang-Mills

and Faddeev-Popov ghost operators on spheres, which are calculated in Chap-

ter Three. In Chapter Four, we apply the results of Chapter Three to find

the heat trace of Yang-Mills and ghost operators on S2 and S1 × S1. Chapter

Five is devoted to finding the total heat kernel on the products of spheres and

determining in what cases the vacuum is stable.



CHAPTER 2

QUANTIZATION OF NON-ABELIAN GAUGE

THEORIES

In this chapter, we will use the proper time method of Schwinger and

DeWitt, and so the notation will follow that of DeWitt[7].

2.1 Kinematics

Spacetime Geometry

The spacetime under consideration is an n-dimensional pseudo-Rie-

mannian manifold M endowed with a globally hyperbolic metric g with sig-

nature (− + · · ·+). We will assume that the spacetime manifold has a global

time-like Killing vector so that M = R×Σ, where Σ is an (n− 1)-dimensional

compact oriented spin manifold without boundary. Local coordinates xµ on M

are labeled by Greek indices that run over 0, . . . , n − 1. The coordinate basis

∂µ for the tangent space TxM at the point x ∈ M has dual basis dxµ in T ∗
xM .

The Christoffel symbols can be found from the metric

Γα
βγ =

1

2
gαδ (∂γgδβ + ∂γgδγ − ∂δgβγ) . (2.1)

The curvature of the metric gµν is described by the Riemann curvature tensor

Rα
µβν = ∂βΓα

νµ − ∂νΓα
βµ + Γη

νµΓα
βη − Γη

βµΓα
νη , (2.2)

4
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and its contractions: the Ricci tensor,

Rµν = Rα
µαν , (2.3)

and the Ricci scalar,

R = gµνRµν . (2.4)

Orthonormal Frame

An orthonormal frame e(α) can be constructed at every point on the

manifold and is labeled by lower case Greek indices in parentheses. The or-

thonormal frame of TxM can be constructed as a set of vector fields over M ,

where α = 1, . . . , n so that

〈

e(α), e(β)
〉

= η(α)(β) , (2.5)

where η(α)(β) = diag (−1, 1, . . . , 1).

The orthonormal basis e(α) may be expanded in the coordinate basis

∂µ,

e(α) = e(α)
µ∂µ . (2.6)

The inverse matrix e(α)µ of e(α)
µ defines the dual basis

e(α) = e(α)µdx
µ (2.7)

in the cotangent space T ∗
xM . Then

gµνe(α)µe
(β)

ν = η(α)(β) , gµνe(α)
µe(β)

ν = η(α)(β) . (2.8)
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2.1.1 Gauge Group

Yang-Mills theory describes the dynamics of a vector bundle over M .

To say that the theory is gauge invariant is to impose the restriction that the

action does not change under transformations by a gauge group. In particular,

consider a compact simple Lie group G attached to every point of M so that

any neighborhood in a fiber bundle has the local structure M × G. In other

words let ka be coordinates on G, so that for any coordinate patch on M , a

point in the fiber bundle is described by the set of coordinates (xµ, ka). Group

indices are labeled by lower case Latin letters, which run over 1, . . . , dimG.

An element U ∈ G of a compact simple gauge group may be written

in the form

U = exp (kaTa) , (2.9)

where ka are parameters and Ta are the generators of the Lie group G, which

lie in the Lie algebra. It is clear that the expression

Ta =
d

dka
U |ka=0 (2.10)

is an equivalent definition of the generators of G. The generators of a simple

compact Lie algebra satisfy the relation

[Ta, Tb] = Cc
abTc , (2.11)

where Cc
ab are the structure constants of the Lie algebra G.

The adjoint representation of the Lie algebra is defined by taking the

generators to be

(Ta)
b
c = Cb

ac . (2.12)
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To form inner products between algebra-valued tensors, we must in-

troduce an inner product on the Lie algebra. We define the Cartan-Killing

metric

Eab = −1

2
Cc

adC
d
bc = −1

2
tr (TaTb) (2.13)

to raise and lower group indices. In the case of compact simple Lie groups, this

metric can be normalized by

Eab = δad . (2.14)

To make the action invariant under gauge transformations, the co-

variant derivative ∇µϕ
ν of a field must satisfy the condition

∇′
µϕ

′ν = U(∇µϕ
ν) . (2.15)

The gauge matrix U is local, i.e., depends on the coordinates, and primed

quantities denote the transformed quantities. To do this, we let

∇µϕ
ν = (∇LC

µ + Aµ)ϕν , (2.16)

where Aµ = Aa
µTa is an algebra-valued vector field that transforms as

A′
µ = UAµU

−1 − (∂µU)U−1 (2.17)

for any gauge transformation U ∈ G. In general, Aµ depends on the represen-

tation of the group G.

The strength Fµν = F a
µνTa of the Yang-Mills field Aµ is defined by

Fµν = ∂µ Aν − ∂νAµ + [Aµ,Aν ] . (2.18)

The strength of the field can be used to define the action functional

SYM =
1

8e2

∫

M

dx tr (FµνFµν) , (2.19)

where e is a coupling constant and tr denotes the trace over the Lie algebra.
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2.1.2 Scalar Fields

A scalar field ϕ is invariant under diffeomorphisms and has a covariant

derivative of

∇µϕ = (∂µ + Aµ)ϕ , (2.20)

with A in an appropriate representation. The action for a scalar field must be

constructed out of a scalar potential term V (ϕ) and the quantity ϕT
✷ϕ, where

T denotes transpose and ✷ is the D’Alembert operator

✷ ≡ ∇µ∇µ . (2.21)

2.2 Effective Action

The effective action approach to quantum field theory is a highly

useful approach that was developed by DeWitt and others [7, 8, 20, 5]. This

section follows the method as developed for boson fields.

Consider two causally connected in- and out- regions of spacetime

that lie in the past and future of a region Ω in which physical dynamics will

take place. The goal of quantum field theory is to compute the amplitude

〈in|out〉 for some initial state |in〉 in the in- region to evolve into some final

state |out〉 in the out region. To calculate this, consider a change in the action

δS. The Schwinger variational principle states that the amplitude 〈in|out〉 will

change according to

δ 〈in|out〉 =
i

~
〈in|δS|out〉 . (2.22)

Let ϕi be the boson fields relevant to the problem, where i is taken

to run over both continuous (i.e. spacetime) and discrete (i.e. spinor, tensor,
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field) indices. Change the action by adding a linear interaction of ϕi with some

classical sources Ji that vanish in the in- and out- regions δS = Jiϕ
i, where

the contraction over i is taken as both a summation over discrete indices and

integration over spacetime

ϕiJi =

∫

M

dx
√
g ϕ(A)J

(A) , (2.23)

where g = det gµν .

With this variation, the solution to the Schwinger variational principle

is expressed in terms of the Feynman path integral

〈out|in〉 =

∫

Dϕ exp

{

i

~
[S(ϕ) + Jkϕk]

}

, (2.24)

where Dϕ represents the Feynman measure.

The generating functional for connected diagrams W (J) is defined in

terms of the in-out transition amplitude by

〈out|in〉 ≡ exp

(

i

~
W (J)

)

. (2.25)

The first functional derivative of W gives the background field Φi

Φi(J) =
δ

δJi
W (J) , (2.26)

the second functional derivative produces the propagator

Gi1i2(J) =
δ2

δJi1δJi2

W (J) , (2.27)

and the higher derivatives produce the many-point Green functions

Gi1...ik(J) =
δk

δJi1 . . . δJik

W (J) . (2.28)
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In order to calculate vertex functions, we define the effective action

Γ(Φ) by the functional Legendre transform

Γ(Φ) = W (J(Φ)) − Ji(Φ)Φi , (2.29)

where the sources J(Φ) are expressed in terms of the background fields. The

first functional derivative of Γ is equal to the sources

δ

δΦi
Γ(Φ) = −Ji(Φ) , (2.30)

the second derivative defines the inverse propagator

δ2

δΦiδΦj
Γ(Φ) = Dij(Φ) , (2.31)

DijGjk = −δi
kδ(x, x′) , (2.32)

and the higher derivatives determine the vertex functions

Γi1...ik(Φ) ≡ δk

δΦi1 · · · δΦik

Γ(Φ) . (2.33)

We see from (2.24), (2.25), and (2.29) that the effective action satisfies

exp

{

i

~
Γ(Φ)

}

=

∫

Dϕ exp

{

i

~

[

S(ϕ) − δΓ(Φ)

δΦi
(ϕi − Φi)

]}

. (2.34)

2.2.1 Gauge Theory

In gauge field theories, the above formalism can not be applied im-

mediately. Instead, there will be problems arising from the fact that the mea-

sure will include an integral over non-physical fields. To be more explicit,

consider an action functional S(ϕ) that is invariant under some vector fields

RA = Ri
A(ϕ)δ/δϕi on the configuration space. Transformations of the fields

δξϕ
i = Ri

Aξ
A , (2.35)
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with ξA being some parameters, that do not affect any real physics are called

gauge transformations.

In the case of gauge theories, the Feynman path integral (2.24) will

be carried over both physical and non-physical degrees of freedom. This adds

divergences to the path integral that can only be removed by the DeWitt-

Fadeev-Popov method. We can separate the field variables ϕ into physical

variables I(A) and gauge variables χB, so that the action S̄(I) = S(ϕ(I, χ))

does not depend on the group variables χ, that is, it is invariant under the

variations with respect to χB, but not under the variations with respect to

I(A).

To get rid of the excess degrees of freedom, we change the variables

ϕ = ϕ(I, χ) in the path integral and omit the integration over the group vari-

ables χ (in other words, we divide out the volume of the gauge group), so that

the integral is over the physical variables I(A)(ϕ) only. If the inverse change of

variables is given by χ = χ(ϕ), then the Jacobian of the change of variables is

DetQ(ϕ), where

QA
B(ϕ) = Ri

B(ϕ)
δχA(ϕ)

δϕi
(2.36)

is the Faddeev-Popov operator. The gauge condition is defined by a surface in

the configuration space

χA(ϕ) = θA (2.37)

where θB are some constants. This surface intersects all orbits of the gauge

group transversally, and thus has a one-to-one correspondence with the set of

all physical states. With these changes, we get the Feynman measure

DI = DϕDetQ(ϕ)δ(χB(ϕ) − θB) , (2.38)
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where δ(χB − θB) is the functional delta function. The path integral becomes

exp

(

i

~
Γ(Φ)

)

=

∫

Dϕ δ(χB(ϕ) − θB)DetQ(ϕ)

× exp

{

i

~

[

S(ϕ) − δΓ(Φ)

δΦi
(ϕi − Φi)

]}

. (2.39)

In order to write the effective action in terms of gauge-invariant quantities, we

integrate over θB with Gaussian weight to get the expression

exp

(

i

~
Γ(Φ)

)

=

∫

DϕDetQ(ϕ)(DetH(Φ))
1

2

× exp

{

i

~

[

S(ϕ) − 1

2
χA(ϕ)HAB(Φ)χB(ϕ) − δΓ(Φ)

δΦi
(ϕi − Φi)

]}

,

(2.40)

where HAB is some non-degenerate operator that does not depend on ϕ. The

determinant DetQ is typically calculated in terms of Faddeev-Popov ghost

fields, and DetH is calculated in terms of the Nielsen-Kallosh ghost. In the

case that H does not depend on the background field Φ, detH is simply an

infinite constant that can be factored into the measure.

2.3 Perturbation Theory

In order to calculate the effective action, we introduce perturbation

theory. In this section, we follow [6]. Perturbation theory is based on the idea

that the largest contributions to the effective action come from fields ϕi close

to the background field Φi in the sense that they can be split into a background

part and a quantum part

ϕi = Φi +
√
~ hi , (2.41)
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with hi being the quantum fluctuations of the background field. With this

change of variables, the effective action will have an expansion of the form

Γ(Φ) = SYM + ~Γ(1) + O(~2) , (2.42)

which is known as the loop expansion.

Splitting the fields as in (2.41), the path integral (2.40) may be ex-

panded using (2.42) to give the first order correction

Γ(1) =
i

2
ln DetLYM − i

2
ln DetH − i ln DetLFP , (2.43)

where

(LYM)ik = −S,ik(Φ) + χA ,i(Φ)HABχB ,k(Φ) , (2.44)

and

LFP = Q(Φ) . (2.45)

The quantity Γ(1) is the one-loop effective action.

Wick rotation

The determinants of differential operators ln DetL are problematic for

two reasons. One reason is that ln DetL is divergent and must be regularized

in order to make sense. This will be dealt with in the next section. Before that

can be accomplished we must first deal with the fact that L is, in general, not

a positive definite operator. To get rid of this latter problem, we Wick rotate

time in the complex plane

t = −iτ . (2.46)

Under this transformation, the metric is changed to have the Rieman-

nian signature (+, . . . ,+), so the operator −✷ becomes an elliptic operator
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rather than a hyperbolic one. In addition, the measure picks up an additional

factor of −i:
√

|g|dt dn−1x → −i
√

|g|dτ dn−1x , (2.47)

which in turn causes the action to pick up the same factor. For the remainder

of the paper, all quantities will be assumed to be Wick rotated. To describe

finite temperature effects, the Euclidean time is compactified to S1, with radius

given by the inverse temperature β = 1/T .

2.4 Heat Kernel Method for Computing the One-Loop Effective

Action

The quantity Γ(1) in (2.43) is the functional determinant of an elliptic

differential operator. This quantity will always be infinite and therefore must

be regularized in order for any physical calculation to make sense. Following

[19, 5], this section will show that using the heat kernel representation, the

effective action can be expressed in terms of a zeta function. Then by analytic

continuation, the zeta function can be regularized and made to yield finite

physical results.

Green Functions

For a bosonic field, the second functional derivative of the action may

be brought by choice of gauge to the form

L + m2 = −✷ + Q + m2
I , (2.48)

where Q is a matrix-valued function acting on the fields ϕi, m is the mass

(which may be zero), and I is the identity matrix.
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Green functions are solutions Gj
k of the equation

(L + m2)G(x, x′) = Iδ(x, x′) , (2.49)

with

δ(x, x′) = g−1/2(x)δ(x− x′) . (2.50)

They can be constructed in terms of a contour integral of the heat kernel

U(t) ≡ U(t|x, x′)

G(x, x′) =

∫ ∞

0

dt exp(−tm2)U(t|x, x′) . (2.51)

The heat kernel satisfies the heat equation

(

∂

∂t
+ L

)

U(t) = 0 (2.52)

with the boundary condition

U(t|x, x′)|t=0 = Iδ(x, x′) . (2.53)

From Green functions to Effective Action

The heat equation (2.52) has the formal solution

U(t) = exp (−tL) . (2.54)

In terms of the eigenfunctions φn corresponding to eigenvalues λn of the oper-

ator L, i.e.

Lφn = λnφn , (2.55)

the heat kernel can be written

U(t|x, x′) =
∞
∑

n=1

φn(x) ⊗ φ†
n(x′)e−tλn . (2.56)
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The heat kernel diagonal is defined by taking the coincidence limit of this

expression

U(t|x, x) =

∞
∑

n=1

φn(x)φ†
n(x)e−tλn , (2.57)

and the functional L2 heat trace is the trace of the diagonal over all indices

Tr exp(−tL) =

∫

M

dx trU(t|x, x)

=

∞
∑

n=1

e−tλn , (2.58)

In the case of Yang-Mills theory, the trace tr is over both group indices and

tangent space indices. If the eigenvalues are degenerate, we may express the

heat kernel in terms of the eigenvalues {λn}and degeneracies {dn}

Tr exp(−tL) =

∞
∑

n=1

dne
−tλn (2.59)

If the mass is sufficiently large so that λn + m2 > 0, the quantity

ln Det (L + m2) can similarly be expressed

ln Det [L + m2] =

∞
∑

n=0

ln(λn + m2) . (2.60)

We can use the identity

lnλ = −
∫ ∞

0

dt

t
e−tλ + C (2.61)

with C an infinite constant, and the expression for the heat trace (2.58) to find

ln Det (L + m2) = −
∫ ∞

0

dt

t
exp(−tm2)

∫

M

dx trU(t|x, x) + const . (2.62)

The infinite constant has no effect on the dynamics, and can be dropped. The

one-loop effective action is expressed completely in terms of the logarithms
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of determinants of operators, so calculation of the heat kernel U(t|x, x) for

various operators gives all of the information needed to calculate Γ(1). This

reduces the task of calculating the one-loop effective action to that of finding

the eigenvalues of the second variation of the action.

Zeta-Function Regularization

The quantity ln Det (L + m2) (2.62) is infinite. In order to make it

finite, it must be regularized in terms of the ζ−function

ln Det (L + m2) = −ζ ′(0) , (2.63)

ζ ′(0) =
d

dp
ζ(p)|p=0 . (2.64)

The ζ−function of a differential operator M is defined in terms of the

heat kernel by

ζM(p) = µ2pTrM−p =
µ2p

Γ(p)

∫ ∞

0

dt tp−1Tr exp(−tM) , (2.65)

where µ is a renormalization parameter with dimension of inverse length. The

ζ−function is analytic at p = 0, so the expression (2.63) is finite and well-

defined.

2.4.1 Yang-Mills One-Loop Effective Action

With this method of regularization in mind, we may return to Yang-

Mills theory. The one-loop effective action for Yang-Mills theory (2.43) in a

general covariant gauge is the sum of contributions from Yang-Mills fields and

ghosts. In terms of functional determinants in Euclidean space,

Γ(1) = ln DetLYM(λ) − 2 ln DetLFP (λ) , (2.66)
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where λ is a gauge-fixing parameter, and LYM(λ) is the operator acting on

gauge fields as found in (2.44)

LYM(λ) = LYM + λH , (2.67)

(LYMϕ)µ = −✷ϕµ − 2Fµ
νϕ

ν + Rµ
νϕ

ν (2.68)

(Hϕ)µ = ∇µ∇νϕ
ν , (2.69)

LFP is the Faddeev-Popov ghost operator acting on anti-commuting scalar

fields

LFP (λ) =
√

1 − λLFP , (2.70)

LFPη = −✷η . (2.71)

We can regularize the gauge-fixed Γ(1) by expressing it in terms of the

ζ−function

Γ(1) = −1

2
ζ ′tot(0) , (2.72)

where

ζtot(p) = ζLYM
(p) − 2ζLFP

(p) (2.73)

is the total ζ−function. The zeta-function can be analytically continued to

give a renormalized expression for the effective action.

The factor
√

1 − λ guarantees gauge independence of the regularized

effective action on the mass shell[3]. It can also be proven [3] that ζtot is

independent of gauge, and so we may choose λ = 0 so that we are left with

minimal differential operators as in (2.48).
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2.5 Chromomagnetic Vacuum

It was shown by Savvidy that the one-loop effective action for SU(2)

Yang-Mills in flat space takes a minimum for a non-zero field. Consider a

covariantly constant Yang-Mills background in flat space

∇µFαβ = 0 . (2.74)

One flat space solution to this equation is

Aa
α = −1

2
Fαβx

β na, (2.75)

so that F a
µν takes the form F a

αβ = Fαβn
a, where nb is a unit vector in the

Cartan subalgebra of the Lie algebra of G, nbnb = 1. To make this a “magnetic”

background, conditions on group invariants are imposed

FαβF
αβ =

1

2
(H2 − E2) > 0 , (2.76)

ǫαβγδFαβFγδ = H ·E = 0 . (2.77)

Expanding the one-loop effective action in terms of momenta for a magnetic-

type field and taking the first term[18], the one-loop correction is Γ(1)H =
∫

dx L(1)H

 L(1)H =
1

8π2e2

∫ ∞

0

ds

s3

(

Hs

sinh(Hs)
+ 2Hs sin(Hs)

)

. (2.78)

Renormalization of this expression gives

 L(1)H = −11H2

48π2

[

ln
H

µ2
− 1

2

]

(2.79)

to which the corresponding energy density is

H =
H2

2e2
+

11H2

48π2

[

ln
H

µ2
− 1

2

]

. (2.80)
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It is easily seen [16] that the energy density has a minimum at

Hmin = µ2 exp

(

−24π2

11e2

)

. (2.81)

It was later pointed out by Nielsen and Olesen [16] that the energy

density for this model has an imaginary part, which leads to instability of this

model.



CHAPTER 3

HEAT TRACE ON SPHERES

3.1 Existence of covariantly constant Yang-Mills fields on spheres

In the spirit of Savvidy [18], we consider a covariantly constant field

strength tensor Fµν that takes values in the center of the gauge Lie algebra.

The condition that the field is constant gives rise to the equation

[∇µ,∇ν ]Fαβ − [∇α,∇β]Fµν = 0 . (3.1)

It can be shown[2] that this yields the integrability condition

[Fµν ,Fαβ] + Rµνλ[αFλ
β] − Rαβλ[µFλ

ν] = 0 . (3.2)

By taking Fµν to be in the center of the Cartan algebra, [Fµν ,Fαβ] = 0, writing

the Riemann tensor of the N−sphere as

Rµν
λα = ρ(δµλδ

ν
α − δνλδ

µ
α) (3.3)

for N ≥ 2, and contracting over µ and α in (3.2), we find

ρ(N − 2)Fνβ = 0 . (3.4)

Therefore, non-zero covariantly constant magnetic fields in the center of the

algebra of the Lie group can only exist on S2 or RN .

21
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3.2 Product Manifolds

Each of the manifolds that we consider has the product manifold

structure M = M1 × · · · ×Mn, where Mi are submanifolds of M . In this case,

we have the decomposition of the operator L

L = L1 ⊗ I2 ⊗ · · · ⊗ In + · · · + I1 ⊗ . . . In−1 ⊗ Ln , (3.5)

where Li is the projection of L onto the submanifold Mi. In this case, the heat

kernel has the form

exp(−tL) = exp(−tL1) . . . exp(−tLn) . (3.6)

To calculate the heat kernel on a general product manifold, we only need to

calculate the heat kernel on each submanifold and multiply the results

Tr e−tL = Tr M1
exp(−tL1) . . .Tr Mn

exp(−tLn) , (3.7)

where Tr denotes the functional trace, which is also taken to be the trace over

group and coordinate indices.

3.3 Heat Trace of Laplacian on S1

On S1, a circle of radius r, the Laplacian acting on any function is

simply the operator

L = −∆ = − 1

r2
∂2
φ , (3.8)

where φ is the coordinate along the circle, 0 ≤ φ < 2π. The eigenvalues for

this operator are

λn =
n2

r2
, n = 0,±1, . . . (3.9)
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The multiplicities are

d0 = 1 (3.10)

dn = 2 , n = 1, 2, . . . (3.11)

(3.12)

The heat kernel trace for a function on S1 can then be calculated using the

formula for the heat kernel (2.59)

Tr exp(−tL) = 1 + 2

∞
∑

n=1

e−tn2/r2 . (3.13)

We define this to be the function

S

(

t

r2

)

= 1 + 2

∞
∑

n=1

e−tn2/r2 . (3.14)

There is no difference between a scalar and a p-form on S1, so this heat trace

applies to all geometric objects on S1.

3.4 Heat Trace on S2

The heat trace for S2 is non-trivial and its calculation is a significantly

more complicated problem. On S2, scalars and one-forms will be distinct ob-

jects and will form different representations of both the gauge group and the

isotropy group, which will determine the covariant derivative and thus the form

of the Laplacian. In addition, the existence of non-zero chromomagnetic fields

will cause the the eigenvalues to split, leading to a much more complicated

spectrum.



24

3.4.1 Geometry of S2

Consider the 2-sphere S2 of radius R endowed with the standard

Riemannian metric

ds2 = e(α)µe
(α)

νdx
µdxν = R2(dθ2 + sin2 θdφ2) , (3.15)

where 0 ≤ θ < π, and 0 ≤ φ < 2π. Greek letters without parentheses de-

note the coordinate indices, which range over the two values θ and φ. The

orthonormal basis one-forms e(α) are given by

e(1) = Rdθ , e(2) = R sin θdφ . (3.16)

Greek indices with parentheses range over 1, 2 and denote indices of the or-

thonormal basis. The volume form is given by

dvol = R2 sin θdθ ∧ dφ . (3.17)

The components of the spin connection 1-form can be found by the Cartan

method to be

ω(α)(β) = −ǫ(α)(β) cos θdφ . (3.18)

The curvature tensor components are

R(α)(β)
(γ)(δ) =

1

R2

(

δ
(α)
(γ) δ

(β)
(δ) − δ

(β)
(γ)δ

(α)
(δ)

)

. (3.19)

3.4.2 Isometries

The sphere S2 is diffeomorphic to the quotient space SO(3)/SO(2).

Here, SO(3) is the isometry group of S2 and SO(2) is the isotropy group of
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S2. The rotation group SO(3) maps S2 to itself and SO(2) rotations centered

around a point will leave the point unmoved.

Let ϕ = (ϕA) be a field which transforms under a representation of

the group SO(2). Let Σ(α)(β) =
(

Σ(α)(β)
B
A

)

be the generators of the group

SO(2) in the representation acting on ϕ. Because SO(2) is a one-dimensional,

Abelian group, there is only one generator Σ = Σ(1)(2). Then the covariant

derivative of ϕ is

∇µϕ = (∂µ + ωµΣ)ϕ , (3.20)

where

ω1 = 0 ω2 = − cos θ . (3.21)

3.4.3 Gauge Curvature

Now assume that the field ϕ also transforms under another represen-

tation T of the group SO(2), which we call a gauge representation. Then ϕ

transforms under the product of two representations of the group SO(2). Let

A be the corresponding gauge connection and F = dA be the curvature of this

connection.

The gauge curvature F is a 2-form on a 2-dimensional space, and so

F must be proportional to the volume form dvol

F =
TH

2
sin θdφ ∧ dθ , (3.22)

where, in general, H is some function of the coordinates. By expressing F in

components

Fµ
ν =

TH

2R2
Eµ

ν , (3.23)
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where Eµν =
√
gǫµν is the invariant volume form, we see

∇αFµν =
1

2
TEµν∇αH . (3.24)

Requiring the curvature to be covariantly constant yields the condition that H

is a constant.

Physically, H can be interpreted as the charge of a monopole at the

center of the sphere. Because F is precisely the Chern form of a line bundle

over S2 [11], we have
∫

S2

F = 2πnT , n ∈ Z . (3.25)

Therefore, the monopole charge H can only take integer values

H = n , n ∈ Z . (3.26)

The corresponding gauge connection is found by solving the equation

F = dA , (3.27)

which results in

A =
TH

2
cos θdφ (3.28)

We see that A is proportional to the spin connection ω. The covariant derivative

invariant under both space rotations and gauge transformations is then

∇µϕ = (∂µ + T ωµ)ϕ , (3.29)

where

T = I⊗ Σ +
TH

2
⊗ I , (3.30)

and T is the generator of the gauge group SO(2).
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3.5 Spectrum of the Laplacian on S2

In order to calculate the heat traces (2.59) on S2, we need to analyze

the spectrum of the operator LYM . We know from (2.68) that this operator

is equal to the negative Laplacian plus Yang-Mills strength and Ricci curva-

ture terms. The field strength and curvature tensors are covariantly constant.

Therefore, the eigenfunctions of LYM are proportional to the eigenfunctions of

the Laplacian. This causes the eigenvalues of LYM to be the eigenvalues of the

Laplacian, shifted by the eigenvalues of the sum of the other two operators.

The Laplacian acting on general spin-tensor is given by the expression

∆ = gµν∇µ∇ν = |g|−1/2(∂µ + T ωµ)|g|1/2gµν(∂ν + T ων) . (3.31)

In the case of S2, the Laplacian becomes

∆ =
1

R2

[

∂2
θ + cot θ∂θ +

1

sin2 θ
(∂φ − T cos θ)2

]

(3.32)

It can be noted that this will yield the standard Laplacian for a par-

ticle in a magnetic field [13] in the limit R → ∞. Using polar coordinates near

θ = 0 with θ = ρ/R, along with using the choice of gauge A = tH
2

(cos θ − 1) dφ

and denoting the generator of SO(2) by i, the connection becomes

A(1) = 0 , A(2) =
iMR2

2
(cos θ − 1) , (3.33)

where M is the magnetic field H = MR2. Taking the limit R → ∞ then gives

the standard Laplacian on R2

∆ = ∂2
ρ +

1

ρ
∂ρ +

1

ρ2
∂2
φ +

iH

2
∂φ −

H2

16
ρ2 . (3.34)
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3.5.1 Action of Laplacian on one-forms

For 1-forms, the generator T is the matrix with components

T (α)a
(β)b = ǫ(α)(β)δ

a
b +

H

2
ǫabδ

(α)
(β) . (3.35)

The eigenvalues of the matrix T are ikj , j = 1, 2, 3, 4

k1 = 1 +
H

2
, k2 = 1 − H

2
, k3 = −1 +

H

2
, k4 = −1 − H

2
. (3.36)

In the same basis, the field strength tensor can be diagonalized with corre-

sponding eigenvalues

f1 = −H

2
, f2 =

H

2
, f3 =

H

2
, f4 = −H

2
, (3.37)

and the Ricci tensor will be proportional to the identity, with all eigenvalues

ri given by

ri =
1

R2
(3.38)

Diagonalizing the matrix T will cause the Yang-Mills operator LYM to break

into four separate operators of the form

L(i) = − 1

R2

[

∂2
θ + cot θ∂θ +

1

sin2 θ
(∂φ − iki cos θ)2

]

− 2
fi
R2

+
1

R2
, (3.39)

where k is a half-integer that takes one of the four values k1, k2, k3, k4. The

values fi are the corresponding eigenvalues of the matrix F and are given by

the values

f1 = −H

2
, f2 =

H

2
, f3 =

H

2
, f4 = −H

2
. (3.40)

It is clear that the spectrum of the Laplacian will be invariant under change

of sign of the field H . For the remainder of the paper, we will then assume

without loss of generality that H is positive.
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The spectrum of the operator L(i) is defined by regular normalized

solutions of the equation

L(i)u = λu , (3.41)

where λ ∈ C is a complex spectral parameter. This equation has regular solu-

tions only for certain real discrete values of λ, which determine the spectrum

of L(i).

The operators F and R have no dependence on the coordinates, and

so the eigenfunctions of the operator L(i) are the same as for the Laplacian.

The eigenvalues of L(i) are obtained from the eigenvalues of the Laplacian (−∆)

by shifting

λ(L(i)) = λ(−∆(i)) +
1

R2
− 2fi

R2
, (3.42)

so we find the spectrum of the Laplacian first.

Separating variables with the substitution

u = eimφhm(θ) , m ∈ Z , (3.43)

we obtain an ordinary differential equation for h(θ)

{

∂2
θ + cot θ∂θ −

1

sin2 θ
(m− ki cos θ)2 + R2λ

}

hm(θ) = 0 . (3.44)

Let us introduce the notation

a±ml =
1

2
+

∣

∣

∣

∣

m− k

2

∣

∣

∣

∣

+

∣

∣

∣

∣

m + k

2

∣

∣

∣

∣

± 1

2
(1 + 4R2λ)1/2 . (3.45)

The index l labels the eigenvalues, as will be described below. As explained in
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Appendix A, this equation has regular normalized solutions given by

hl
mk(θ) = (1 − cos θ)|m−k

2 |(1 + cos θ)|m+k

2 |

×F

(

a+ml, a
−
ml; 1 + |m− k| ; 1 − cos θ

2

)

,

(3.46)

where F (a, b; c; z) is the hypergeometric function. In the case of integer k, these

solutions exist for the following values of λl and m

λl =
1

R2
(|k| + l)(|k| + l + 1) , (3.47)

− l ≤ m ≤ l , (3.48)

where l is an integer greater than or equal to 0:

l ≥ 0 . (3.49)

By counting all possible values of m we obtain the multiplicities of the eigen-

values λl for integer k

dl = 2(l + |k|) + 1 . (3.50)

In the case of half-integer k, there are two series of solutions. The first series

is given by the following values of λl and m:

λl =
1

R2
(|k| + l)(|k| + l + 1) , (3.51)

−|k| +
1

2
≤ m ≤ |k| − 1

2
, (3.52)

where l is an integer greater than or equal to 0

l ≥ 0 , (3.53)
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giving degeneracies

dl = 2|k| . (3.54)

The second series is given by

λn =
1

R2

(

|k| +
1

2
+ n

)(

|k| +
3

2
+ n

)

, (3.55)

−
(

|k| +
1

2
+ n

)

≤ m ≤ −
(

|k| +
1

2

)

or

(

|k| +
1

2

)

≤ m ≤
(

|k| +
1

2
+ n

)

, (3.56)

which gives the degeneracies

dn = 2n + 2 , n ≥ 0 . (3.57)

Therefore, the eigenvalues of the operator (−∆j) are λl and the corresponding

eigenfunctions are

ul
m(θ, φ) = eimφhl

m(θ) . (3.58)

It should be noted here that the eigenvalues of the Laplacian here

are very different from those of the Laplacian for flat space (3.34). In the flat

space, the eigenvalues are that of a harmonic oscillator[13]

λ = HR−2

(

n +
1

2

)

, (3.59)

whereas in our case, the eigenvalues are quadratic in |k|, and so will increase

quadratically in H as H becomes large.

The spectrum of the operator LYM is then obtained by the shift of

the Laplacian’s eigenvalues (3.42). The heat kernel of the operator LYM acting
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on one-forms is found using the eigenvalues of the Laplacian, which are the

values of λ in (3.47)- (3.55) plus the value 1/R2 − 2fi/R
2.

The eigenvalues for even magnetic field are given by

λil =
1

R2
(|ki| + l)(|ki| + l + 1) +

1

R2
− 2fi

R2
, (3.60)

where i runs over the tangent space and group indices i = 1, 2, 3, 4, l ≥ 0, and

the degeneracies are given by

dil = 2(l + |ki|) + 1 . (3.61)

The eigenvalues for odd magnetic field are in two series for each value of i. The

first series is given by

λil =
1

R2
(|ki| + l)(|ki| + l + 1) +

1

R2
− 2fi

R2
(3.62)

with i = 1, 2, 3, 4, l ≥ 0, and degeneracies given by

dil = 2|ki| . (3.63)

The second series is given by

λin =
1

R2

(

|ki| +
1

2
+ n

)(

|ki| +
3

2
+ n

)

, (3.64)

with i = 1, 2, 3, 4, n ≥ 0, and degeneracies

din = 2n + 2 . (3.65)

3.5.2 Action of Laplacian on Ghosts

In addition to the Yang-Mills field, we must consider the scalar Faddeev-

Popov ghost field to compute the effective action. In this case, the relevant
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operator is LFP = −∆. Scalar fields are invariant under coordinate transfor-

mations, so the generator T as given in (3.30) will only transform under the

gauge group SO(2), which means that the total generator for the ghosts will

be

X =
H

2
ǫab , (3.66)

which has the two eigenvalues iκj with

κ1 =
H

2
, κ2 = −H

2
. (3.67)

The values that the parameter λ takes on will be exactly the same as in (3.47),

(3.51), and (3.55), except with these values of κ to replace the values of k. The

eigenvalues are again characteristically different for even and odd magnetic

field. For even values of H , the eigenvalues of LFP are given by

λl =
1

R2

(

l +
H

2

)(

l +
H

2
+ 1

)

(3.68)

The eigenvalues do not depend on the sign of κ, so the degeneracies are just

doubled to account for the two values:

dl = 4

(

l +
H

2

)

+ 2 . (3.69)

For odd values of H , the eigenvalues are in two series. The first series is given

by

λl =
1

R2

(

l +
H

2

)(

l +
H

2
+ 1

)

, (3.70)

with the degeneracies doubled to account for positive and negative kappa:

dl = 2H . (3.71)
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The second series is given by

λn =
1

R2

(

n +
H

2
+

1

2

)(

n +
H

2
+

3

2

)

, (3.72)

with degeneracies

dn = 4n + 4 . (3.73)

By using these values, we will be able to calculate the heat kernel in the next

chapter.



CHAPTER 4

HEAT KERNEL TRACE AND EFFECTIVE ACTION

The heat trace of the total Yang-Mills and ghost operators can be

computed on products of spheres using the factorization property of the heat

kernel. In this chapter, we calculate the heat traces of each operator on the

spaces T 2 and S2, from which we will be able to compute the total heat trace

for the product manifolds in the next chapter. The heat kernel can readily

be calculated from the eigenvalues and degeneracies that have been found, as

well as using the defining formula for the heat trace (2.58), written in terms of

eigenvalues λl(L) and their degeneracies,

Tr (e−tL) =
∑

l

dle
−tλl(L) . (4.1)

4.1 Yang-Mills on T 2

The simplest space to consider is the two-torus, T 2 = S1 × S1, with

each copy of S1 having a different radius (r1, r2). The two-torus has no cur-

vature and can support no covariantly constant chromomagnetic field due to

topological constraints. Thus, the operator LYM is just the Laplacian

LYM = −∆ . (4.2)

It is then straightforward to find that the heat trace is

Tr exp(−tLYM) = 4S

(

t

r21

)

S

(

t

r22

)

. (4.3)

35
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The operator for ghosts in this case is simply the scalar Laplacian

−∆,

Tr exp(−tLFP ) = 2S

(

t

r1

)

S

(

t

r2

)

, (4.4)

with the factor of 2 coming from the trace over group indices.

4.2 Yang-Mills on R2

The heat trace for Yang-Mills theory on R2 has been found [1, 2] to

be

Tr e−tLY M =

∫

R2

dx(4πt)−1

[

2 +
tHR−2

sinh(tHR−2/2)

(

2 + 4 sinh2(tHR−2/2)
)

]

(4.5)

and the heat trace for the corresponding ghost operator is

Tr e−tLFP =

∫

R2

dx(4πt)−1

[

1 +
tHR−2

sinh(tHR−2/2)

]

. (4.6)

4.3 Yang-Mills on S2

4.3.1 Yang-Mills Operator on S2

The heat kernel for the Yang-Mills field can be found by performing

the spectral sum (4.1), using the eigenvalues and degeneracies for the operator

LYM .

For the case of even magnetic charge H , the heat kernel for the oper-

ator LYM acting on one-forms is

Tr(e−tLY M ) =
4

∑

j=1

∞
∑

l=0

(2l + 2|kj| + 1)

× exp

{

− t

R2
[(|kj| + l)(|kj| + l + 1) − 2fj + 1]

}

. (4.7)
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For odd H ,

Tr(e−tLY M ) =

4
∑

j=1

[

∞
∑

l=0

2|kj| exp

{

− t

R2
[(|kj| + l)(|kj| + l + 1) − 2fj + 1]

}

+
∞
∑

l=0

(2l + 2) exp

(

− t

R2

(

|kj| + l +
1

2

)(

|kj| + l +
3

2

)

− 2fi +
1

R2

)

]

(4.8)

These sums can be expressed in terms of the functions

Θj(t) =

∞
∑

l=1

lje−tl(l+1) , (4.9)

Φj(t) =

∞
∑

l=1

lje−tl2 . (4.10)

These functions are regular in the limit t → ∞.

For H = 0, the heat trace is given by

Tr (e−tLY M ) = 4e−t/R2

[

2Θ1

(

t

R2

)

+ Θ0

(

t

R2

)]

. (4.11)

For H = 1,

Tr (e−tLY M ) = (4e−2t/R2

+ 4)Θ1

(

t

R2

)

− 4e−2t/R2

Θ0

(

t

R2

)

+(6e−9t/4R2

+ 2e−t/4R2

)Φ0

(

t

R2

)

− 6e−13t/4R2

(4.12)

For H = 2,

Tr (e−tLY M ) = 2(et/R
2

+ e−3t/R2

)

[

2Θ1

(

t

R2

)

+ Θ0

(

t

R2

)]

+ 2et/R
2 − 6e−5t/R2

.

(4.13)

For H = 3,

Tr (e−tLY M ) = (2e7t/4R
2

+ 10e−19t/4R2

)Φ0

(

t

R2

)

+ (4e2t/R
2

+ 4e−4t/R2

)Θ1

(

t

R2

)

−10e−23t/4R2 − 4e−6t/R2 − 10e−35t/4R2 − 4e−10t/R2

. (4.14)
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For |H| = 4,

Tr (e−tLY M ) = 2(e3t/R
2

+e−5t/R2

)

[

2Θ1

(

t

R2

)

+ Θ0

(

t

R2

)]

−6e−7t/R2−10e−11t/R2

.

(4.15)

For |H| ≥ 5 with |H| odd,

Tr (e−tLY M ) = 8 cosh(tH/R2)e−t/R2

Θ1

(

t

R2

)

+[(6 − 2H)et(H−1)/R2 − 2(H + 1)e−t(H+1)/R2

]Θ0

(

t

R2

)

+[(2H + 4)et(H−3/4)/R2

+ (2H + 4)e−t(H+3/4) − 8et(H−5/4)/R2

]Φ0

(

t

R2

)

−2e−t(H+3/4)/R2

(H + 2)

H

2
+ 1

2
∑

l=1

e−tl2/R2

−2et(H−3/4)/R2

(H − 2)

H

2
− 3

2
∑

l=1

e−tl2/R2

−2e−t(H+1)/R2

H

2
+ 1

2
∑

l=1

(2l −H − 1)e−tl(l+1)/R2

−2et(H−1)/R2

H

2
− 3

2
∑

l=1

(2l + 3 −H)e−tl(l+1)/R2

(4.16)

For |H| ≥ 6 with |H| even,

Tr (e−tLY M ) = 4 cosh(tH/R2)e−t/R2

[

2Θ1

(

t

R2

)

− Θ0

(

t

R2

)]

−2e−t(H+1)/R2

H

2
∑

l=1

(2l + 1)e−tl(l+1)/R2

−2et(H−1)/R2

H

2
−2

∑

l=1

(2l + 1)e−tl(l+1)/R2

. (4.17)
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4.3.2 Ghost Operator on S2

In addition to the Yang-Mills field itself, there are ghost fields to

eliminate the extra degrees of freedom caused by gauge invariance. The ghost

fields on S2 are scalar fields, which means that the eigenvalues and degeneracies

are given by (3.47)-(3.57) with the values k = ±|H|/2. With these values, it is

straightforward to calculate the heat trace.

For H = 0,

Tr (e−tLFP ) = 4Θ1

(

t

R2

)

+ 2Θ0

(

t

R2

)

+ 2 . (4.18)

For H = 1,

Tr (e−tLFP ) = 2e−t/4R2

Φ0

(

t

R2

)

+ 4Θ1

(

t

R2

)

. (4.19)

For H = 2,

Tr (e−tLFP ) = 4Θ1

(

t

R2

)

+ 2Θ0

(

t

R2

)

. (4.20)

For H odd, with |H| ≥ 3,

Tr (e−tLFP ) = 2Het/4R
2

Φ0

(

t

R2

)

+ 4Θ1

(

t

R2

)

+ 2(1 −H)Θ0

(

t

R2

)

−2Het/4R
2

H

2
− 1

2
∑

l=1

e−tl2/R2 −
H

2
− 1

2
∑

l=1

(4l + 2 − 2H)e−tl(l+1)/R2

(4.21)

For even H , |H| ≥ 4, we have

Tr et∆0 = 4Θ1

(

t

R2

)

+ 2Θ0

(

t

R2

)

− 2

|H|
2

−1
∑

l=1

(2l + 1)e−
t

R2 l(l+1) . (4.22)
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4.4 Heat Trace on Product Spaces

With the heat trace of both the Yang-Mills and ghost operators cal-

culated on all relevant submanifolds, it is possible to assemble the total heat

trace the gauge-fixed Yang-Mills field on four-dimensional manifolds by using

the factorization property of the heat kernel and calculating the total heat trace

Tr exp(−tLY M) − 2Tr exp(−tLFP ) .

We can characterize the stability of the Yang-Mills vacuum by exam-

ining the large t behavior if this function. A negative eigenvalue corresponds to

an unstable mode, which would indicate that the vacuum is unstable. However,

we find that with a sufficiently strong positive curvature on S2, we can make

all eigenvalues positive, and the vacuum becomes stable.

4.5 Yang-Mills on S1 × S1 × R2 with non-zero chromomagnetic field

on R2

This case is the analog of the problem studied by Savvidy. Spacetime

has zero curvature and a constant chromomagnetic field exists. The total heat

kernel is given by

Utot(t) = Tr exp(−tLY M)R2 × Tr exp(−tLY M)S1×S1

−2 Tr exp(−tLFP )R2 × Tr exp(−tLFP )S1×S1 .

(4.23)

This is evaluated using the heat traces (4.5) and (4.6):

Utot(t) =

∫

R2

dx(4πt)−1

[

tHR−2

sinh(tHR−2/2)

(

4 sinh2(tHR−2/2)
)

]

S

(

t

r21

)

S

(

t

r22

)

,

(4.24)

where r1 and r2 are the radii of the two copies of S1.
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4.6 Yang-Mills on S1 × S1 × S2 with non-zero chromomagnetic field

on R2

Superficially, it would seem that there are two different configurations

of chromomagnetic field that can exist on the manifold S1 × S1 × S2– either

with the chromomagnetic field polarized along the torus S1 × S1 or along the

sphere S2. The first case cannot be realized because a covariantly constant

chromomagnetic field can not exist on S1 × S1. However, we can consider the

related problem of having the non-zero field polarized along R
2 on the manifold

R2 × S2. This case is not physical because it leaves the time direction to be

incorporated into S2, which means that spacetime can no longer be deforemed

to have the structure R × Σ. This case has been investigated by Elizalde, et.

al. [9]. In the limit that the curvature is small, it has been determined that

the vacuum stabilizes for some radius of S2. We can also analyze this problem

from our standpoint.

In the case of a chromomagnetic field directed along R2, the operator

LYM will have the block diagonal form

LYM = (−∆1(1) − ∆1(2))

(

I 0
0 I

)

+

(

0 0
0 R2

)

− 2

(

F1 0
0 0

)

, (4.25)

where ∆1(1) is the Laplacian acting on one-forms on R2, ∆1(2) is the Laplacian

acting on one-forms on S2, R2 is the Ricci tensor on S2, and F1 is the chro-

momagnetic field restricted to R
2. The operator LFP is simply the Laplacian

acting on scalars

LFP = −∆0(1) − ∆0(2) , (4.26)

where ∆0(1) is the Laplacian acting on scalars on R2 and ∆1(2) is the Laplacian

acting on scalars on S2.
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The total heat kernel Utot(t) is then

Utot(t) = Tr exp(−tLYM)S2 × Tr exp(−tLYM)R2

−2Tr exp(−tLFP )S2 × Tr exp(−tLFP )R2 (4.27)

Using the heat trace expressions (4.5), (4.6), (4.11), (4.18), this gives the result

Utot(t) =

∫

R2

dx(4πt)−1

{

[

2Θ1

(

t

R2

)

+ Θ0

(

t

R2

)]

×
(

tHR−2

sinh(tHR−2/2)

{

4e−t/R2

[

2 + 4 sinh2

(

tHR−2

2

)]

− 4

}

+ 8e−t/R2 − 4

)

−4

[

1 +
tHR−2

sinh(tHR−2/2)

]

}

(4.28)

4.7 Yang-Mills on S1 × S1 × S2 with non-zero chromomagnetic field

on S2

Another allowable configuration is to let the chromomagnetic field lie

along S2. In this case, the total heat kernel is given by

Utot(t) = Tr exp(−tLYM)S2 × Tr exp(−tLYM)S1×S1

−2Tr exp(−tLFP )S2 × Tr exp(−tLFP )S1×S1 (4.29)

Using the T 2 heat trace expressions (4.3),(4.4) with H = 0, and the S2 heat trace

expressions (4.11)-(4.17) calculated in Chapter 4, this gives us the following

results:

For H = 0,

Utot(t) = 8S

(

t

r21

)

S

(

t

r22

)

×
{

[

2e−t/R2 − 1
]

[

2Θ1

(

t

R2

)

+ Θ0

(

t

R2

)]

− 1

}

. (4.30)
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For H = 1,

Utot(t) = 8S

(

t

r21

)

S

(

t

r22

)

×
{

3e−(9/4)t/R2

Φ0

(

t

R2

)

+ (4 cosh(t/R2)e−t/R2 − 2)Θ1

(

t

R2

)

−2e−2t/R2

Θ0

(

t

R2

)

− 6e−9t/4R2

}

.

(4.31)

For H = 2,

Utot(t) = 4S

(

t

r21

)

S

(

t

r22

)

×
{

(

4e−t/R2

cosh(2t/R2) − 4
)

[

2Θ1

(

t

R2

)

+ Θ0

(

t

R2

)]

+2et/R
2 − 6e−3t/R2

}

. (4.32)

For H = 3,

Utot(t) = 4S

(

t

r21

)

S

(

t

r22

)

×
[

(2e7t/4R
2

+ 10e−19t/4R2 − 6et/4R
2

)Φ0

(

t

R2

)

(

8 cosh(3t/R2)e−t/R2 − 4
)

Θ1

(

t

R2

)

+ 4Θ0

(

t

R2

)

−20e−8t/R2 − 20e−11t/R2 − 8e−6t/R2 − 8e−10t/R2

) + 6e−3t/4R2

]

(4.33)
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For H = 4,

Utot(t) = 4S

(

t

r21

)

S

(

t

r22

)

×
{

[

4e−t/R2

cosh(4t/R2) − 2
]

[

4Θ1

(

t

R2

)

+ Θ0

(

t

R2

)]

−6e−7t/R2

+ 10e−11t/R2

+ 6e−2t/R2

}

. (4.34)

For H odd, H ≥ 5,

Utot(t) = 4S

(

t

r21

)

S

(

t

r22

)

×
{

(8 cosh(tH/R2)e−t/R2 − 4)Θ1

(

t

R2

)

+
[

(2H − 2) − (4H + 4) cosh(tH/R2)e−t/R2
]

Θ0

(

t

R2

)

[

(4H + 8) cosh(tH/R2)e−t/R2 − 8e−tH/R2

e−t/R2 − 2H
]

et/4R
2

Φ0

(

t

R2

)

−2e−t(H+3/4)/R2

(H + 2)

H

2
+ 1

2
∑

l=1

e−tl2/R2

−2et(H−3/4)/R2

(H − 2)

H

2
− 3

2
∑

l=1

e−tl2/R2

−2e−t(H+1)/R2

H

2
+ 1

2
∑

l=1

(2l + H − 1)e−tl(l+1)/R2

−2et(H−1)/R2

H

2
− 3

2
∑

l=1

(2l + 3 −H)e−tl(l+1)/R2

+2Het/4R
2

H

2
− 1

2
∑

l=1

e−tl2/R2

+

H

2
− 1

2
∑

l=1

(4l + 2 − 2H)e−tl(l+1)/R2

}

(4.35)
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For H even, H ≥ 6,

Utot(t) = 4S

(

t

r21

)

S

(

t

r22

)

×
{

(

4e−t/R2

cosh(tH/R2) − 2
)

[

2Θ1

(

t

R2

)

− Θ0

(

t

R2

)]

−2et(H−1)/R2

H

2
−2

∑

l=1

(2l + 1)e−tl(l+1) − 2e−t(H+1)/R2

H

2
∑

l=1

(2l + 1)e−tl(l+1)

+2

H

2
−1

∑

l=1

(2l + 1)e−tl(l+1)

}

(4.36)

4.8 Stability

When the heat traces above contain an exponential that grows or

stays constant with t, then the Yang-Mills vacuum will be unstable, causing

the configuration with constant chromomagnetic field to decay into another

state. However, if all exponentials are decreasing, then the vacuum will be

stable.

If the chromomagnetic field is polarized along S2 on the manifold, the

stability of the the constant chromomagnetic state will depend on the strength

H of the chromomagnetic field and the radius R of the sphere S2. The case

H = 1 will always be stable, but H = 2, and H = 3 will not be stable for any

radii. In the case of H = 1, the lowest eigenvalue is given by

λmin =
1

R2

(

5

4

)

, (4.37)

which implies that the vacuum stabilizes for H = 1. Similarly, for H = 2, the

minimum eigenvalue is

λmin = − 1

R2
, (4.38)
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and the vacuum is unstable. For H = 3, the minimum eigenvalue is

λmin = − 3

4R2
(4.39)

and the vacuum is unstable. For H ≥ 4, the lowest mode will correspond to

the eigenvalue

λmin =
1

R2

[(

H

2
− 1

)

H

2
−H + 1

]

. (4.40)

The vacuum will be stable when this eigenvalue is positive, which occurs when

the condition
H2

4
− 3H

2
+ 1 ≥ 0 (4.41)

is satisfied. This occurs for

H ≥ 6 . (4.42)

Thus, the vacuum is unstable for H = 2, 3, 4, 5 and stable for H = 0, 1 and

H ≥ 6. Because H is the dimensionless parameter relating to the magnetic

field M , H = MR2, this implies that we can make a configuration stable

by increasing either the magnetic field or the radius. A large radius would

intuitively return us to the Saviddy flat-space case, but we instead see that it

actually increases the lowest eigenvalue. The local behavior of these cases is

the same, so this must be a topological phenomenon.

4.9 Effective Action

If we consider the radii of the spheres to be variable, then the lowest

energy state is state that minimizes the effective action, which will be a function

of both the chromomagnetic field and the radius of the spheres. The one-loop
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effective action is written in terms of the heat kernel as

Γ(1) = −1

2

d

dp

[

µ2p

Γ(p)

∫ ∞

0

dt tp−1Utot(t)

]

p=0

(4.43)

The effective action, then, to first order is

Γ = S + ~Γ(1) (4.44)

where S is the classical action

S = − 1

8e2

∫

M

dx trFµνFµν , (4.45)

which in our case can be integrated over the manifold to give

S =
H2

8e2R2
vol (M) . (4.46)

Calculating the effective action and finding a global minimum for all R and H

will reveal the vacuum with minimum energy.



CHAPTER 5

CONCLUSION

We have calculated the heat traces for pure Yang-Mills on products

of spheres with a covariantly constant chromomagnetic field, and have shown

that for a space with certain values of curvature and magnetic field, the covari-

antly constant chromomagnetic vacuum forms a local minimum of the effective

action. This lends creedence to the possibility that the Savvidy-type vacuum,

with a covariantly constant magnetic field will form an absolute minimum on

the relevant spaces.

Contrary to expectations, the limit in which the radius of the sphere

becomes infinite does not yield the standard flat-space results for eigenvalues

of the Laplacian. Instead of having eigenvalues that are linear in the magnetic

field, our results show that on the two-sphere, the lowest eigenvalue of the

Laplacian will increase quadratically with the magnetic field and quadratically

with the radius of the sphere, leading to the counter-intuitive result that the

space most closely approximating the flat-space Saviddy vacuum will have a

minimum eigenvalue that will be farthest from being unstable. This effect is a

topological phenomenon that requires further study.

The next step in examining this model should be to calculate the full

effective potential as a function of both the strength of the chromomagnetic

field and the radius of the sphere. The absolute minimum of the effective

48
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potential would yield the absolute vacuum state of Yang-Mills. In our case, we

would find a state that would be at least a local minimum of the vacuum, and

possibly the absolute minimum.



APPENDIX A

EIGENVALUES AND DEGENERACIES OF −∆

In this section, we find the eigenfunctions and the corresponding

eigenvalues λl of the operator −∆. They are given by regular solutions of

the equation

{

− 1

R2 sin θ

[

sin θ∂2
θ + cos θ∂θ +

1

sin θ
(im− ikj cos θ)2

]

− λl

}

u(θ) = 0 .

(A.1)

The label l on λl is only a label here. It’s allowed values will be found later.

Introducing the change of variables x = cos θ, the equation becomes

[

∂x(1 − x2)∂x −
1

1 − x2
(m− kx)2 + R2λ

]

u(x) = 0 . (A.2)

We may make the substitution

u(x) = (1 − x)α(1 + x)βf(x) , (A.3)

where

α =

∣

∣

∣

∣

m− k

2

∣

∣

∣

∣

, β =

∣

∣

∣

∣

m + k

2

∣

∣

∣

∣

. (A.4)

to get the equation

{

(1 − x2)
d2

dx2
− [(2β − 2α) + (−2 − 2α− 2β)x]

d

dx

+
[

−α− β − (α + β)2 + R2λ
]

}

f(x) = 0 . (A.5)
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By switching variables to z = 1−x
2

, we obtain the hypergeometric equation

{

z(1 − z)
d2

dz2
+ [(1 + 2α) − 2(1 + α + β)z]

d

dz

+[−α − β − (α + β)2 + R2λ]

}

f(z) = 0 . (A.6)

Finally, introducing the notation

a± =
1

2
+ α + β ± 1

2
(1 + 4R2λ)1/2 , (A.7)

we obtain the solution

f(z) = F
(

a+, a−; 1 + |m− k| ; z
)

, (A.8)

where the function F is the hypergeometric function [10]

F (a, b; c; z) =

∞
∑

n=0

(a)n(b)n
n!(c)n

zn . (A.9)

The notation (a)n denotes the Pochhammer symbol

(a)n =
Γ(a + n)

Γ(a)
. (A.10)

In our case, it is easy to show that c > 0 and a + b− c ≥ 0, so the expression

(A.9) will diverge at |z| = 1 unless the series terminates [10]. Regular solutions

will exist only in the degenerate case when the series terminates and the hy-

pergeometric function becomes a polynomial. This happens when at least one

of the first two arguments of F is a negative integer. Thus, the only regular

solutions occur when

a− =
1

2
+ α + β − 1

2
(1 + 4R2λ)1/2 = −q , q = 0, 1, 2, . . . (A.11)

51



where q is a non-negative integer. This yields the eigenvalues

λ =
1

R2
(α + β + q)(α + β + q + 1) . (A.12)

The quantity α + β takes on the values

α + β =
1

2
{|m + k| + |m− k|} = max {|m|, |k|} . (A.13)

Then it can be directly seen from (A.12) that the lowest eigenvalue λ0 is

λ0 =
1

R2
|k|(|k| + 1) . (A.14)

For integer values of k, the quantity α + β is always integer, and so

the eigenvalues are

λl =
1

R2
(|k| + l)(|k| + l + 1) , l = 0, 1, 2, . . . (A.15)

Degeneracies of these eigenvalues can be counted using (A.12), (A.15), and the

fact that m is an integer. For any given value of l, the 2|k| + 1 cases |m| ≤ |k|
correspond to q = l. The 2l cases m = ±(|k| + l),±(|k| + l− 1), . . . ,±(|k|+ 1)

correspond to q = 0, 1, . . . , l − 1, respectively. Counting these cases, the total

degeneracy dl of λl from (A.15) is

dl = 2(|k| + l) + 1 . (A.16)

Now consider the case where k is a half-integer. Then there are two

cases: when the quantity α + β is a half-integer, and when α + β is an integer.

First consider the case when α + β is half-integer. The eigenvalues

are then

λl =
1

R2
(|k| + l)(|k| + l + 1) , l = 0, 1, 2, . . . (A.17)
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In this case, we must have α+β = |k|, which corresponds to the cases |m| ≤ |k|.

The number of integer values of m that satisfy this inequality is

dl = 2|k| . (A.18)

In the second case, α+β is integer, in which case α+β = |m|. Because

α + β and q are integers, the eigenvalues written in terms of k are

λl =
1

R2

(

|k| + l +
1

2

)(

|k| + l +
3

2

)

, l = 0, 1, 2, . . . (A.19)

The 2l + 2 cases

m = ±
(

|k| +
1

2

)

,±
(

|k| +
1

2
+ 1

)

, . . . ,±
(

|k| +
1

2
+ 2

)

(A.20)

correspond to q = l, l − 1, . . . , 0, respectively. Counting these gives the degen-

eracies

dl = 2l + 2 . (A.21)
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