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Abstract

Vector unparticle couplings to standard model fields produce repulsive corrections to gravity.

From a general relativistic perspective, this leads to an effective Reissner-Nordström-like

metric whose “charge” is a function of the unparticle coupling constant λ, and therefore

can admit naked singularities. Requiring the system to respect cosmic censorship provides a

new method of constraining the value of λ. These limits are extremely loose for stellar-mass

black holes, but commensurate with existing bounds for primordial black holes. In the case of

theoretical low-mass black holes, the bounds on λ are much stricter than those derived from

astrophysical and accelerator phenomenology. Additional constraints on the lower limit of λ

are used to estimate the mass of the smallest possible black hole Mmin
BH that can be formed

in the unparticle framework, as a function of the unparticle parameters (ΛU ,MU , dU , dBZ).
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1 Introduction

The unparticle “revolution” [1] – a new paradigm for physics beyond the standard model

(SM) – has prompted a wealth of speculative literature in both particle phenomenology

and cosmology. Its framework consists of a weakly-coupled Banks-Zaks (BZ) field [2] that

exchanges with the SM a massive particle MU via suppressed non-renormalizable interactions

L =
1

Mk
U
OSMOBZ . (1)

The field operatorsOSM ,OBZ have dimensions dSM and dBZ respectively, which necessitates

k = dSM + dBZ − 4.

Below some energy scale ΛU < MU , the coupling begins to run as the BZ field undergoes

dimensional transmutation to become “unparticle stuff”, represented by the operator OU of

dimension dU 6= dBZ . This leads to a new interaction picture represented by the Lagrangian

term

ΛdBZ−dU
U

MdBZ+dSM−4
U

OU OSM . (2)

Postulating that ΛU ∼ 1 TeV provides a wealth of new physics that can not only be observ-

abled at the LHC, but also stands to modify astrophysical and cosmological mechanisms.

The matrix element

〈0|OU(x)O†U(0)|0〉 =

∫
d4p

(4π)4
eiPx|〈0|OU(0)|P 〉|2ρ(P 2) (3)

for an unparticle of four-momentum P constrains the spectral density function to be of the

form

|〈0|OU(0)|P 〉|2ρ(P 2) = AdUθ(P
0)θ(P 2)(P 2)dU−2 , (4)



where

AdU =
16π5/2

(2π)2n
Γ(n+ 1/2)

Γ(n− 1)Γ(2n)
. (5)

When compared to the standard phase space Anθ(P
0)θ(P 2)(P 2)n−2 of n interacting particles

of total momentum P , it can be concluded that unparticles behave as a system of dU (non-

integer) fundamental particle states [1].

Several explanations of the physical nature of unparticle stuff include a composite Banks-

Zaks particle with a continuum of masses [3, 4, 5]. Such an interpretation is indeed unparticle

in nature: it defies the notion of discrete fundamental mass eigenstates that rests at the heart

of modern quantum theory. A more tradition field-theoretic approach has been proposed

in [6, 7], whereby the unparticle phase space is constructed from a Sommerfield model of

massless fermions coupled to a massive vector field.

Unparticles may possess any of the standard Lorentz signatures (scalar, vector, tensor,

or spinor). This paper will focus specifically on the corrections to gravitation supplied by

vector unparticle matter. It will be shown that fundamental limits may be placed on both

the unparticle parameter space, as well as black hole physics in general.

2 Vector Unparticle Physics and Ungravity

Vector unparticles couple to baryon currents Jµ via the interaction

L ∼ λ

ΛdU−1
U

JµOµU , (6)



where λ is the dimensionless coupling constant [18, 8]

λ ∼ C

(
ΛU
MU

)dBZ−1

(7)

and C is a parameter of order unity. The energy scale hierarchy MPl ≥ MU > ΛU ≥

1 TeV necessitates λ < 1, except in the degenerate case when ΛU → MU . Since it is

generally assumed MU ≤MPl, the relative size of ΛU and the Banks-Zaks dimension dBZ set

the possible lower bounds on λ. Figure 1 demonstrates the possible range of the coupling

strength.

Conversely, upper bounds on its magnitude are derived from phenomenological considera-

tions. The literature suggests a wide range of such bounds, from as large as λ < 1 to as small

as λ < 10−20. A limited, but certainly not exhaustive, list of examples include constraints

from solar system physics [8], collider data [9, 14], neutrino phenomenology [15], and big

bang nucleosynthesis [16]. A large hierarchy between ΛU and MU allows for smaller values

of dBZ , whereas a smaller hierarchy necessitates larger values of dBZ to achieve the bounds

on λ cited in the literature. Note that many studies consider only the extreme case λ = 1

[9]. Non-commutative geometry [10, 11] has been suggested as an additional manifestation

of unparticle physics, from which parameter bounds may be extracted.

The modifications of classical gravitational laws via interactions of SM particles with

unparticle stuff can be readily calculated. Pioneering approaches and applications of this

phenomenology can be found in [8, 17, 18, 19, 20] and references therein. It was originally

shown that, if treated as a perturbative extension of gravitation, unparticle physics may

modify the effective metric structure of spacetime [20, 21]. In the case of scalar and tensor



unparticles, this solution can be written

ds2 =

[
1− 2GM

r

(
1 +

(
Rs,t

r

)2dU−2
)]

dt2 − dr2

1− 2GM
r

(
1 +

(
Rs,t

r

)2dU−2) − r2dΩ2 , (8)

with the fundamental scalar (tensor) length scale Rs,t set by the unparticle energies Λµ,Mµ

and dimensions dU , dBZ . For SM interaction distances r � Rs,t, the unparticle coupling

mimics extra-dimensional physics with a similar compactification radius. In particular, this

can lead to the formation of microscopic black holes in high energy collisions.

It has since been shown [22] the metrics (8) can be derived as an exact solution to the

Einstein equations from a non-local action of the form [24]

SU = −
∫

d4x
√
g

[
1 +

AdU
(2dU − 1) sin(πdU)

κ2∗
κ2

(
−D2

Λ2
U

)1−dU
]−1

R , (9)

withD2 the generally covariant derivative operator, R the Ricci scalar, and κ∗ = Λ−1U (ΛU/MU)dBZ

the ungravity coupling constant. The resulting equations of motion manifest the unparticle

theory, which have been cast in the scalar [22] and vector forms [23]. Such non-local actions

are of increasing interest in the literature. A similar action of this form has been shown to

provide ultraviolet completeness of a regular and noncommutative quantum gravity theory

[13, 12], and the black hole solutions from a higher-dimensional version (9) are currently

being explored [26].

Variation of (9) leads to the Einstein equations [22]

Rµ
ν −

1

2
δµµ = κ2

[
1 +

AdUΛ2−2dU
U

(2dU − 1) sin(πdU)

κ2∗
κ2

(−D)dU−1

]
T µν (10)



whose stress-energy tensor has the form

T 0
0 = − M

4πr2
δ(r) , T rr = 0 , T θθ = T φφ = − M

16πr
δ(r)

1

g00
∂rg00 (11)

The (00)− and (rr)−metric components can be shown to have the expected reciprocal sym-

metry [22],

grr =

(
1− 2GM(r)

r

)−1
∝ − 1

g00
(12)

with M(r) a radial function related to the mass of the source. For regular gravity, this

reduces to the source mass MBH and the pure Schwarzschild limit. When constrained by the

stress-energy (11), the function M(r) exactly reproduces the unparticle black hole solutions

discussed in [20, 21].

For vector unparticle interactions, a repulsive correction to the standard Newtonian grav-

itational potential is introduced [8, 18],

V (r) = −GmM
r

[
1−

(
Rv

r

)2dU−2
]

(13)

where the interaction length Rv is

Rv =

[
1

2π2dU

Γ(dU + 1
2
)Γ(dU − 1

2
)

Γ(2dU)

] 1
2dU−2

(
λMPl

u

) 1
dU−1

Λ−1U (14)

Here. u ∼ 1 GeV is the baryon mass, introduced via the coupling to the current in Equa-

tion 6. The metric then assumes the form [23]

g00 = 1− 2GMBH

r

(
1−

(
Rv

r

)2dU−2
)

, g11 = −g−100 (15)



While the repulsive nature of the correction does not strengthen gravitational attractions, it

nevertheless introduces additional black hole-related novelties. Specifically, multiple horizons

can be obtained without the need for electric charge or angular momentum.

This result is valid for arbitrary non-perturbative situations and may be formally derived

from the action (9) by an appropriate modification of the coupling constant κ2∗ for vector

unparticle interactions. This amounts to a Lorentz signature-dependent sign change of the

form κ2∗ → (−1)sκ2∗, , where s = {0, 1, 2} for {scalar, vector, tensor} unparticles respectively

[23].

It should be noted the metrics derived from this non-local action (9) are often criticized

for their failure to respect Birkhoff’s theorem, in that the corresponding solutions do not

represent a true vacuum (and thus the uniqueness of obvious black hole solutions could

be doubted). In reality, this rigid constraint is misplaced in the current context, as it is

predicated on the stipulation that the metric stems from the Einstein-Hilbert action. Since

the unparticle-enhanced action represents a different (and heretofore unexplored) spacetime,

there is no reason to expect such a uniqueness theorem to be applicable.

3 Vector Ungravity-Enhanced Black Holes and Cosmic

Censorship

3.1 The Reissner-Nordström case

As a simple example, consider the case dU = 1.5. The metric coefficients are

g00 = 1− 2GMBH

r
+

2GMBHRv

r2
(16)



which is immediately recognizable as a Reissner-Nordström-like metric whose “charge” is

determined by the vector unparticle scale Rv. It can be shown that the Ricci scalar vanishes

in this limit, providing a true vacuum solution that respects Birkhoff’s theorem. This admits

two non-zero horizon solutions

r = GMBH ±
√
G2M2

BH − 2GMBHRv (17)

wheneverGMBH > 2Rv. In the limitGMBH � 2Rv, the solution approaches the Schwarzschild

radius, and when GMBH = 2Rv the black hole is extremal.

If GMBH < 2Rv, the solution (17) becomes complex and yields no horizons. The re-

maining singularity at r = 0 is naked. An appeal to the cosmic censorship hypothesis [27]

negates the possible existence of such defects (their formation is forbidden by considering

e.g. linearized perturbations of the Schwarzschild metric [28]).

From this perspective, the condition 2Rv < GMBH can be understood to be a fundamental

constraint. Since the interaction scale Rv is explicitly a function of the vector unparticle

parameters (Equation 14), this condition provides a new method of gauging their values,

and therefore restricting the size of the coupling strength λ.

Numerically, Equation 7 can be written

Rv = 1.38× 1036 λ2 Λ−1U , (18)

and the censorship condition becomes

λ ≤ 6× 10−19

√
ΛUMBH

M2
Pl

(19)



where the replacement G = M−2
Pl has been made. Using the minimum value of ΛU = 1 TeV,

this constraint is

λ < 6× 10−35
√

MBH

1 TeV
. (20)

To date, indirect observational evidence has been found for roughly 20 black holes in

the range MBH ∼ M� = 1030 kg [29], including the pioneering Cyg-X1 [30] (MBH > 4M�),

XTE J1650-500 [31] (MBH ∼ 4M�), and GRO J0422+32 [32] (MBH ∼ 3 − 5M�). For such

stellar mass-sized black holes, one finds λ < 7× 10−8. According to Equation 20, the upper

bound on λ depends on
√

ΛU . Thus, increasing the possible value of ΛU will loosen these

constraints. Indeed, if ΛU = MGUT ∼ 1013 TeV, then λ < 0.22 for MBH = M�.

Further constraints can be derived from primordial black holes (PBH) of mass MBH ∼

1012 kg that are believed to have formed following the inflationary era. These have since

evaporated but can be “detected” through their signatures in the stochastic gravitational

wave background [33, 34, 35]. At this mass threshold, the limits on the coupling are λ <

5×10−17 for ΛU = 1 TeV, and λ < 1.5×10−10 when ΛU = MGUT. These limits are in excellent

agreement with those in the current literature, derived from a variety of mechanisms.

3.2 Preservation of unitarity

The above example, while useful as an simple illustration of this research, does not con-

sider unitarity constraints imposed by unparticle physics. Only scalar unparticles processes

may occur with dimensions dU ≥ 1. In fact, to avoid such unitarity violations the scaling

dimension for vector unparticles must be dU ≥ 3 [36, 37].



For arbitrary dimension dU , the black hole horizons are roots of the equation

0 = r2dU−1 − 2MBH

M2
Pl

(
r2dU−2 −R2dU−2

v

)
. (21)

Although there are no analytical solutions in this case, limits on the value of Rv (and hence

λ) may easily be obtained numerically. In all cases, two real positive solutions r± can be

obtained by varying λ and/or MBH, whose behavior is in accordance with that expected

for the Reissner-Nordström case. As expected, the solutions converge to a common horizon

where the black hole solution is extremal, beyond which all solutions are complex and the

singularity is naked.

Figure 2 shows the critical values of λ above which cosmic censorship is violated. This

condition can potentially narrow the allowed parameter space from that suggested by previ-

ous investigations. Constraints from solar-mass black holes are so outrageously large (λ� 1)

as to be considered useless in the face of existing limits. While this might be perceived an

unfortunate failure of the approach, in a sense it is akin to putting limits on the fundamental

unit of electric charge from measurements of astrophysical black holes.

Primordial black holes (MPBH ∼ 1012 kg), on the other hand, satisfy λ < 1 for a suitable

range of dU ≥ 3. When dU = 3, one finds λ < 9 × 10−10, and λ < 2 × 10−7 for dU = 3.5

(where Λ = 1 TeV in each case). Again, these values are generally commensurate with the

largest limits on λ available in the literature. Observation evidence of PBHs, then, provides

a useful and novel contribution to the unparticle parameter space limits. As the scale ΛU

increases, however, so does the upper bound of λ (and eventually surpasses the saturation

bound λ = 1).



3.3 The littlest black hole

From a more conjectural approach, one can instead focus on the constraints provided to

ultra-low-mass (even microscopic) black holes. That is, the limits on λ can be used to

determine the minimum mass of a black hole that can form in this framework. Figures 3

and 4 shows how maximum value of λ varies with black hole mass MBH, for the possible

range of ΛU values, subject to variation in the Banks-Zaks dimension dBZ .

The value of MU is calculated from Equation 7. Increasing values of MBH correspond to

increased upper limits on λ. The value λ = 1 is the greatest upper bound of the parameter

space, since this represents the degenerate case ΛU = MU . As ΛU increases in value, the ratio

that defines λ (Equation 7) also approaches 1, since ΛU < MU ≤MPl, Much higher values of

dBZ are required to produce smaller values of λ (see Figure 2), and thus the physical reality

of such a scenario seems less likely.

Since the value of λ is constrained by Equation 7, however, the parameter space may be

further narrowed by fixing the value of dBZ (see Figures 3 and 4). If dBZ = 3 and ΛU = 1 TeV,

then λ ∼
(

1 TeV
MU

)2
. Assuming that MU can be no larger than MPl, the minimum possible

value of the coupling is λmin ∼ 10−32. For dBZ = 4, the lower bound extends to λmin ∼ 10−48

for ΛU = 1 TeV and MU = MPl, and alternatively to λmin = 10−9 when ΛU = MGUT and

MU = MPl. In both cases when dU = 3, the minimum possible black hole mass is on the

order of 1 kg

The absolute smallest black hole mass can be found at the intersection of the diagonal

bounds and the lower limit λmin(ΛU ,MU , dU , dBZ) hierarchy (Figures 3 and 4). In the limiting

case dU = dBZ = 3, one coincidently finds Mmin
BH ∼ 1 kg for all scale energies. Alternatively,

if dU = 3 and dBZ = 4, the bounds diverge and Mmin
BH ∼ 10−8 kg for ΛU = 1 TeV, while

Mmin
BH ∼ 0.1 kg for ΛU ∼ MGUT. Microscopic black holes (MBH ∼ 1 TeV) would require



λ ∼ 10−56 for ΛU = MGUT, and λ ∼ 10−81 for ΛU = 1 TeV. These are obviously not

realizable in the vector unparticle framework.

4 Conclusions

Vector unparticle fields coupling to the standard model induce repulsive corrections to the

gravitational potential that can, in a general relativistic approach, yield multiple Reissner-

Nordström-like horizons without the requirement of electric charge. Insisting these solutions

respect the cosmic censorship hypothesis directly leads to constraints on the vector unparti-

cle coupling constant λ. These and more fundamental limits on λ from the mass hierarchy

between ΛU and MU , and the scaling dimensions dU , dBZ , can be used to theoretically con-

strain the mass of the smallest possible black hole that can form in a universe governed by

this theory.

Future potential investigations in this area are ripe. Unparticle-enhanced to the Kerr

metric offer intriguing possibilities of opening up geodesic paths to new universes, without the

necessity of electric charge. This would equivalently introduce new constraints on the possible

values of angular momenta that the black holes could assume. The possibility of naked

singularity formation in non-spherical collapse (e.g. through Thorne’s Hoop Conjecture

[38]) has been investigated and shown to be theoretically possible [39]. While the metric

(15) is inherently spherical, an investigation of unparticle perturbations to such violations

of the cosmic censorship hypothesis would be of interest.
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Figure 1: Magnitude of the vector unparticle coupling constant λ as a function of energy
scale MU and operator dimension dBZ , with ΛU = 1 TeV. Higher values of ΛU will increase
the lower bound of the coupling. The minimum value of λ is defined by Equation 7.
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Figure 2: Allowed unparticle parameter space (dU , λ) for ΛU = 1 TeV as a function of black
hole mass MBH (MPBH = 1012 kg, M� = 1030 kg). Allowed regions are bounded from above
by λ = 1, and by the hierarchy constraint in Equation 7.
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ranges on the unparticle energy scale ΛU = 1 TeV−1013 TeV (MGUT). The parameter space
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Figure 4: Limits on minimum (extremal) black hole mass MBH for dU = 3, dBZ = 4, with
ranges on the unparticle energy scale ΛU = 1 TeV − 1013 TeV (MGUT).
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