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Abstract

The information-based asset-pricing framework of Brody, Hughston and Mac-
rina (BHM) is extended to include a wider class of models for market information.
In the BHM framework, each asset is associated with a collection of random cash
flows. The price of the asset is the sum of the discounted conditional expecta-
tions of the cash flows. The conditional expectations are taken with respect to
a filtration generated by a set of ‘information processes’. The information pro-
cesses carry imperfect information about the cash flows. To model the flow of
information, we introduce in this paper a class of processes which we term Lévy

random bridges (LRBs). This class generalises the Brownian bridge and gamma
bridge information processes considered by BHM. An LRB is defined over a finite
time horizon. Conditioned on its terminal value, an LRB is identical in law to
a Lévy bridge. We consider in detail the case where the asset generates a single
cash flow XT occurring at a fixed date T . The flow of market information about
XT is modelled by an LRB terminating at the date T with the property that
the (random) terminal value of the LRB is equal to XT . An explicit expression
for the price process of such an asset is found by working out the discounted
conditional expectation of XT with respect to the natural filtration of the LRB.
The prices of European options on such an asset are calculated.

1 Introduction and Preliminaries

In financial markets, the information that traders and investors have about an asset
is reflected in its price. The arrival of new information then leads to changes in asset
prices. The ‘information-based framework’ (or ‘X-factor theory’) of Brody, Hughston
and Macrina (BHM) isolates the emergence of information, and examines its role as a
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driver of price dynamics (see [8, 10, 11, 38, 35, 31]). In the BHM framework, each asset
is associated with a collection of random cash flows. The price of the asset is the sum of
the discounted conditional expectations of the cash flows. The conditional expectations
are taken with respect to (i) an appropriate measure, and (ii) the filtration generated
by a set of so-called information processes. The information processes carry noisy or
imperfect market information about the cash flows. The present paper extends the
work of [10] and [11] by introducing a wider class of information processes as a basis
for the generation of the market filtration. The set-up is as follows:

We fix a probability space (Ω,Q,F), and assume that all processes and filtrations
under consideration are càdlàg. Unless otherwise stated, when discussing a stochastic
process we assume that the process takes values in R, begins at time 0, and the filtration
is that generated by the process itself. We work with a finite time horizon [0, T ].

1.1 Lévy processes

This section summarises a few well known results about one-dimensional Lévy processes
further details of which can be found in Bertoin [7] and Sato [39]. A Lévy process is
a stochastically-continuous process that starts from the value 0, and has stationary,
independent increments. An increasing Lévy process is called a subordinator. For {Lt}
a Lévy process, its characteristic exponent Ψ : R → C is defined by

E[eiλLt ] = exp(−tΨ(λ)), λ ∈ R. (1)

The characteristic exponent of a Lévy process characterises its law, and its form is
prescribed by the Lévy-Khintchine formula:

Ψ(λ) = iaλ+
1

2
σ2λ2 +

∫ ∞

−∞

(1− eixλ + ixλ1{|x|<1})Π(dx), (2)

where a ∈ R, σ > 0, and Π is a measure (the Lévy measure) on R\{0} such that
∫ ∞

−∞

(1 ∧ |x|2) Π(dx) <∞. (3)

There are particular subclasses of Lévy processes that we shall consider, defined as
follows:

Definition 1.1. Let {Lt}0≤t≤T and {Mt}0≤t≤T be Lévy processes. Then we write

1. {Lt} ∈ C[0, T ] if the density of Lt exists for every t ∈ (0, T ],

2. {Mt} ∈ D if the marginal law of Mt is discrete for some t > 0.

Remark 1.2. If the marginal law of Mt is discrete for some t > 0, then the marginal

law of Mt is discrete for all t > 0. The density of Lt exists if and only if its law is

absolutely continuous with respect to the Lebesgue measure. In general, the absolute

continuity of Lt depends on t [39, chap. 5]; thus C[0, T1] ⊆ C[0, T2] for T1 ≤ T2.
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We reserve the notation ft(x) to represent the density of Lt for some {Lt} ∈ C[0, T ].
Hence ft : R → R+ and Q[Lt ∈ dx] = ft(x) dx. We reserve Qt(a) to represent the
probability mass function of Mt for some {Mt} ∈ D. We denote the state-space of
{Mt} by {ai} ⊂ R. Hence Qt : {ai} → [0, 1] and Q[Mt = ai] = Qt(ai). We assume that
the sequence {ai} is strictly increasing.

The transition probabilities of Lévy processes satisfy the convolution identities

ft(x) =

∫ ∞

−∞

ft−s(x− y)fs(y) dy for {Lt} ∈ C[0, T ], (4)

and

Qt(an) =

∞∑

m=−∞

Qt−s(an − am)Qs(am) for {Mt} ∈ D, (5)

for 0 ≤ s < t ≤ T . These are the Chapman-Kolmogorov equations for the processes
{Lt} and {Mt}.

The law of any càdlàg stochastic process is characterised by its finite-dimensional
distributions. The finite-dimensional densities of {Lt}0≤t≤T exist and, with the under-
standing that x0 = t0 = 0, they are given by

Q[Lt1 ∈ dx1, . . . , Ltn ∈ dxn] =
n∏

i=1

[
fti−ti−1

(xi − xi−1) dxi
]
, (6)

for every n ∈ N+, every 0 < t1 < · · · < tn ≤ T , and every (x1, . . . , xn) ∈ Rn. With the
understanding that ak0 = t0 = 0, the finite-dimensional probabilities of {Mt} are

Q[Mt1 = ak1 , . . . ,Mtn = akn] =
n∏

i=1

Qti−ti−1
(aki − aki−1

), (7)

for every n ∈ N+, every 0 < t1 < · · · < tn, and every (k1, . . . , kn) ∈ Zn.

1.2 Lévy bridges

A bridge is a stochastic process that is pinned to some fixed point at a fixed future time.
Bridges of Markov processes were constructed and analysed by Fitzsimmons et al. [21]
in a general setting. In this section we focus on the bridges of Lévy processes in the
classes C[0, T ] and D. In particular we have the following:

Proposition 1.3. The bridges of processes in C[0, T ] and D are Markov processes.

Proof. We need to the show that the process {Lt} ∈ C[0, T ] is a Markov process when
we know that LT = x, for some constant x such that 0 < fT (x) < ∞. (It will be
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explained later why the condition that 0 < fT (x) < ∞ is required to ensure that the
law of the bridge process is well defined.) In other words, we need to show that

Q [Lt ≤ y |Lt1 = x1, . . . , Ltm = xm, LT = x] = Q [Lt ≤ y |Ltm = xm, LT = x] , (8)

for all m ∈ N+, all (x1, . . . , xm, y) ∈ Rm+1, and all 0 ≤ t1 < · · · < tm < t ≤ T . The key
property of {Lt} that we use is its independent increments. Let us write

∆i = Lti − Lti−1
, (9)

δi = xi − xi−1, (10)

for 1 ≤ i ≤ m, where t0 = 0 and x0 = 0. Then we have:

Q [Lt ≤ y |Lt1 = x1, . . . , Ltm = xm, LT = x]

= Q [Lt − Ltm ≤ y − xm |∆1 = δ1, . . . ,∆m = δm, LT − Ltm = x− xm]

= Q [Lt − Ltm ≤ y − xm |LT − Ltm = x− xm]

= Q [Lt − Ltm ≤ y − xm |LT − Ltm = x− xm, Ltm = xm]

= Q [Lt ≤ y |LT = x, Ltm = xm] . (11)

The proof for processes in class D is similar.

Let {Lt} ∈ C[0, T ], and let {L(z)
tT }0≤t≤T be an {Lt}-bridge to the value z ∈ R at

time T . For the transition probabilities of the bridge process to be well defined, we
require that 0 < fT (z) <∞. By the Bayes theorem we have

Q

[
L
(z)
tT ∈ dy

∣∣∣L(z)
sT = x

]
= Q [Lt ∈ dy |Ls = x, LT = z ]

=
Q [Lt ∈ dy, LT ∈ dz |Ls = x ]

Q [LT ∈ dz |Ls = x ]

=
ft−s(y − x)fT−t(z − y)

fT−s(z − x)
dy, (12)

for 0 ≤ s < t < T . We define the marginal bridge density ftT (y; z) by

ftT (y; z) =
ft(y)fT−t(z − y)

fT (z)
. (13)

In this way

Q

[
L
(z)
tT ∈ dy

∣∣∣L(z)
sT = x

]
= ft−s,T−s(y − x; z − x) dy. (14)

The condition 0 < fT (z) <∞ is enough to ensure that

y 7→ ft−s,T−s(y − L
(z)
sT ; z − L

(z)
sT ) (15)
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is a well defined density for almost every value of L
(z)
sT . To see this, note that

∫ ∞

−∞

∫ ∞

−∞

ft−s,T−s(y − x; z − x)Q
[
L
(z)
sT ∈ dx

]
dy

=

∫ ∞

−∞

∫ ∞

−∞

ft−s,T−s(y − x; z − x)fs,T (x; z) dx dy

=

∫ ∞

−∞

fT−t(z − y)

fT (z)

∫ ∞

−∞

ft−s(y − x)fs(x) dx dy

=
1

fT (z)

∫ ∞

−∞

fT−t(z − y)ft(y) dy = 1. (16)

From (16) it follows that

Q

[∫ ∞

−∞

ft−s,T−s(y − L
(z)
sT ; z − L

(z)
sT ) dy = 1

]
= 1. (17)

Let {Mt} ∈ D, and let {M (k)
tT }0≤t≤T be an {Mt}-bridge to the value ak at time T ,

so Q[M
(k)
TT = ak] = 1. For the transition probabilities of the bridge to be well defined,

we require that Q[MT = ak] = QT (ak) > 0. Then the Bayes theorem gives

Q

[
M

(k)
tT = aj

∣∣∣M (k)
sT = ai

]
= Q [Mt = aj |Ms = ai,MT = ak ]

=
Q [Mt = aj ,MT = ak |Ms = ai ]

Q [MT = ak |Ms = ai ]

=
Qt−s(aj − ai)QT−t(ak − aj)

QT−s(ak − ai)
, (18)

for 0 ≤ s < t < T . Note that if QT (ak) = 0, then the ratio (18) is not well defined
when s = 0.

2 Lévy random bridges

The idea of information-based asset pricing is to model the flow of information in
financial markets and hence to construct the market filtration explicitly. Let XT be a
random variable (a market factor), with a given a priori distribution. The value of XT

will be revealed to the market at time T . We wish to construct an information process
{ξtT} such that ξTT = XT . We can then use the filtration generated by {ξtT} to model
the information that market participants have about XT . One problem to overcome is
how to ensure that the marginal law of ξTT is the a priori law of XT .

Two explicit forms for the information process have been considered in the litera-
ture. The first is

ξtT =
t

T
XT + βtT (0 ≤ t ≤ T ), (19)
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where {βtT}0≤t≤T is a Brownian bridge starting and ending at the value 0 (see [8, 9,
10, 31, 35, 38]). The second is

ξtT = XTγtT (0 ≤ t ≤ T ), (20)

where XT > 0 and {γtT}0≤t≤T is a gamma bridge starting at the value 0 and ending at
the value 1 (see [11]). These forms share the property that each is identical in law to
a Lévy process conditioned to have the a priori law of XT at time T . The Brownian
bridge information process is identical in law to a conditioned Brownian motion, and
the gamma bridge information process is identical in law to a conditioned gamma
process.

With this as motivation, in this section we define a class of processes that we call
Lévy random bridges (LRBs). An LRB is identical in law to a Lévy process conditioned
to have a prespecified marginal law at T . Later we shall use LRBs as information
processes in information-based models.

2.1 Defining LRBs

An LRB can be described as a process whose bridge laws are Lévy bridge laws. In
the definitions below we define LRBs by reference to their finite-dimensional distri-
butions rather than as conditioned Lévy processes. This proves convenient in future
calculations.

Definition 2.1. We say that the process {LtT}0≤t≤T has law the LRBC([0, T ], {ft}, ν)
if the following are satisfied:

1. LTT has marginal law ν.

2. There exists a Lévy process {Lt} ∈ C[0, T ] such that Lt has density ft(x) for all

t ∈ (0, T ].

3. ν concentrates mass where fT (z) is positive and finite, i.e. 0 < fT (z) < ∞ for

ν-a.e. z.

4. For every n ∈ N+, every 0 < t1 < · · · < tn < T , every (x1, . . . , xn) ∈ Rn, and

ν-a.e. z, we have

Q [Lt1,T ≤ x1, . . . , Ltn,T ≤ xn |LTT = z ] = Q [Lt1 ≤ x1, . . . , Ltn ≤ xn |LT = z ] .

Definition 2.2. We say that the process {MtT }0≤t≤T has law the LRBD([0, T ], {Qt}, P )
if the following are satisfied:

1. MTT has probability mass function P .

2. There exists a Lévy process {Mt} ∈ D such that Mt has marginal probability mass

function Qt(a) for all t ∈ (0, T ].
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3. The law of MTT is absolutely continuous with respect to the law of MT , i.e.

if P (a) > 0 then QT (a) > 0.

4. For every n ∈ N+, every 0 < t1 < · · · < tn < T , every (k1, . . . , kn) ∈ Zn, and

every b such that P (b) > 0, we have

Q [Mt1,T = ak1 , . . . ,Mtn,T = akn |MTT = b ] =

Q [Mt1 = ak1 , . . . ,Mtn = akn |MT = b ] .

Definition 2.3. For a fixed time s < T , if the law of the process {ηs+t}0≤t≤T−s is of

the type LRBC([0, T − s], · , · ), resp. LRBD([0, T − s], · , · ), then we say that {ηt}s≤t≤T

has law LRBC([s, T ], · , · ), resp. LRBD([s, T ], · , · ).

If the law of a process is one of the LRB -types defined above, then we say that it
is a Lévy random bridge (LRB).

2.2 Finite-dimensional distributions

For the rest of this section we assume that {LtT } and {MtT } are LRBs with laws
LRBC([0, T ], {ft}, ν) and LRBD([0, T ], {Qt}, P ), respectively. We also assume that
{Lt} is a Lévy process such that Lt has density ft(x) for t ≤ T , and {Mt} is a Lévy
process such that Mt has probability mass function Qt(ai) for t ≤ T .

The finite dimensional distributions of {LtT } are given by

Q [Lt1,T ∈ dx1, . . . , Ltn,T ∈ dxn, LTT ∈ dz] =

n∏

i=1

[
fti−ti−1

(xi − xi−1) dxi
]
ψtn(dz; xn),

(21)
where the (un-normalised) measure ψt(dz; ξ) is given by

ψ0(dz; ξ) = ν(dz), (22)

ψt(dz; ξ) =
fT−t(z − ξ)

fT (z)
ν(dz), (23)

for 0 < t < T . It follows from the definition of LRBC([0, T ], {ft}, ν) and (17) that

ftT (x; z) =
ft(x)fT−t(z − x)

fT (z)
(24)

is a well-defined density (as a function of x) for t < T and ν-a.e. z. Then from (21)
the marginal law of LtT is given by

Q[LtT ∈ dx] = ft(x)ψt(R; x) dx

=

∫ ∞

z=−∞

ftT (x; z) ν(dz) dx. (25)
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Hence the density of LtT exists for t < T , and

0 ≤ ψt(R; x) <∞ for Lebesgue-a.e. x ∈ Support(ft). (26)

In particular, we have

0 < ψt(R;LtT ) <∞ and 0 < fT−t(x− LtT ) <∞ (27)

for a.e. value of LtT . If ν({z}) = 1 for some point z ∈ R, i.e. Q[LTT = z] = 1, then

{LtT } is a Lévy bridge. If ν(dz) = fT (z) dz, then {LtT } law
= {Lt} for t ∈ [0, T ].

In the discrete case, the finite-dimensional probabilities of {MtT } are

Q [Mt1,T = ak1, . . . ,Mtn,T = akn ,MTT = z] =
n∏

i=1

[
Qti−ti−1

(aki − ak1−1)
]
φtn(z; akn),

(28)
where the function φt(z; ξ) is given by

φ0(z; ξ) = P (z), (29)

φt(z; ξ) =
QT−t(z − ξ)

QT (z)
P (z), (30)

for 0 < t < T . If P is identical to QT , then {MtT } law
= {Mt} for t ∈ [0, T ].

The existing literature on information-based asset pricing exploits special properties
Brownian and gamma bridges. See Émery & Yor [17] for insights into how remarkable
these bridges are. The methods we use do not require special properties of particular
Lévy bridges. However, we use the Brownian and gamma cases as examples, and the
results we obtain agree with previous work.

Many of the results that follow are proved for the LRB {LtT}, which has a contin-
uous state-space. Analogous results are provided for the discrete state-space process
{MtT }; details of proofs are omitted since they are similar to the continuous case.

2.3 LRBs as conditioned Lévy processes

It is useful to interpret an LRB as a Lévy process conditioned to have a specified
marginal law ν at time T . Suppose that the random variable Z has law ν, then:

Q [Lt1 ∈ dx1, . . . , Ltn ∈ dxn, LT ∈ dz |LT = Z ]

= Q [Lt1 ∈ dx1, . . . , Ltn ∈ dxn |LT = z ] ν(dz)

=
fT−tn−1(z − xn−1)

fT (z)

n∏

i=1

[
fti−ti−1

(xi − xi−1) dxi
]
ν(dz). (31)

Hence the conditioned Lévy process has law LRBC([0, T ], {ft}, ν).
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2.4 The Markov property

In this section we show that LRBs are Markov processes. The Markov property is a
key tool in the application of LRBs to information-based asset pricing. As will be seen
below, the Markov property of an LRB follows from the Markov property from the
associated Lévy bridge processes.

2.4.1 Continuous state-space

Proposition 2.4. The process {LtT}0≤t≤T is a Markov process with transition law

Q[LtT ∈ dy |LsT = x] =
ψt(R; y)

ψs(R; x)
ft−s(y − x) dy,

Q[LTT ∈ dy |LsT = x] =
ψs(dy; x)

ψs(R; x)
,

(32)

for 0 ≤ s < t < T .

Proof. To show that {LtT } is Markov, it is sufficient to show that

Q [LtT ≤ y |Lt1,T = x1, . . . , Ltm,T = xm] = Q [LtT ≤ y |Ltm,T = xm] , (33)

for all m ∈ N+, all (x1, . . . , xm, y) ∈ Rm+1, and all 0 ≤ t1 < · · · < tm < t ≤ T . When
t = T we apply the Bayes theorem to (21) and obtain

Q [LTT ∈ dy |Lt1,T = x1, . . . , Ltm,T = xm] =
ψtm(dy; xm)

ψtm(R; xm)
. (34)

We need now only consider the case t < T . Proposition 1.3 shows that Lévy bridges
are Markov processes; therefore,

Q [Lt ≤ y |Lt1 = x1, . . . , Ltm = xm, LT = x] = Q [Lt ≤ y |Ltm = xm, LT = x] . (35)

It is straightforward by Definition 2.1 part 4 to show that LRBs are Markov processes.
Indeed we have:

Q [LtT ≤ y |Lt1,T = x1, . . . , Ltm,T = xm]

=

∫ ∞

−∞

Q [LtT ≤ y |Lt1,T = x1, . . . , Ltm,T = xm, LT,T = x] ν(dx)

=

∫ ∞

−∞

Q [Lt ≤ y |Lt1 = x1, . . . , Ltm = xm, LT = x] ν(dx)

=

∫ ∞

−∞

Q [Lt ≤ y |Ltm = xm, LT = x] ν(dx)

=

∫ ∞

−∞

Q [LtT ≤ y |Ltm,T = xm, LT,T = x] ν(dx)

= Q [LtT ≤ y |Ltm,T = xm] . (36)

The form of the transition law of {LtT } appearing in (32) follows from (21).
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Example. In the Brownian case we set

ft(z) =
1√
2πt

exp

[
−z

2

2t

]
(37)

for t > 0. Thus ft(x) is the marginal density of a standard Brownian motion at time
t. Then we have

Q[LtT ∈ dy |LsT = x] =

√
T − s

T − t

∫∞

−∞
e
− 1

2

[

(z−y)2

T−t
− z2

T

]

ν(dz)
∫∞

−∞
e
− 1

2

[

(z−x)2

T−s
− z2

T

]

ν(dz)

e−
1
2

(y−x)2

t−s

√
2π(t− s)

dy, (38)

and

Q[LTT ∈ dy |LsT = x] =
e
− 1

2

[

(y−x)2

T−s
− y2

T

]

ν(dy)
∫∞

−∞
e
− 1

2

[

(z−x)2

T−s
− z2

T

]

ν(dz)

=
e

1
T−s [xy−

1
2

s
T
y2] ν(dy)

∫∞

−∞
e

1
T−s [xz−

1
2

s
T
z2] ν(dz)

. (39)

Example. In the gamma case we consider a one-parameter family of processes indexed
by m > 0. We set

ft(z) = 1{z>0}
zmt−1

Γ[mt]
e−z, (40)

where Γ[z] is the gamma function, defined as usual for x > 0 by

Γ[x] =

∫ ∞

0

ux−1e−u du. (41)

These densities are the increment densities of the gamma process with mean m and
variance m at time t = 1 (see Brody et al. [11]). Then

Q[LtT ∈ dy |LsT = x]

=
1{y>x}

B[m(T − t), m(t− s)]

∫∞

y
(z − y)m(T−t)−1z1−mT ν(dz)

∫∞

x
(z − x)m(T−s)−1z1−mT ν(dz)

(y − x)m(t−s)−1 dy, (42)

and

Q[LTT ∈ dy |LsT = x] =
1{y>x}(y − x)m(T−s)−1y1−mT ν(dy)∫∞

x
(z − x)m(T−s)−1z1−mT ν(dz)

. (43)

Here B[α, β] is the beta function, defined as usual for α > 0 and β > 0 by

B[α, β] =

∫ 1

0

xα−1(1− x)β−1 dx =
Γ[α]Γ[β]

Γ[α + β]
. (44)
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2.4.2 Discrete state-space

The analogous result to Proposition 2.4 for the discrete case is provided below—the
proof is similar.

Proposition 2.5. The process {MtT }0≤t≤T has the Markov property, with transition

probabilities given by

Q [MtT = aj |MsT = ai ] =

∑∞
k=−∞ φt(ak; aj)∑∞
k=−∞ φs(ak; ai)

Qt−s(aj − ai),

Q [MTT = aj |MsT = ai ] =
φs(aj ; ai)∑∞

k=−∞ φs(ak; ai)
,

(45)

for 0 ≤ s < t < T .

2.5 Conditional terminal distributions

Let {FL
t } and {FM

t } be the filtrations generated by {LtT } and {MtT }, respectively.

Definition 2.6. Let νs to be the FL
s -conditional law of the terminal value LTT , and let

Ps to be the FM
s -conditional probability mass function of the terminal value MTT .

We have ν0(A) = ν(A), and P0(a) = P (a). Furthermore, when s > 0, it follows
from the results of the previous section that

νs(dz) =
ψs(dz;LsT )

ψs(R;LsT )
, (46)

and

Ps(ak) =
φs(ak;MsT )∑∞

j=−∞ φs(aj ;MsT )
. (47)

When the a priori qth moment of LTT is finite, the FL
s -conditional qth moment is finite

and given by ∫ ∞

−∞

|z|q νs(dz). (48)

Similarly, when the a priori qth moment of MTT is finite, the FM
s -conditional qth

moment is finite and given by

∞∑

k=−∞

|ak|q Ps(ak). (49)

When they are finite, the quantities in (48) and (49) are martingales with respect to
{FL

t } and {FM
t }, respectively. If q ∈ Z then

∫
|z|q ν(dz) < ∞ ensures that

∫
zq ν(dz)

is a martingale, and
∑

|ak|qP (ak) <∞ ensures that
∑
aqk P (ak) is a martingale.

11



When the terminal law ν admits a density, we denote it by p(z), i.e. ν(dz) = p(z) dz.
In this case the LtT -conditional density of LTT exists, and we denote it by

pt(z) =
νt(dz)

dz
=
fT−t(z − LtT )p(z)

ψt(R;LtT )fT (z)
. (50)

2.6 Measure changes

In this section we assume that there exists a measure L under which {LtT } is a Lévy
process, and that the density of LtT is ft(x). Writing ψt = ψt(R;LtT ), we can show
that {ψt}0≤t<T is an L-martingale (with respect to the filtration generated by {LtT }).
In particular, for times 0 ≤ s < t we have

EL

[
ψt

∣∣FL
s

]
= EL

[∫ ∞

−∞

fT−t(z − LtT )

fT (z)
ν(dz)

∣∣∣∣F
L
s

]

= EL

[∫ ∞

−∞

fT−t(z − LsT − (LtT − LsT ))

fT (z)
ν(dz)

∣∣∣∣LsT

]

=

∫ ∞

y=−∞

∫ ∞

z=−∞

fT−t(z − LsT − y)

fT (z)
ν(dz) ft−s(y) dy

=

∫ ∞

z=−∞

1

fT (z)

∫ ∞

y=−∞

fT−t(z − LsT − y)ft−s(y) dy ν(dz)

=

∫ ∞

z=−∞

fT−s(z − LsT )

fT (z)
ν(dz)

= ψs. (51)

Since ψ0 = 1, we can define a probability measure Lrb by the Radon-Nikodým derivative

dLrb

dL

∣∣∣∣
FL

t

= ψt for 0 ≤ t < T . (52)

It was noted in Section 2.2 that 0 < ψt < ∞, so Lrb is equivalent to L for t < T . For
0 ≤ s < t < T , the transition law of {LtT} under Lrb is

Lrb
[
LtT ∈ dy

∣∣FL
s

]
= ELrb

[
1{LtT∈dy}

∣∣FL
s

]

= ψ−1
s EL

[
ψt1{LtT∈dy} |LsT

]

= ψ−1
s

∫ ∞

−∞

fT−t(z − y)

fT (z)
ν(dz) ft−s(y − LsT ) dy

=
ψt(R; y)

ψs(R;LsT )
ft−s(y − LsT ) dy. (53)

We see that {LtT}0≤t<T is a Markov process under the measure Lrb. Furthermore, by
virtue of Proposition 2.4, {LtT} is an LRB with law LRBC([0, T ], {ft}, ν).

We can restate this result with reference to the measure Q as the following:

12



Proposition 2.7. Let L be defined by

dL

dQ

∣∣∣∣
FL

t

= ψt(R;LtT )
−1 (54)

for t ∈ [0, T ). Then L is a probability measure. Under L, {LtT }0≤t<T is a Lévy process,

and LtT has density ft(x).

In the case of a discrete state space a similar result is obtained.

Proposition 2.8. Let L be defined by

dL

dQ

∣∣∣∣
FM

t

=

[
∞∑

k=−∞

φt(ak;MtT )

]−1

(55)

for t ∈ [0, T ). Then L is a probability measure. Under L, {MtT }0≤t<T is a Lévy process,

and MtT has mass function Qt(a).

2.7 Dynamic consistency

In this section we show that LRBs possess the so-called dynamic consistency property.
For {LtT}, this property means the process {ηt} defined by setting

ηt = LtT − LsT (s ≤ t ≤ T ) (56)

is an LRB for fixed s and LsT given. Defining the filtration {Fη
t } by

Fη
t = σ (LsT , {ηu}s≤u≤t) , (57)

we see that
Q [F ({LuT }s≤u≤T ) | Fη

t ] = Q
[
F ({LuT}s≤u≤T )

∣∣FL
t

]
, (58)

for 0 ≤ s < t < T and F an arbitrary measurable functional. Suppose two market
participants, trader A and trader B, watch the evolution of {LtT }; trader A watching
from t = 0 and trader B watching from t = s. The filtration of trader A, {FL

t }, is
larger than the filtration of trader B, {Fη

t }, but they have a common view of the future
evolution of {LtT }. This is the Markov property. The dynamic consistency property is
stronger. It states that the filtration of trader B can be regarded as being generated by
an LRB, in this case {ηt}, plus some information about the current state of the world,
in this case LsT .

Later we shall model the market filtration as being generated by a set of LRBs.
Through the dynamic consistency property, we can consider each market participant’s
filtration to be generated by a set of LRBs, regardless of the time in which they enter
the market, and without their views being inconsistent with other participants.

The dynamic consistency property was introduced in Brody et al. [8] with regard
to Brownian random bridges, and was shown by the same authors to hold for gamma
random bridges in [11].
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Fix a time s < T . Given LsT , we define a process {ηt} by (56). We shall show that
{ηt} is an LRB. At time s, the law of ηT is

ν∗(A) = νs(A+ LsT ) for all A ∈ B(R), (59)

where A+ y denotes the shifted set given by

A+ y = {x : x− y ∈ A} . (60)

Given the terminal value ηT , the finite-dimensional distributions of {ηt} are given by

Q [ηs+t1 ∈ dx1, . . . , ηs+tn ∈ dxn |LsT , ηT = z]

= Q [Ls+t1,T − LsT ∈ dx1, . . . , Ls+tn,T − LsT ∈ dxn |LsT , LTT − LsT = z]

= Q [Ls+t1 − Ls ∈ dx1, . . . , Ls+tn − Ls ∈ dxn |Ls, LT − Ls = z]

= Q [Lt1 ∈ dx1, . . . , Ltn ∈ dxn |LT−s = z]

=
fT−s−tn (z − xn)

fT−s (z)

n∏

i=1

fti−ti−1
(xi − xi−1) , (61)

for every n ∈ N+, every 0 = t0 < t1 < · · · < tn < T − s, and every (x1, . . . , xn) ∈ Rn,
where x0 = 0. Then we have

Q [ηs+t1 ∈ dx1, . . . , ηs+tn ∈ dxn, ηT ∈ dz |LsT ]

=
fT−s−tn (z − xn)

fT−s (z)

n∏

i=1

fti−ti−1
(xi − xi−1) ν

∗(dz). (62)

Comparison of this expression to (21) shows that the process {ηs+t}0≤t≤T−s has the law
LRBC([0, T − s], {ft}, ν∗), and so the law of {ηt}s≤t≤T is LRBC([s, T ], {ft}, ν∗).

In the discrete case, we define {ηt} by

ηt =MtT −MsT (s ≤ t ≤ T ). (63)

Then, given MsT , {ηt} has the law LRBD([s, T ], {Qt}, P ∗), where P ∗ is defined by

P ∗(a) = Ps(a +MsT ). (64)

2.8 Increments of LRBs

The form of the transition law in Proposition 2.4 shows that in general the increments of
an LRB are not independent. The special cases of LRBs with independent increments
are discussed later. A result that holds for all LRBs is that they have stationary
increments:
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Proposition 2.9. For s, t, u satisfying 0 ≤ s < u < T and 0 < t ≤ T − u, we have

Q [Lu+t,T − LuT ≤ z |LsT ] = Q[Ls+t,T − LsT ≤ z |LsT ], (65)

and

Q [Mu+t,T −MuT ≤ z |MsT ] = Q[Ms+t,T −MsT ≤ z |MsT ]. (66)

Proof. We provide the proof for {LtT}. The proof for {MtT } is similar. Throughout
the proof we assume that t < T − u. The case t = T − u follows from the stochastic
continuity of {LtT}. First we assume that s = 0. From (32), we have

Q[Lu+t,T ∈ dy, LuT ∈ dx] = ψu+t(R; y)ft(y − x)fu(x) dx dy. (67)

Then we have

Q[Lu+t,T − LuT ∈ dz, LuT ∈ dx] = ψu+t(R; z + x)ft(z)fu(x) dx dz

=

∫ ∞

w=−∞

fT−(u+t)(w − z − x)

fT (w)
dw ft(z)fu(x) dx dz.

(68)

Integrating over x and changing the order of integration yields

Q[Lu+t,T − LuT ∈ dz] =

∫ ∞

w=−∞

∫ ∞

x=−∞

fT−(u+t)(w − z − x)fu(x) dx
dw

fT (w)
ft(z) dz

=

∫ ∞

w=−∞

fT−t(w − z)

fT (w)
dw ft(z) dz

= ψt(R, z)ft(z) dz

= Q[LtT ∈ dz]. (69)

For the case s > 0, we use the dynamic consistency property. For s fixed and
LsT given, the process {ηuT}s≤u≤T = {LuT − LsT}s≤u≤T is an LRB with the law
LRBC([s, T ], {ft}, ν∗), where ν∗(A) = νs(A+ LsT ). We have

Q [Lu+t,T − LuT ∈ dz |LsT ] = Q [ηu+t,T − ηuT ∈ dz |LsT ]

= Q [ηtT ∈ dz |LsT ]

=

∫ ∞

−∞

fT−t(w − z)

fT−s(w)
ν∗(dw) ft−s(z) dz

=

∫ ∞

−∞

fT−t(w − z + LsT )

fT−s(w − LsT )
νs(dw) ft−s(z) dz

=
1

ψs(R;LsT )

∫ ∞

−∞

fT−t(w − z + LsT )

fT (w)
ν(dw) ft−s(z) dz

=
ψt(R; z + LsT )

ψs(R;LsT )
ft−s(z) dz

= Q[LtT − LsT ∈ dz |LsT ] . (70)
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When {LtT } is integrable, the stationary increments property offers enough struc-
ture to allow the calculation of the expected value of LtT :

Corollary 2.10. If E[|LtT |] <∞ for all t ∈ (0, T ] then

E [LtT |LsT ] =
T − t

T − s
LsT +

t− s

T − s
E [LTT |LsT ] (s < t), (71)

and if E[|MtT |] <∞ for all t ∈ (0, T ] then

E [MtT |MsT ] =
T − t

T − s
MsT +

t− s

T − s
E [MTT |MsT ] (s < t). (72)

Proof. We provide the proof for {LtT}. The proof for {MtT } is similar. The case t = T
is immediate, so we assume that t < T . First we consider the case s = 0. Suppose that
t = mT/n, where m,n ∈ N+ and m < n. We wish to show that

E[LtT ] =
m

n
E[LTT ]. (73)

Writing L(t, T ) = LtT , define the random variables {∆i} by

∆i = L
(
i
n
T, T

)
− L

(
(i−1)
n
T, T

)
. (74)

It follows from Proposition 2.9 that the ∆i’s are identically distributed, and by as-
sumption they are integrable. Hence we have

E[∆i] =
1

n
E

[
n∑

i=1

∆i

]
=

1

n
E[LTT ]. (75)

Then, as required, we have

E
[
L
(
m
n
T, T

)]
= E

[
m∑

i=1

∆i

]
=
m

n
E[LTT ]. (76)

For general t, choose an increasing sequence of positive rational numbers {qi} such
that limi→∞ qi = t/T . By use of the monotone convergence theorem one obtains

E[L(t, T )] = E

[
lim
i→∞

L (qiT, T )
]
= lim

i→∞
E [L (qiT, T )] =

t

T
E[LTT ]. (77)

For the case s > 0, we use the dynamic consistency property. For s fixed and LsT

given, the process
ηtT = LtT − LsT (s ≤ t ≤ T ) (78)
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is an LRB with law LRBC([s, T ], {ft}, ν∗), where ν∗(A) = νs(A+ LsT ). Then we have

E [LtT |LsT ] = LsT + E[ηtT |LsT ]

= LsT +
t− s

T − s

∫ ∞

−∞

z ν∗(dz)

= LsT +
t− s

T − s

∫ ∞

−∞

(z − LsT ) νs(dz)

=
T − s

T − s
LsT +

t− s

T − s
E [LTT |LsT ] . (79)

We have shown that the increments of LRBs are stationary, so it is natural to ask
when the increments are independent, i.e. when is an LRB a Lévy process? The answer
lies in the functional form of ψt(R; y).

For 0 ≤ s < t < T , the likelihood that LtT = y given that LsT = x is

q(t, y; s, x) =
ψt(R; y)

ψs(R; x)
ft−s(y − x). (80)

If {LtT} has stationary, independent increments then

q(t, y; s, x) = q(t− s, y − x; 0, 0). (81)

Therefore the ratio
ψt(R; y)

ψs(R; x)
(82)

is a function of the differences t− s and y − x. Thus if we have

ψt(R; y) = a exp(by + ct), (83)

for constants a, b and c, then {LtT} is a Lévy process. There are constraints on a, b
and c since (80) is a probability density. When b = c = 0 we have ν(dz) = fT (z) dz

which is the case where {LtT } law
= {Lt}.

Example. In the Brownian case we consider a process {WtT} with law

LRBC([0, T ], {ft}, fT (z − θT ) dz),

where ft(x) is the normal density with zero mean and variance t, given by (37). In
other words, {WtT} is a standard Brownian motion conditioned so thatWTT is a normal
random variable with mean θT and variance T . In this case, we have

ψt(R; y) =

∫ ∞

−∞

fT−t(z − y)

fT (z)
fT (z − θT ) dz

= exp

(
θy − θ

2
t

)
. (84)
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Simplifying the expression for the transition densities of the process {WtT} allows one
to verify that {WtT } is a Brownian motion with drift θ. It is notable, by Girsanov’s
theorem, that {ψt(R;Wt)} is the Radon-Nikodým density process that transforms a
standard Brownian motion into a Brownian motion with drift θ. Hence we can alter-
natively deduce that {WtT} is a Brownian motion with drift θ from the analysis in
Section 2.6.

Example. In the gamma case, we consider a process {ΓtT} with law

LRBC([0, T ], {ft}, κ−1fT (z/κ) dz),

where ft(x) is the gamma density with mean mt and variance mt defined by (40), and
κ > 0 is constant. Then {ΓtT} is a gamma process with mean m and variance m at
t = 1, conditioned so that ΓTT has a gamma distribution with mean κmT and variance
κ2mT . We have:

ψt(R; y) =

∫ ∞

−∞

fT−t(z − y)

fT (z)

fT (z/κ)

κ
dz

= κ−mt exp
(
(1− κ−1)y

)
. (85)

The transition density of {ΓtT} is

Q[ΓtT ∈ dy |ΓsT = x] = 1{y>x}
(y − x)m(t−s)−1e−(y−x)/κ

κm(t−s)Γ(m(t− s))
dy. (86)

Hence {ΓtT} is a gamma process with mean κm and variance κ2m at t = 1.

2.8.1 Increment distributions

Partition the time interval [0, T ] by 0 = t0 < t1 < t2 < · · · < tn = T . Then define the
increments {∆i}ni=1 and {αi}ni=1 by

∆i = Lti,T − Lti−1,T (87)

αi = ti − ti−1. (88)

Assume that ν has no continuous singular part [39]. Denoting the Dirac delta function
centred at z by δz(x), x ∈ R, we can write

ν(dz) =

∞∑

i=−∞

viδzi(z) dz + p(z) dz, (89)

for some {ai} ⊂ R, {zi} ⊂ R+, and p : R → R+. Here p(z) is the density of the
continuous part of ν, and vi is a point mass of ν located at zi. By (21), the joint law
of the random vector (∆1, . . . ,∆n)

T is given by

Q[∆1 ∈ dy1 . . . ,∆n ∈ dyn] = f̃

(
n∑

i=1

yi

)
n∏

i=1

fαi
(yi) dyi, (90)
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where

f̃(z) =
p(z) +

∑∞
i=−∞ viδzi(z)

fT (z)
. (91)

Equation (90) shows that (∆1, . . . ,∆n)
T has a generalized multivariate Liouville dis-

tribution as defined by Gupta & Richards [29]. The classical multivariate Liouville
distribution is obtained when ft(x) is the density of a gamma distribution (see [26,
27, 28, 18]). A survey of Liouville distributions can be found in Gupta & Richards
[25]. Barndoff-Nielsen & Jørgensen [4] construct a generalized Liouville distribution by
conditioning a vector of independent inverse-Gaussian random variables on their sum.

In the discrete case, the joint distribution of increments also has a generalized
Liouville distribution. Define the increments {Di} by

Di =Mti,T −Mti−1,T . (92)

Then we can write

Q[D1 ∈ dy1 . . . , Dn ∈ dyn] = Q̃

(
n∑

i=1

yi

)
n∏

i=1

dQαi
(yi), (93)

where

Q̃(z) =

∑∞
i=−∞ P (ai)δai(z)

QT (z)
. (94)

2.8.2 The reordering of increments

We are able to extend the Markov property of LRBs. If we partition the path of an
LRB into increments, then the Markov property means that future increments depend
on the past only through the sum of past increments. We shall show that for LRBs
the ordering of the increments does not matter for this to hold—given the values of
any set of increments of an LRB (past or future), the other increments depend on this
subset only through the sum of its elements.

Let π be a permutation of {1, 2, . . . , n}. We define the partial sum Sπ
m by

Sπ
m =

m∑

i=1

∆π(i) for m = 1, 2, . . . , n, (95)

where the {∆i} are defined as in (87); and we define the partition 0 = tπ0 < tπ1 < · · · <
tπn = T by

tπj+1 =

j∑

i=1

απ(i) for j = 1, 2, . . . , n− 1. (96)

Proposition 2.11. We may extend the Markov property of {LtT} to the following:

Q
[
∆π(m+1) ≤ ym+1, . . . ,∆π(n) ≤ yn

∣∣∆π(1), . . . ,∆π(m)

]
=

Q
[
∆π(m+1) ≤ ym+1, . . . ,∆π(n) ≤ yn

∣∣Sπ
m

]
. (97)
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If ν has no singular continuous part, then

Q
[
∆π(m+1) ∈ dym+1, . . . ,∆π(n) ∈ dyn

∣∣Sπ
m

]
=

f̃
(
Sπ
m +

∑n
i=m+1 yi

)

ψtπm(R;S
π
m)

n∏

i=m+1

fαπ(i)
(yi) dyi. (98)

Proof. Define the increments {∆π
i } by

∆π
i = Ltπn,T − Ltπn−1,T

. (99)

The law of the random vector (∆π
1 , . . . ,∆

π
n−1,

∑n
1 ∆

π
i )

T is given by

Q

[
∆π

1 ∈ dy1, . . . ,∆
π
n−1 ∈ dyn−1,

n∑

i=1

∆π
i ∈ dz

]
=

ν(dz)

fT (z)
fαπ(n)

(
z −

n−1∑

i=1

yi

)
n−1∏

i=1

fαπ(i)
(yi) dyi. (100)

This is also the law of (∆π(1), . . . ,∆π(n−1),
∑n

1 ∆π(i))
T; hence

(∆π(1), . . . ,∆π(n))
law
= (∆π

1 , . . . ,∆
π
n). (101)

The Markov property of LRBs gives

Q
[
∆π

m+1 ≤ ym+1, . . . ,∆
π
n ≤ yn |∆π

1 , . . . ,∆
π
m

]
=

Q

[
∆π

m+1 ≤ ym+1, . . . ,∆
π
n ≤ yn

∣∣∣∣∣

m∑

i=1

∆π
i

]
, (102)

and so we have

Q
[
∆π(m+1) ≤ ym+1, . . . ,∆π(n) ≤ yn

∣∣∆π(1), . . . ,∆π(m)

]
=

Q
[
∆π(m+1) ≤ ym+1, . . . ,∆π(n) ≤ yn

∣∣Sπ
m

]
. (103)

This proves the first part of the proposition.
For the second part of the proof we assume that ν takes the form (89). Note that

Ltπm,T =
m∑

i=1

∆π
i , (104)

and that the density of Ltπm,T is

x 7→ ftπm(x)ψtπm(R; x) =

∫ ∞

z=−∞

ftπm(x)fT−tπm(z − x)

fT (z)
ν(dz). (105)
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The elements of the vector (Ltπm,T ,∆
π
m+1, . . . ,∆

π
n)

T are non-overlapping increments of
{LtT }, and the law of the vector is given by

Q
[
Ltπm,T ∈ dx,∆π

m+1 ∈ dym+1, . . . ,∆
π
n ∈ dyn

]
=

f̃

(
x+

n∑

i=m+1

yi

)
ftπm(x) dx

n∏

i=m+1

fαπ(i)
(yi) dyi. (106)

Thus we have

Q
[
∆π

m+1 ∈ dym+1, . . . ,∆
π
n ∈ dyn

∣∣Ltπm,T = x
]

=
Q
[
∆π

m+1 ∈ dym+1, . . . ,∆
π
n ∈ dyn, Ltπm,T ∈ dx

]

Q
[
Ltπm,T ∈ dx

]

=
f̃
(
x+

∑n
i=m+1 yi

)∏n
i=m+1 fαπ(i)

(yi)

ψtπm(R;S
π
m)

. (107)

We note that Gupta & Richards [29] prove that if (∆1,∆2, . . . ,∆n)
T has a general-

ized Liouville distribution then equation (97) holds.

We can use Proposition 2.11 to extend the dynamic consistency property. In par-
ticular we have the following:

Corollary 2.12. a. Fix times s1, T1 satisfying 0 < T1 ≤ T − s1. The time-shifted,

space-shifted partial process

η
(1)
t,T1

= Ls1+t,T − Ls1,T , (0 ≤ t ≤ T1), (108)

is an LRB with the law LRBC([0, T1], {ft}, ν(1)), where ν(1) is a probability law

on R with density fT1(x)ψT1(R; x).

b. Construct the partial processes {η(i)t,Ti
}, i = 1, . . . , n, from non-overlapping por-

tions of {LtT } in a similar way to that above. The intervals [si, si + Ti], i =

1, . . . , n, are non-overlapping except possibly at the endpoints. Set η
(i)
t,Ti

= η
(i)
Ti,Ti

when t > Ti. If u > t, then

Q

[
η
(1)
u,T1

− η
(1)
t,T1

≤ x1, . . . , η
(n)
u,Tn

− η
(n)
t,Tn

≤ xn

∣∣∣Fη
t

]
=

Q

[
η
(1)
u,T1

− η
(1)
t,T1

≤ x1, . . . , η
(n)
u,Tn

− η
(n)
t,Tn

≤ xn

∣∣∣∣∣

n∑

i=1

η
(i)
t,Ti

]
, (109)

where

Fη
t = σ

({
η
(i)
s,Ti

}
0≤s≤t

, i = 1, 2, . . . , n

)
. (110)
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Remark 2.13. The partial processes of Corollary 2.12 are dependent, and

Q

[
η
(i)
tT ∈ dx

∣∣∣Fη
s

]
= Q

[
η
(i)
tT ∈ dx

∣∣∣∣∣ η
(i)
sT ,

n∑

j=1

η
(j)
sT

]
, (111)

for 0 ≤ s < t ≤ T .

We state but do not prove a discrete analogue of Proposition 2.11, which is as
follows:

Proposition 2.14. One can extend the Markov property of {MtT } to the following:

Q
[
Dπ(m+1) ≤ ym+1, . . . , Dπ(n) ≤ yn

∣∣Dπ(1), . . . , Dπ(m)

]
=

Q
[
Dπ(m+1) ≤ ym+1, . . . , Dπ(n) ≤ yn

∣∣Rπ
m

]
, (112)

where Rπ
m =

∑m
i=1Dπ(i). Furthermore,

Q
[
Dπ(m+1) = ym+1, . . . , Dπ(n) = yn

∣∣Dπ
m

]
=
Q̃
(
Rπ

m +
∑n

i=m+1 yi
)

∑∞
k=−∞ φtπm(ak;R

π
m)

n∏

i=m+1

Qαπ(i)
(yi).

(113)

Corollary 2.12 can be extended to include LRBs with discrete state-spaces.

3 Information-based asset pricing

3.1 BHM framework

We begin with a brief overview of the BHM framework. The approach was applied to
credit risk in Brody et al. [8], and this was extended to include stochastic interest rates
in Rutkowski & Yu [38]. A general asset pricing framework was proposed in Brody
et al. [10] (see also Macrina [35]), and there have also been applications to inflation
modelling (Hughston & Macrina [31]), insider trading (Brody et al. [9]), insurance
(Brody et al. [11]), and interest rate theory (Hughston & Macrina [30]).

We fix a finite time horizon [0, T ] and a probability space (Ω,F ,Q). We assume that
the risk-free rate of interest {rt} is deterministic, and that rt > 0 and

∫∞

t
ru du = ∞,

for all t > 0. Then the time-s (no-arbitrage) price of a risk-free, zero-coupon bond
maturing at time t (paying a nominal amount of unity) is

Pst = exp

(
−
∫ t

s

ru du

)
(s ≤ t). (114)

For t < T , the time-t price of a contingent cash flow HT , due at time T , is given by an
expression of the form

HtT = PtT E[HT | Ft], (115)
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where {Ft} is the market filtration. The sigma-algebra Ft represents the information
available to market participants at time t. In order for equation (115) to be consistent
with the theory of no-arbitrage pricing, we interpret Q to be the risk-neutral measure.

In such a set-up, the dynamics of the price process {HtT} are implicitly determined
by the evolution of the market filtration {Ft}. We assume the existence of a (possibly
multi-dimensional) information process {ξtT}0≤t≤T such that

Ft = σ ({ξsT}0≤s≤t) . (116)

Thus {ξtT} is responsible for the delivery of all information to the market participants.
The task of modelling the emergence of information in the market is reduced to that
of specifying the law of the information process {ξtT}.

3.1.1 Single X-factor market

We assume that the cash flow HT can be written in the form

HT = h(XT ), (117)

for some function h(x), and some market factor XT . We call XT an X-factor. We
assume that {ξtT} is a one-dimensional process such that ξTT = XT . Then we have

HtT = PtT E[h(XT ) | Ft] = PtT E[h(ξTT ) | Ft], (118)

which ensures that HTT = HT . In the case where {ξtT} is a Markov process, we have

HtT = PtT E[h(ξTT ) | ξtT ]. (119)

3.1.2 Multiple X-factor market

In the more general framework, we model an asset that generatesN cash flowsHT1, HT2 , . . . , HTN
,

which are to be received on the dates T1 ≤ T2 ≤ · · · ≤ TN , respectively. At time Tk, we
assume that the vector of X-factors XTk

∈ Rnk (nk ∈ N+) is revealed to the market,
and we write

XTk
=
(
X

(1)
Tk
, X

(2)
Tk
, . . . , X

(nk)
Tk

)T
. (120)

We assume the X-factors are mutually independent, and that

HTk
= hk(XT1 , XT2, . . . , XTk

), (121)

for some hk : R
n1×Rn2×· · ·×Rnk → R which we call a cash-flow function. For each X-

factorX
(i)
Tj
, there is a factor information process {ξ(i,j)t } such that ξ

(i,j)
t = X

(i)
Tj

for t ≥ Tj,
and the factor information processes are mutually independent. Setting T = TN , we
define the market information process {ξtT} to be an Rn1+n2+···+nN -valued process with
each of its elements being a factor information process. The market filtration {Ft} is
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generated by {ξtT}. By construction, HTk
is Ft-measurable for t ≥ Tk. The time-t

price of the cash flow HTk
is

H
(k)
tT =

{
Pt,Tk

E [hk(XT1 , XT2, . . . , XTk
) | Ft] for t < Tk,

0 for t ≥ Tk.
(122)

Here we adopt the convention that cash flows have nil value at the time that they are
due. In other words, prices are quoted on an ex-dividend basis. In this way the process
{H(k)

t } is right-continuous at t = Tk. The asset price process is then

HtT =
n∑

k=1

H
(k)
tT (0 ≤ t ≤ T ). (123)

3.2 Lévy bridge information

We consider a market with a single factor, which we denote XT . This X-factor is the
size of a contingent cash flow to be received at time T > 0, so we take h(x) = x. For
example, XT could be the redemption amount of a credit risky bond. XT is assumed to
be integrable and to have the a priori probability law ν (we exclude the case where XT

is constant). Information is supplied to the market by an information process {ξtT}.
The law of {ξtT} is LRBC([0, T ], {ft}, ν), and we set ξTT = XT . We assume throughout
this section that the information process has a continuous state-space; the results can
be extended to include LRB information processes with discrete state-spaces.

Since the information process has the Markov property, the price of the cash flow
XT is given by

XtT = PtT E [XT | ξtT ] (0 ≤ t ≤ T ). (124)

We note that XT is FT -measurable and XTT = XT , but XT is not Ft-measurable for
t < T since we have excluded the case where XT is constant. For t ∈ (0, T ), the
Ft-conditional law of XT as given by equation (46) is

νt(dz) =
ψt(dz; ξtT )

ψt(R; ξtT )
, (125)

where

ψt(dz; ξ) =
fT−t(z − ξ)

fT (z)
dz. (126)

Then we have

XtT = PtT

∫ ∞

−∞

z νt(dz). (127)

When ν admits a density p(z), the Ft-conditional density of XT exists and is given by

pt(z) =
fT−t(z − ξtT )p(z)

ψt(R; ξtT )fT (z)
. (128)
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Example. In the Brownian case the price is

XtT = PtT

∫∞

−∞
z e

1
T−t [ξtT z− 1

2
t
T
z2] ν(dz)

∫∞

−∞
e

1
T−t [ξtT z− 1

2
t
T
z2] ν(dz)

. (129)

The following SDE can be derived for {XtT} (see [8, 10, 35, 38]):

dXtT = rtXtT dt+
PtTVar[XT | ξtT ]

T − t
dWt, (130)

where {Wt} is an {Ft}-Brownian motion.

Example. In the gamma case we have

XtT = PtT

∫∞

ξtT
(z − ξtT )

m(T−t)−1z2−mT ν(dz)
∫∞

ξtT
(z − ξtT )m(T−t)−1z1−mT ν(dz)

. (131)

3.3 European option pricing

We consider the problem of pricing a European option on the price XtT at time t. For
a strike price K and 0 ≤ s < t < T , the time-s price of a t-maturity call option on XtT

is
Cst = Pst E

[
(XtT −K)+

∣∣ ξsT
]
. (132)

The expectation can be expanded in the form

EQ

[
(XtT −K)+

∣∣ ξsT
]
= EQ

[
(PtT EQ[XT | ξtT ]−K)+

∣∣ ξsT
]

= EQ

[(∫ ∞

−∞

(PtT z −K) νt(dz)

)+
∣∣∣∣∣ ξsT

]

= EQ

[
1

ψt(R; ξtT )

(∫ ∞

−∞

(PtT z −K)ψt(dz; ξtT )

)+
∣∣∣∣∣ ξsT

]
.

(133)

Recall that the Radon-Nikodym density process

dL

dQ

∣∣∣∣
Ft

= ψt(R; ξtT )
−1 (134)

defines a measure L under which {ξtT}0≤t<T is a Lévy process. By changing measure,
we find that the expectation is

1

ψs(R; ξsT )
EL

[(∫ ∞

−∞

(PtT z −K)ψt(dz; ξtT )

)+
∣∣∣∣∣ ξsT

]
=

1

ψs(R; ξsT )
EL

[(∫ ∞

−∞

(PtT z −K)
fT−t(z − ξtT )

fT (z)
ν(dz)

)+
∣∣∣∣∣ ξsT

]
. (135)
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Equation (27) states that 0 < fT−s(z − ξsT ) < ∞. Thus we can write the expectation
in terms of the ξsT -conditional terminal law νs in the form

EL

[(∫ ∞

−∞

(PtT z −K)
fT−t(z − ξtT )

fT−s(z − ξsT )
νs(dz)

)+
∣∣∣∣∣ ξsT

]
=

∫ ∞

−∞

(∫ ∞

−∞

(PtT z −K)
fT−t(z − x)

fT−s(z − ξsT )
νs(dz)

)+

ft−s(x− ξsT ) dx. (136)

We defined the (marginal) Lévy bridge density ftT (x; z) by

ftT (x; z) =
fT−t(z − x)ft(x)

fT (z)
. (137)

From this we can define the ξsT -dependent law µst(dx; z) by

µst(dx; z) = ft−s,T−s(x− ξsT , z − ξsT ) dx. (138)

Thus µst(dx; z) is the time-t marginal law of a Lévy bridge starting at the value ξsT at
time s, and terminating at the value z at time T . Defining the set Bt by

Bt =

{
x ∈ R :

∫ ∞

−∞

(PtT z −K)
fT−t(z − x)

fT (z)
ν(dz) > 0

}
, (139)

the expectation reduces to

∫ ∞

−∞

(PtT z −K)µst(Bt; z) νs(dz). (140)

The option price is then given by

Cst = Pst

∫ ∞

−∞

(PtT z −K)µst(Bt; z) νs(dz). (141)

We can write XtT = Λ(t, ξtT ), for Λ a deterministic function. The set Bt can then
be written

Bt = {ξ ∈ R : Λ(t, ξ) > K} . (142)

We see that if Λ is increasing in its second argument then Bt = (ξ∗t ,∞) for some critical
value ξ∗t of the information process. Λ is monotonic if {ξtT} is a Lévy process.

Example. In the Brownian case we have

Λ(t, x) = PtT

∫∞

−∞
z e

1
T−t [xz−

1
2

t
T
z2] ν(dz)

∫∞

−∞
e

1
T−t [xz−

1
2

t
T
z2] ν(dz)

. (143)
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It can be shown that the function Λ is increasing in its second argument (see [10, 38]);
hence Bt = (ξ∗t ,∞) for the unique ξ∗t satisfying Λ(t, ξ∗t ) = K. A short calculation
verifies that µst(dx; z) is the normal law with mean M(z) and variance V given by

M(z) =
T − t

T − s
ξsT +

t− s

T − s
z, V =

t− s

T − s
(T − t). (144)

This is the time-t marginal law of a Brownian bridge starting from the value ξsT at
time s, and finishing at the value z at time T . We have

µst(Bt; z) = 1− Φ

[
ξ∗t −M(z)√

V

]
= Φ

[
M(z) − ξ∗t√

V

]
, (145)

where Φ[x] is the standard normal distribution function. The option price is then

Cst = PsT

∫ ∞

−∞

z Φ

[
M(z) − ξ∗t√

V

]
νs(dz) + PstK

∫ ∞

−∞

Φ

[
M(z)− ξ∗t√

V

]
νs(dz). (146)

Example. In the gamma case we have

Λ(t, x) = PtT

∫∞

x
(z − x)m(T−t)−1z2−mT ν(dz)∫∞

x
(z − x)m(T−t)−1z1−mT ν(dz)

. (147)

The monotonicity of Λ(t, x) in x was proved for m(T − t) > 1 by Brody et al. [11].
The authors also give a numerical example where Λ(t, x) was not monotonic in x for
m(T − t) < 1. For all t ∈ (0, T ), we have

µst(dx; z) = 1{ξsT<x<z} k(z)
−1

(
x− ξst
z − ξsT

)m(t−s)−1(
z − y

z − ξsT

)m(T−t)−1

dx, (148)

where k(z) is the normalising constant

k(z) = (z − ξsT ) B[m(t− s), m(T − t)]. (149)

Hence µst(dx; z) is an (z − ξsT )-scaled, ξsT -shifted, beta law with parameters α =
m(t − s) and β = m(T − t). This is the time-t marginal law of a gamma bridge
starting at the value ξsT at time s, and terminating at the value x at time T . When
m(T − t) > 1, a critical ξ∗t exists such that Λ(t, ξ∗t ) = K. Then Bt = (ξ∗t ,∞), and

µst(Bt; z) = 1− I

[
ξ∗t − ξsT
z − ξsT

;m(t− s), m(T − t)

]

= I

[
z − ξ∗t
z − ξsT

;m(T − t), m(t− s)

]
. (150)

Here I[z;α, β] is the regularized incomplete beta function, defined for α, β > 0 by

I[z;α, β] =
1

B[α, β]

∫ z

0

xα−1(1− x)β−1 dx. (151)
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The option price is then given by

Cst = PsT

∫ ∞

ξsT

z I

[
z − ξ∗t
z − ξsT

;m(T − t), m(t− s)

]
νs(dz)

+ PstK

∫ ∞

ξsT

I

[
z − ξ∗t
z − ξsT

;m(T − t), m(t− s)

]
νs(dz). (152)

3.4 Binary bond

The simplest non-trivial contingent cash flow is XT ∈ {k0, k1}, for k0 < k1. This is
the pay-off from a zero-coupon, credit-risky bond that has principle k1, and a fixed
recovery rate k0/k1 on default. Assume that, a priori, Q[XT = k0] = p > 0 and
Q[XT = k1] = 1− p. Then

Q[XT = k0 | ξtT ] =
(
1 +

fT (k0)

fT (k1)

fT−t(k1 − ξtT )

fT−t(k0 − ξtT )

1− p

p

)−1

, (153)

and

Q[XT = k1 | ξtT ] =
(
1 +

fT (k1)

fT (k0)

fT−t(k0 − ξtT )

fT−t(k1 − ξtT )

p

1− p

)−1

. (154)

The bond price process {XtT} associated with the given terminal cash flow is given by

XtT = PtT (k0Q[XT = k0 | ξtT ] + k1Q[XT = k1 | ξtT ]) (0 ≤ t ≤ T ). (155)

Example. In the Brownian case we have

Q[XT = k0 | ξtT ] =
(
1 + exp

[
−1

2

k1 − k0
T − t

( t
T
(k0 + k1)− 2ξtT )

]
1− p

p

)−1

, (156)

and

Q[XT = k1 | ξtT ] =
(
1 + exp

[
1

2

k1 − k0
T − t

( t
T
(k0 + k1)− 2ξtT )

]
p

1− p

)−1

. (157)

Writing ρi = Q[XT = ki | ξtT ], note that

Var[XT | ξtT ] = (k1 − k0)
2ρ1ρ0

= −(k0 − k0ρ0 − k1ρ1)(k1 − k0ρ0 − k1ρ1)

= −(k0 −XtT )(k1 −XtT ). (158)

Thus, recalling (130), we see that the SDE of {XtT} is

dXtT = rtXtT dt− PtT (k0 −XtT )(k1 −XtT )

T − t
dWt, (159)
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with the initial condition X0T = k0p + k1(1 − p). For K ∈ (PtTk0, PtTk1), we are able
to solve the equation Λ(t, x) = K for x. We have

Λ(t, x) = PtT (k0Q[XT = k0 | ξtT = x] + k1Q[XT = k1 | ξtT = x])

= PtT (k1 − (k1 − k0)Q[XT = k0 | ξtT = x]) , (160)

so the solution to Λ(t, x) = K is

ξ∗t =
t

2T
(k0 + k1)−

T − t

k1 − k0
log

[
p

1− p

K − PtTk0
PtTk1 −K

]
. (161)

The price of a call option on XtT is

Cst = Pst

1∑

i=0

(PtTk −K) Φ

[
M(ki)− ξ∗t√

V

]
Q[XT = ki | ξsT ]. (162)
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Bulletin de la Société Mathématique de France, 85:431–458, 1957.

[15] R.J. Elliot & M. Jeanblanc. Incomplete markets with jumps and informed agents.
Mathematical Methods in Operations Research, 50:475–492, 1999.

[16] R.J. Elliott & P.E. Kopp. Equivalent martingale measures for bridge processes.
Stochastic Analysis and Applications, 9(4):429–444, 1991.
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[37] R. Mansuy & M. Yor. Harnesses, Lévy bridges and Monsieur Jourdain. Stochastic
Processes and their Applications, 115:329–338, 2004.

[38] M. Rutkowski & N. Yu. On the Brody-Hughston-Macrina approach to modelling
of defaultable term structure. International Journal of Theoretical and Applied

Finance, Vol. 10:557–589, 2007.
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