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Abstract

In [6] for c > 0 we defined truncated variation, TV c
µ , of Brownian

motion with drift, Wt = Bt+µt, t ≥ 0, where (Bt) is a standard Brownian
motion. In this article we define two related quantities - upward truncated
variation

UTV
c
µ [a, b] = sup

n

sup
a≤t1<s1<...<tn<sn≤b

n∑

i=1

max {Wsi −Wti − c, 0}

and, analogously, downward truncated variation

DTV
c
µ [a, b] = sup

n

sup
a≤t1<s1<...<tn<sn≤b

n∑

i=1

max {Wti −Wsi − c, 0} .

We prove that exponential moments of the above quantities are finite (in
opposite to the regular variation, corresponding to c = 0, which is infinite
almost surely). We present estimates of the expected value of UTV c

µ up
to universal constants.

As an application we give some estimates of the maximal possible
gain from trading a financial asset in the presence of flat commission
(proportional to the value of the transaction) when the dynamics of the
prices of the asset follows a geometric Browniam motion process. In the
presented estimates upward truncated variation appears naturally.

1 Introduction

Let (Bt, t ≥ 0) be a standard Brownian motion, and Wt = Bt+µt be a Brownian
motion with drift µ.
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In [6] truncated variation at the level c > 0 of Brownian motion with drift
µ on the interval [a, b] was defined as

TV c
µ [a, b] := sup

n
sup

a≤t1≤···≤tn≤b

n−1
∑

i=1

max
{∣

∣Wti+1 −Wti

∣

∣− c, 0
}

.

(Technical remark: for a > b we set TV c
µ [a, b] = 0.)

There were also proved estimates of ETV c
µ [0, T ] up to universal constants.

Using similar techniques as in [6] we will prove existence of finite exponential
moments of TV c

µ [0, T ] , E exp
(

αTV c
µ [0, T ]

)

, for any α, T > 0.
Further we will consider two related quantities

• upward truncated variation, defined as

UTV c
µ [a, b] := sup

n
sup

a≤t1<s1<···<tn<sn≤b

n
∑

i=1

max {Wsi −Wti − c, 0}

• and, analogously, downward truncated variation, defined as

DTV c
µ [a, b] := sup

n
sup

a≤t1<s1<···<tn<sn≤b

n
∑

i=1

max {Wti −Wsi − c, 0} .

It is easy to see that all three above defined quantities have the following
properties, which we state only for the truncated variation

• shift invariance property in distributions:

L
(

TV c
µ [a, b]

)

= L
(

TV c
µ [a + ∆, b + ∆]

)

• superadditivity property: for any numbers a ≤ a1 < a2 < · · · < an ≤ b

TV c
µ [a, b] ≥

n−1
∑

i=1

TV c
µ [ai, ai+1] .

It is also easy to see that the following relations hold

TV c
µ [0, T ] ≥ UTV c

µ [0, T ] , (1)

TV c
µ [0, T ] ≥ DTV c

µ [0, T ] , (2)

TV c
µ [0, T ] ≤ UTV c

µ [0, T ] + DTV c
µ [0, T ] ,

UTV c
µ [0, T ] = DTV c

−µ [0, T ] . (3)

By (3) all estimates proved for upward truncated variation have analogs for
downward truncated variation.

Analogously as in [6] we will prove some estimates of EUTV c
µ [0, T ] (and

thus for EDTV c
µ [0, T ]) up to universal constants. Unfortunatelly, the presented

estimates involve expected values of some other related variables.
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Remark 1.1. In order to shorten the proofs we did not put much stress on
obtaining the best possible constants in the presented estimates.

Remark 1.2. K. Oleszkiewicz pointed out that it would be also interesting to
have estimates for higher moments of the defined quantities. However, the au-
thor presumes that there are other methods than these used in this paper needed
to obtain such estimates.

Remark 1.3. A. N. Chuprunov pointed to the author that it would be also
interesting to have estimates of quadratic truncated variation, which one may
define as

QTV c
µ [a, b] := sup

n
sup

a≤t1≤···≤tn≤b

n−1
∑

i=1

max
{

∣

∣Wti+1 −Wti

∣

∣

2
− c2, 0

}

.

Remark 1.4. Similar concept of truncation (or shirinking) of random variables
on Hilbert spaces investigated Z. Jurek in series of his papers beginning with [2],
[3], which now evolved in the theory of selfdecomposable distriutions (see e.g.
[4]).

2 Existence of exponential moments of truncated

variation

Let us start with the existence of finite exponential moments of TV c
µ [0, T ] . To

prove this let us define

Tc = inf

{

t ≥ 0 : sup
0≤s≤t

Ws ≥ Wt + c

}

,

further let T sup
c be the last instant when the maximum of Wt on [0, Tc] is at-

tained, and let T inf
c ≤ T sup

c be such that WT inf
c

= inf0≤s≤T sup
c

Ws.
Let us fix α > 0 and let δ > 0 be such a small number that

1 −E exp

(

α sup
0≤t≤T

Wt + αc

)

P (Tc < δ) > 0.

By definition of Tc and T inf
c we have WT inf

c
> −c and WT sup

c
−WT inf

c
− c ≤

WT sup
c

. Now, by Lemma 1, Lemma 2 in [6] and independence of Wt−WTc
, t ≥ Tc,
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and Tc (strong Markov property of Brownian motion) for any M > 0 we have

E exp
(

αTV c
µ [0, T ] ∧M

)

≤ E exp
(

αWT sup
c

+ αc + αTV c
µ [Tc, T ] ∧M

)

≤ E exp
(

αWT sup
c

+ αc
)

E exp
[

αTV c
µ [Tc, T ] ∧M ;Tc < δ

]

+ E exp
(

αWT sup
c

+ αc
)

E exp
[

αTV c
µ [Tc, T ] ∧M ;Tc ≥ δ

]

≤ E exp
(

αWT sup
c

+ αc
)

E exp
[

αTV c
µ [Tc, T + Tc] ∧M ;Tc < δ

]

+ E exp
(

αWT sup
c

+ αc
)

E exp
[

αTV c
µ [Tc, T + Tc − δ] ∧M ;Tc ≥ δ

]

≤ E exp

(

α sup
0≤t≤T

Wt + αc

)

E exp
(

αTV c
µ [0, T ] ∧M

)

P (Tc < δ)

+ E exp

(

α sup
0≤t≤T

Wt + αc

)

E exp
(

αTV c
µ [0, T − δ] ∧M

)

P (Tc ≥ δ) .

From the above we have

E exp
(

αTV c
µ [0, T ] ∧M

)

≤
E exp

(

α sup0≤t≤T Wt + αc
)

P (Tc ≥ δ)

1 −E exp
(

α sup0≤t≤T Wt + αc
)

P (Tc < δ)
E exp

(

αTV c
µ [0, T − δ] ∧M

)

.

Similarly

E exp
(

αTV c
µ [0, T − δ] ∧M

)

≤
E exp

(

α sup0≤t≤T Wt + αc
)

P (Tc ≥ δ)

1 −E exp
(

α sup0≤t≤T Wt + αc
)

P (Tc < δ)
E exp

(

αTV c
µ [0, T − 2δ] ∧M

)

.

Iterating and putting together the above inequalities we finally obtain

E exp
(

αTV c
µ [0, T ] ∧M

)

≤

(

E exp
(

α sup0≤t≤T Wt + αc
)

P (Tc ≥ δ)

1 −E exp
(

α sup0≤t≤T Wt + αc
)

P (Tc < δ)

)⌈T/δ⌉

.

Letting M → ∞ we get E exp
(

αTV c
µ [0, T ]

)

< +∞.
By (1) and (2) we obtain the finiteness of exponential moments of UTV c

µ [0, T ]
and DTV c

µ [0, T ] as well.

3 Estimates of expected value of upward and

downward truncated variation

3.1 Preparatory lemmas

In order to obtain estimates of EUTV c
µ [0, T ] (and analogously EDTV c

µ [0, T ])
we will use similar techniques as in [6]. Due to typographical reasons let us
introduce notation max {x, 0} =: (x)+.

We will need the following analogon of Lemma 2 from [6]:
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Lemma 3.1. We have the following identity

UTV c
µ [0, T ] = sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ + UTV c

µ [Tc, T ] . (4)

Proof. Let 0 ≤ t1 < s1 < t2 < s2... < tn < sn ≤ T be numbers from the interval
[0, T ] .

We will prove that

n
∑

i=1

(Wsi −Wti − c)+ ≤ sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+ + UTV c
µ [Tc, T ] . (5)

Let n0 be the greatest number such that sn0 < Tc and let us assume that n0 < n
and tn0+1 < Tc.

Let us consider several cases.

• Wtn0+1 ≥ WTc
. In this case

(

Wsn0+1 −Wtn0+1 − c
)

+
≤
(

Wsn0+1 −WTc
− c
)

+
.

and

n
∑

i=1

(Wsi −Wti − c)+ ≤

n0
∑

i=1

(Wsi −Wti − c)+ +
(

Wsn0+1 −WTc
− c
)

+

+

n
∑

i=n0+2

(Wsi −Wti − c)+ . (6)

• Wtn0+1 < WTc
and Wsn0+1 ≤ WT sup

c
. In this case tn0+1 < T sup

c (since for
T sup
c < t < Tc, Wt > WTc

) so
(

Wsn0+1 −Wtn0+1 − c
)

+
≤
(

WT sup
c

−Wtn0+1 − c
)

+

and

n
∑

i=1

(Wsi −Wti − c)+ ≤

n0
∑

i=1

(Wsi −Wti − c)+ +
(

WT sup
c

−Wtn0+1 − c
)

+

+

n
∑

i=n0+2

(Wsi −Wti − c)+ . (7)

• Wtn0+1 < WTc
and Wsn0+1 > WT sup

c
= WTc

+ c. In this case

(

Wsn0+1 −Wtn0+1 − c
)

+
= Wsn0+1 −Wtn0+1 − c

= WT sup
c

−Wtn0+1 − c + Wsn0+1 −WT sup
c

= WT sup
c

−Wtn0+1 − c + Wsn0+1 −WTc
− c

=
(

WT sup
c

−Wtn0+1 − c
)

+
+
(

Wsn0+1 −WTc
− c
)

+
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and

n
∑

i=1

(Wsi −Wti − c)+ ≤

n0
∑

i=1

(Wsi −Wti − c)+ +
(

WT sup
c

−Wtn0+1 − c
)

+

+
(

Wsn0+1 −WTc
− c
)

+
+

n
∑

i=n0+2

(Wsi −Wti − c)+ .

(8)

Thus for tn0+1 < Tc inequality (6), (7) or (8) holds and we may assume,
adding in the case tn0+1 < Tc new terms in the partition and renaming the old
ones, that

0 ≤ t1 < s1 < ... < tn0 < sn0 ≤ Tc,

Tc ≤ tn0+1 < sn0+1 < ... < tn < sn ≤ T.

In order to prove (5) without loss of generality we may assume that for
any 1 ≤ i ≤ n0, (Wsi −Wti − c)+ > 0 (otherwise we may omit the summand
(Wsi −Wti − c)+). From definition of Tc we have that for any 1 ≤ i ≤ n0 − 1,
Wsi −Wti+1 < c, so

(Wsi −Wti − c)+ +
(

Wsi+1 −Wti+1 − c
)

+

= Wsi −Wti − c + Wsi+1 −Wti+1 − c

= Wsi+1 −Wti − c +
(

Wsi −Wti+1 − c
)

< Wsi+1 −Wti − c.

Iterating the above inequality, we obtain

n0
∑

i=1

(Wsi −Wti − c)+ ≤ Wsn0
−Wt1 − c ≤ sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ .

This, together with the obvious inequality

n
∑

i=n0+1

(Wsi −Wti − c)+ ≤ UTV c
µ [Tc, T ]

proves (5). Taking supremum over all partitions 0 ≤ t1 < s1 < t2 < s2 < ... <
tn < sn ≤ T we finally get

UTV c
µ [0, T ] ≤ sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ + UTV c

µ [Tc, T ] .

Since the opposite inequality is obvious, we finally get (4).

Let us now define some auxiliary variables. Let T
(0)
c ≡ 0 and let T

(i)
c , i =

1, 2, ... be defined recursively as

T (i)
c = inf

{

t > T (i−1)
c : sup

T
(i−1)
c ≤s≤t

Ws ≥ Wt + c

}

.
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(notice that T
(1)
c = Tc). We define a new variable

UTV c
µ (T ) :=

∞
∑

i=1

e−T (i−1)
c

/T sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+ .

We have the following

Lemma 3.2. The variables UTV c
µ [0, T ] and UTV c

µ (T ) are related by the fol-
lowing relations

UTV c
µ [0, T ] ≤ eUTV c

µ (T ) (9)

UTV c
µ [0, T ] �

1 − e−1

2
UTV c

µ (T ) (10)

where the first relation holds almost surely and the second holds in the sense of

stochastic domination i.e. for every y ≥ 0, P
(

UTV c
µ [0, T ] ≥ y

)

≥ P
(

1−e−1

2 UTV c
µ (T ) ≥ y

)

.

Proof. By the previous lemma, we have

UTV c
µ [0, T ] = sup

0≤t<s≤T
(1)
c ∧T

(Ws −Wt − c)+ + UTV c
µ

[

T (1)
c , T

]

= sup
0≤t<s≤T

(1)
c ∧T

(Ws −Wt − c)+ + sup
T

(1)
c ≤t<s≤T

(2)
c ∧T

(Ws −Wt − c)+

+UTV c
µ

[

T (2)
c , T

]

= ... =
∑

i≥1:T
(i−1)
c ≤T

sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧T

(Ws −Wt − c)+ . (11)

From (11) we almost immediately get (9)

UTV c
µ [0, T ] =

∑

i≥1:T
(i−1)
c ≤T

sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧T

(Ws −Wt − c)+

≤
∞
∑

i=1

e1−T (i−1)
c

/T sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+

= eUTV c
µ (T ) .

In order to prove the second relation let i0 ≥ 1 be the greatest indice such that

T
(i0−1)
c < T and let us consider the term

A = sup
T

(i0−1)
c ≤t<s≤T

(i0)
c ∧

(

T
(i0−1)
c +T

)

(Ws −Wt − c)+ .

If i0 = 1 then A = sup
0≤t<s≤T

(1)
c ∧T

(Ws −Wt − c, 0)+ , otherwise A is indepen-

dent from B = sup
0≤t<s≤T

(1)
c ∧T

(Ws −Wt − c, 0)+ but has the same distribu-

tion as B.
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By (11) we have

UTV c
µ [0, T ] =

∑

i≥1:T
(i−1)
c ≤T

sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧T

(Ws −Wt − c)+ (12)

=

i0−1
∑

i=1

sup
T

(i−1)
c ≤t<s≤T

(i)
c

(Ws −Wt − c)+

+ sup
T

(i0−1)
c ≤t<s≤T

(Ws −Wt − c)+ .

In both cases (i0 = 1 and i0 > 1) 2UTV c
µ [0, T ] stochastically dominates the

sum

S1 =

i0
∑

i=1

e−T (i−1)
c

/T sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+ .

(
∑i0−1

i=1 sup
T

(i−1)
c ≤t<s≤T

(i)
c

(Ws −Wt − c)+ dominates the first i0 − 1 terms in

the above sum and B, which appears in the sum (12) dominates A.) Similarly,

define ik recursively as the greatest integer such that T
(ik−1)
c < T

(ik−1)
c +T and

Sk =

ik
∑

i=ik−1+1

exp

(

−
T

(i−1)
c − T

(ik−1)
c

T

)

sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+ .

Sk is independent from S1, ..., Sk−1, moreover it has the same distribution as S1

and

UTV c
µ (T ) =

∞
∑

k=1

e−T
(ik−1)
c /TSk.

By definition of ik, T
(ik)
c ≥ T

(ik−1)
c + T, thus we have T

(ik)
c ≥ (k − 1)T. Now,

since 2UTV c
µ [0, T ] � Sk, k = 1, 2, ..., we have that

2

1 − e−1
UTV c

µ [0, T ] =

∞
∑

k=1

e−(k−1)2UTV c
µ [0, T ]

�
∞
∑

k=1

e−T
(ik−1)
c /T 2UTV c

µ [0, T ]

�

∞
∑

k=1

e−T
(ik−1)
c /TSk = UTV c

µ (T ) .

which proves (10).

Next, let us state a refinement of Lemma 3 from [6]:

Lemma 3.3. For any µ and c > 0

P

(

Tc <
1

3
ETc

)

≤
7

9
.
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Proof. The proof follows exactly as in [6], since one can show that for any real
µ

(ETc)
2

ET 2
c

=
1

2

(

e2µc − 1 − 2µc
)2

e4µc − 6e2µcµc + e2µc + 2µ2c2 − 2
≥

1

2

and, by the Paley-Zygmund inequality we obtain

P

(

Tc ≥
1

3
ETc

)

≥

(

1 −
1

3

)2
(ETc)

2

ET 2
c

≥
4

9

1

2
=

2

9

and

P

(

Tc <
1

3
ETc

)

= 1 − P

(

Tc ≥
1

3
ETc

)

≤
7

9
.

3.2 Estimates for long and short time intervals

Now we are ready to prove estimates of expected value of UTV c
µ [0, T ] for long

and short time intervals (T ≥ 1
3ETc and T < 1

3ETc respectively). We have

Theorem 3.4. For any T ≥ 1
3ETc we have

0.3
T

ETc
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ ≤ EUTV c

µ [0, T ]

≤ 27
T

ETc
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ .

Proof. By Lemma 3.1 and independence of Wt − WTc
, t ≥ Tc, and Tc (strong

Markov property of Brownian motion) we calculate

EUTV c
µ [0, T ] = E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+ + EUTV c

µ [Tc ∧ T, T ]

≤ E sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+ + E

[

UTV c
µ [Tc, T ] ;Tc <

1

3
ETc

]

+E

[

UTV c
µ [Tc, T ] ;

1

3
ETc ≤ Tc ≤ T

]

≤ E sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+ + E

[

UTV c
µ [Tc, T + Tc] ;Tc <

1

3
ETc

]

+E

[

UTV c
µ

[

Tc, T + Tc −
1

3
ETc

]

;
1

3
ETc ≤ Tc ≤ T

]

≤ E sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+ + EUTV c
µ [0, T ]P

(

Tc <
1

3
ETc

)

+EUTV c
µ

[

0, T −
1

3
ETc

]

P

(

Tc ≥
1

3
ETc

)

.
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Now, by the above inequality and Lemma 3.3

EUTV c
µ [0, T ] ≤

E sup0≤t<s≤Tc∧T (Ws −Wt − c)+
P
(

Tc ≥
1
3ETc

) + EUTV c
µ

[

0, T −
1

3
ETc

]

≤
9

2
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+ + EUTV c

µ

[

0, T −
1

3
ETc

]

.

Similarly

EUTV c
µ

[

0, T −
1

3
ETc

]

≤
9

2
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)++EUTV c

µ

[

0, T −
2

3
ETc

]

.

Iterating and putting together the above inequalities we obtain the estimate
from above

EUTV c
µ [0, T ] ≤

⌈

T
1
3ETc

⌉

9

2
E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+

≤

(

3T

ETc
+ 1

)

9

2
E sup

0≤t<s≤Tc∧T
(Ws −Wt − c)+

≤
6T

ETc

9

2
E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+

≤ 27
T

ETc
E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+ .

The estimate from below is obtained from Lemma 3.2 (see also the comment
after the calculation):

EUTV c
µ [0, T ] ≥

1 − e−1

2
EUTV c

µ (T ) ≥ 0.3EUTV c
µ (T )

= 0.3
∞
∑

i=1

Ee−T (i−1)
c

/T sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+

= 0.3

∞
∑

i=1

Ee−T (i−1)
c

/TE sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+

= 0.3

(

∞
∑

i=1

(

Ee−T (1)
c

/T
)i−1

)

E sup
0≤t≤s≤Tc∧T

(Ws −Wt − c)+

= 0.3
1

1 −Ee−T
(1)
c /T

E sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+

≥ 0.3
1

1 −E
(

1 − T
(1)
c /T

)E sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+

= 0.3
T

ETc
E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+ .
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In the above calculations we used consecutively: independence of T
(i−1)
c and

Ws −W
T

(i−1)
c

, s ≥ T
(i−1)
c , equality of distributions of every term

sup
T

(i−1)
c ≤t<s≤T

(i)
c ∧

(

T
(i−1)
c +T

)

(Ws −Wt − c)+

for i = 1, 2, ..., definition of T
(i−1)
c , which implies the equality

Ee−T (i−1)
c

/T =
(

Ee−T (1)
c

/T
)i−1

and finally we used the inequality ex ≥ 1 + x.

The estimates in Theorem 3.4 involve expected value of the variable

sup
0≤t<s≤Tc∧T

(Ws −Wt − c)+

distribution of which, as far as author knows, is not known, but it may be
simulated numerically. We also have

Corollary 3.5. For any T ≥ 1
3ETc we have

3
T

ETc
E sup

0≤t≤s≤ 1
3ETc

(Ws −Wt − c)+ ≤ EUTV c
µ [0, T ]

≤ 27
T

ETc
E sup

0≤t≤s≤Tc

(Ws −Wt − c)+ .(13)

Proof. The estimate from above is a straighforward consequence of Theorem
3.4 and the estimate from below is obtained immediately by the superadditivity
property

EUTV c
µ [0, T ] ≥

⌊3T/ETc⌋
∑

i=1

EUTV c
µ

[

i− 1

3
ETc,

i

3
ETc

]

≥ ⌊3T/ETc⌋EUTV c
µ

[

0,
1

3
ETc

]

≥ 3
T

ETc
E sup

0≤t≤s≤ 1
3ETc

(Ws −Wt − c)+ .

Remark 3.6. Using results of of Hadjiliadis and Vecer [1] we are able to calcu-
late exactly the estimate from above appearing in (13). Using the notation from
[1], for z > 0 we have

P

(

sup
0≤t≤s≤Tc

(Ws −Wt − c)+ ≥ z

)

= P

(

sup
0≤t≤s≤Tc

(Ws −Wt) ≥ z + c

)

= P (T (c, z + c) = T2 (z + c))

11



and by Theorem 2.1 from [1], for y > c we have

P

(

sup
0≤t≤s≤Tc

(Ws −Wt) ≥ y

)

=
e2µc − 2µc− 1

e2µc + e−2µc − 2
exp

(

−
2µ

e2µc − 1
(y − c)

)

.

Hence

E sup
0≤t≤s≤Tc

(Ws −Wt − c)+ =

∫ ∞

c

P

(

sup
0≤t≤s≤Tc

(Ws −Wt) ≥ y

)

dy

=
e2µc − 2µc− 1

e2µc + e−2µc − 2

∫ ∞

c

exp

(

−
2µ

e2µc − 1
(y − c)

)

dy

=
e2µc − 2µc− 1

e2µc + e−2µc − 2

e2µc − 1

2µ
.

Estimates of EUTV c
µ [0, T ] for short time intervals (T < 1

2ETc) are the
subject of the next theorem.

Theorem 3.7. For any T < 1
3ETc we have

E sup
0≤t≤s≤T

(Ws −Wt − c)+ ≤ EUTV c
µ [0, T ]

≤ 5E sup
0≤t≤s≤T

(Ws −Wt − c)+ .

Proof. Applying Lemma 3.1 and independence of Wt −WTc
, t ≥ Tc, and Tc we

again calculate

EUTV c
µ [0, T ] ≤ E sup

0≤t≤s≤Tc∧T
(Ws −Wt − c)+ + EUTV c

µ [Tc ∧ T, T ]

≤ E sup
0≤t≤s≤T

(Ws −Wt − c)+ + E
[

UTV c
µ [Tc, T ] ;Tc < T

]

≤ E sup
0≤t≤s≤T

(Ws −Wt − c)+ + EUTV c
µ [0, T ]P

(

Tc <
1

3
ETc

)

≤ E sup
0≤t≤s≤T

(Ws −Wt − c)+ + EUTV c
µ [0, T ]

7

9
.

Thus we got

EUTV c
µ [0, T ] ≤

9

2
E sup

0≤t≤s≤T
(Ws −Wt − c)+ .

The estimate from above is self-evident

EUTV c
µ [0, T ] ≥ E sup

0≤t≤s≤T
(Ws −Wt − c)+ .

12



Remark 3.8. In order to calculate the quantity E sup0≤t≤s≤T (Ws −Wt − c)+
for T ≤ 1

3ETc, which appears in Corollary 3.5 and in Theorem 3.7, one may
use results of [5]. Let

GD̄ (y) = 2eµy

{

L +
∞
∑

n=1

θn sin θn
θ2n + µ2y2 + µy

(

1 − exp

(

−
θ2nT

2y2
−

µ2T

2

))

}

,

where θn are positive solutions of the eigenvalue condition tan θn = − θn
µy ,

L =















0, 0 < y < − 1
µ ;

3
2

(

1 − e−µ2T/2
)

, y = − 1
µ ;

2η sinh η
η2−µ2y2−µy

(

1 − exp
(

η2T
2y2 − µ2T

2

))

, y > − 1
µ ;

and η is the unique positive solution of tanh η = − η
µy . In the notation used in

[5] for z > 0 we have

P

(

sup
0≤t≤s≤T

(Ws −Wt − c)+ ≥ z

)

= P

(

sup
0≤t≤s≤T

(Ws −Wt) ≥ z + c

)

= P
(

D̄ (T ;−µ, 1) ≥ z + c
)

= GD̄ (z + c)

and thus

E sup
0≤t≤s≤T

(Ws −Wt − c)+ =

∫ ∞

0

GD̄ (z + c) dz =

∫ ∞

c

GD̄ (z) dz.

However, the above formula is very numerically unstable and it seems not to be
a straightforward task to obtain using it good numerical or analytical estimates
of expected value of the variable sup0≤t≤s≤T (Ws −Wt − c)+ .

4 Example of application

As it was mentioned earlier, upward truncated variation appears naturally in the
expression for the least upper bound for the rate of return from any trading
of a financial asset, dynamics of which follows geometric Brownian motion, in
the presence of flat commission. Similar result was proved in [6] for truncated
variation, however, truncated variation is not the least upper bound.

Indeed, similarly as in [6], let us assume that the dynamics of the prices Pt

of some financial asset (e.g. stock) is the following Pt = exp (µt + σBt). We
are interested in the maximal possible profit coming from trading this single
instrument during time interval [0, T ] . We buy the instrument at the moments
0 ≤ t1 < ... < tn < T and sell it at the moments s1 < ... < sn ≤ T, such that
t1 < s1 < t2 < s2 < ... < tn < sn, in order to obtain the maximal possible
profit. Furthermore we assume that for every transaction we have to pay a flat
commission and γ is the ratio of the transaction value paid for the commission.

13



The maximal possible rate of return from our strategy reads as (cf. [6])

sup
n

sup
0≤t1<s1<...<tn<sn≤T

Ps1

Pt1

1 − γ

1 + γ
...
Psn

Ptn

1 − γ

1 + γ
− 1.

Let Mn be the set of all partitions

π = {0 ≤ t1 < s1 < ... < tn < sn ≤ T } .

To see that exp
(

σUTV
c/σ
µ/σ [0, T ]

)

− 1 with c = ln 1+γ
1−γ is the least upper bound

for maximal possible rate of return let us substitute

sup
n

sup
Mn

n
∏

i=1

{

Psi

Pti

1 − γ

1 + γ

}

= sup
n

sup
Mn

n
∏

i=1

{

exp (µsi + σBsi)

exp (µti + σBti)
e−c

}

= sup
n

sup
Mn

exp

(

σ
n
∑

i=1

{(µ

σ
si + Bsi

)

−
(µ

σ
ti + Bti

)

−
c

σ

}

)

= exp

(

σ sup
n

sup
Mn

n
∑

i=1

{(µ

σ
si + Bsi

)

−
(µ

σ
ti + Bti

)

−
c

σ

}

)

= exp
(

σUTV
c/σ
µ/σ [0, T ]

)

.

This gives the claimed bound.
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1. Introduction

Let (Wt, t ≥ 0) be a Brownian motion with drift, Wt = Bt + µt, where
(Bt, t ≥ 0) is a standard Brownian motion.

The well known result of Paul Lévy (cf. Lévy [1940]) states that for any
0 ≤ a < b and any p ≤ 2 the p-variation of the process Wt on the interval
[a, b] is almost surely infinite:

sup
n

sup
a≤t1<t2<...<tn≤b

n−1
∑

i=1

∣

∣Wti+1
−Wti

∣

∣

p
= +∞

and if a ≤ t1,k < t2,k < . . . < tnk,k ≤ b is a descending sequence of partitions
of the interval [a, b] such that limk→∞ max1≤i≤nk−1(ti+1,k − ti,k) = 0, then

lim
k→∞

nk−1
∑

i=1

∣

∣Wti+1,k
−Wti,k

∣

∣

2
= b− a a.s. (1)

The further results of this type state that if nk → ∞ and max1≤i≤nk−1(ti+1,k−
ti,k) = o(1/ ln(nk)) then equality (1) also holds (Dudley [1973]), but if it is
not true, then (1) may not be true as well (de la Vega [1974]).

In 1972 S. J. Taylor proved (Taylor [1972]) that the function ψ(x) =
x2/ ln max {ln(1/x), e} is a function with the smallest order around 0 and
such that

sup
n

sup
a≤t1<t2<...<tn≤b

n−1
∑

i=1

ψ
(∣

∣Wti+1
−Wti

∣

∣

)

< +∞ a.s.

In the paper  Lochowski [2008] we started to investigate another type of
variation of Brownian paths, which neglects small jumps (smaller than some
c > 0) and defined truncated variation of Wt at the level c > 0 on the interval
[a, b] as

TV c
µ [a, b] := sup

n
sup

a≤t1<t2<...<tn≤b

n−1
∑

i=1

φc

(∣

∣Wti+1
−Wti

∣

∣

)

,
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where φc(x) = max {x− c, 0} . We will prove that the truncated variation is
not only finite almost surely, but has finite moment-generating function for
any complex number.

Remark 1. A. N. Chuprunov pointed to the author that it would be also
interesting to have estimates of quadratic truncated variation, which one may
define as

QTV c
µ [a, b] := sup

n
sup

a≤t1<···<tn≤b

n−1
∑

i=1

φc2

(

∣

∣Wti+1
−Wti

∣

∣

2
)

.

Remark 2. Similar concept of truncation (or shrinking) of random vari-
ables on Hilbert spaces investigated Z. Jurek in series of his papers begin-
ning with Jurek [1975], Jurek [1985], which now evolved into the theory of s-
selfdecomposable distributions (see e.g. Iksanov, Jurek and Schreiber [2004]).

Let us define two quantities closely related to truncated variation - upward
truncated variation of Wt on the interval [a, b]

UTV c
µ [a, b] := sup

n
sup

a≤t1<s1<t2<s2<...<tn<sn≤b

n
∑

i=1

φc (Wsi −Wti)

and, analogously, downward truncated variation

DTV c
µ [a, b] := sup

n
sup

a≤t1<s1<t2<s2<...<tn<sn≤b

n
∑

i=1

φc (Wti −Wsi) .

The defined quantities are related in the following way

max
{

UTV c
µ [a, b] , DTV c

µ [a, b]
}

≤ TV c
µ [a, b]

≤ UTV c
µ [a, b] +DTV c

µ [a, b] . (2)

It is easy to see that the three above defined quantities have the following
properties, which we state only for the truncated variation

1. Shift invariance property in distributions: for any stopping time ∆
relative to the natural filtration of (Wt, t ≥ 0)

L
(

TV c
µ [a, b]

)

= L
(

TV c
µ [a+ ∆, b+ ∆]

)

.

3



2. Superadditivity property: for any numbers a ≤ a1 < a2 < · · · < an ≤ b

TV c
µ [a, b] ≥

n−1
∑

i=1

TV c
µ [ai, ai+1] .

Upward truncated variation has also some interpretation in financial math-
ematics. We will prove that expUTV c

µ [a, b] − 1 is the least upper bound for
the maximum possible rate of return from any trading a single asset on time
interval [a, b] in the presence of flat commission (proportional to the value
of the transaction) when asset’s prices follow the geometric motion process
exp (Wt) .

Due to this fact and (2) we will be interested in calculating the moment-
generating function of the variables UTV c

µ [a, b] and DTV c
µ [a, b] .

Since the distribution of DTV c
µ [a, b] is the same as the distribution of

UTV c
−µ [a, b] , we will deal with the moment-generating function of upward

truncated variation only.
More precisely, we will find the Laplace transform with respect to time pa-

rameter T of the ... moment-generating function of the variable UTV c
µ [0, T ] .

Let us explain that here we use term ”Laplace transform” in a broad sense.
For a measurable (with respect to the Lebesgue measure dt) complex func-
tion f, defined on a positive half-line, by the Laplace transform of f we will
mean the value of the integral

∫∞

0
eνtf(t)dt for any complex ν, for which

this integral exists. Similarly, by the moment-generating function of a com-
plex random variable X we will mean the expected value E exp(λX) for any
complex λ, for which this value is well defined.

As an application of the obtained formula we will give an exact formula
for expected value of upward and downward truncated variations. We give
also exact (up to universal constants) estimates of the expected values of the
mentioned quantities.

The obtained formula may be also used in order to obtain exact formulas
for higher moments.

Let us comment on the organization of the paper. In the next section
we introduce some notation and prove the existence of moment-generating
functions of truncated variation, upward truncated variation and downward
truncated variation for any complex argument. In the third section we cal-
culate formula for the Laplace transform with respect to time parameter
of the moment-generating function of upward truncated variation. In the

4



fourth section we give examples of applications of the derived formula. In
the last section we give possible interpretation of upward truncated variation
in financial mathematics.

2. Existence of moment-generating functions for any complex ar-

gument

Let us start with some definitions and notation. The drawdown and
drawup processes of Wt are defined respectively as

DDs = sup
0≤t≤s

Wt −Ws,

DUs = Ws − inf
0≤t≤s

Wt.

The times of drawdown of c units and drawup of c units are defined respec-
tively as

TD (c) = inf {s ≥ 0|DDs = c} ,
TU (c) = inf {s ≥ 0|DUs = c} .

Further let T sup
D (c) be the last instant when the maximum of Wt on the

interval [0, TD(c)] is attained and let T inf
D (c) ≤ T sup

D (c) be such that WT inf
D

(c) =
inf0≤s≤T sup

D
(c)Ws.

Let us fix α > 0. We will prove the existence of moment-generating func-
tion of truncated variation, upward truncated variation and downward trun-
cated variation for argument α. Since the truncated variation and two other
variables are non-negative, this will prove the existence of moment-generating
function of those variables for any complex argument.

Proof. Let δ > 0 be such a small number that

1 − E exp

(

α sup
0≤t≤T

Wt + αc

)

P (TD(c) < δ) > 0.

By definition of TD(c) and T inf
D (c) we have WT inf

D
(c) > −c and hence,

WT sup

D
(c) − WT inf

D
(c) − c ≤ WT sup

D
(c). Let us fix M > 0. By Lemma 1 and

Lemma 2 in  Lochowski [2008], by independence ofWt−WTD(c), t ≥ TD(c), and

5



TD(c) (strong Markov property of Brownian motion) and by shift invariance
property of truncated variation for stopping time TD(c) we have

E exp
(

αTV c
µ [0, T ] ∧M

)

≤ E exp
(

αWT sup

D
(c) + αc+ αTV c

µ [TD(c), T ] ∧M
)

≤ E exp
(

αWT sup

D
(c) + αc

)

E exp
[

αTV c
µ [TD(c), T ] ∧M ;TD(c) < δ

]

+ E exp
(

αWT sup

D
(c) + αc

)

E exp
[

αTV c
µ [TD(c), T ] ∧M ;TD(c) ≥ δ

]

≤ E exp
(

αWT sup

D
(c) + αc

)

E exp
[

αTV c
µ [TD(c), T + TD(c)] ∧M ;TD(c) < δ

]

+E exp
(

αWT sup

D
(c) + αc

)

E exp
[

αTV c
µ [TD(c), T + TD(c) − δ] ∧M ;TD(c) ≥ δ

]

≤ E exp

(

α sup
0≤t≤T

Wt + αc

)

E exp
(

αTV c
µ [0, T ] ∧M

)

P (TD(c) < δ)

+ E exp

(

α sup
0≤t≤T

Wt + αc

)

E exp
(

αTV c
µ [0, T − δ] ∧M

)

P (TD(c) ≥ δ) .

From the above we have

E exp
(

αTV c
µ [0, T ] ∧M

)

≤ E exp
(

α sup0≤t≤T Wt + αc
)

P (TD(c) ≥ δ)

1 − E exp
(

α sup0≤t≤T Wt + αc
)

P (TD(c) < δ)
E exp

(

αTV c
µ [0, T − δ] ∧M

)

.

Similarly

E exp
(

αTV c
µ [0, T − δ] ∧M

)

≤ E exp
(

α sup0≤t≤T Wt + αc
)

P (TD(c) ≥ δ)

1 − E exp
(

α sup0≤t≤T Wt + αc
)

P (TD(c) < δ)
E exp

(

αTV c
µ [0, T − 2δ] ∧M

)

.

Iterating and putting together the above inequalities we finally obtain

E exp
(

αTV c
µ [0, T ] ∧M

)

≤
(

E exp
(

α sup0≤t≤T Wt + αc
)

P (TD(c) ≥ δ)

1 −E exp
(

α sup0≤t≤T Wt + αc
)

P (TD(c) < δ)

)⌈T/δ⌉

.

Letting M → ∞ we get E exp
(

αTV c
µ [0, T ]

)

< +∞.
By (2) we obtain the finiteness of moment-generating functions of UTV c

µ [0, T ]
and DTV c

µ [0, T ] as well.
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3. Calculation of the Laplace transform of the moment-generating

function

Due to typographical reasons let us introduce notation max {x, 0} =:
(x)+.

The main difference between truncated variation and upward as well as
downward truncated variation is such that for the latter quantities we have
the following analog of Lemma 2 from  Lochowski [2008], where instead of
inequality we have equality.

Lemma 3. We have the following identities

UTV c
µ [0, T ] = sup

0≤t<s≤TD(c)∧T

(Ws −Wt − c)+ + UTV c
µ [TD(c) ∧ T, T ] . (3)

and

DTV c
µ [0, T ] = sup

0≤t<s≤TU (c)∧T

(Wt −Ws − c)+ +DTV c
µ [TU(c) ∧ T, T ] . (4)

Proof. We will only prove the first formula (3), since the proof of the second
one is identical.

Let 0 ≤ t1 < s1 < t2 < s2... < tn < sn ≤ T be numbers from the interval
[0, T ] .

We will prove that
n
∑

i=1

(Wsi −Wti − c)+ ≤ sup
0≤t<s≤TD(c)∧T

(Ws −Wt − c)++UTV c
µ [TD(c) ∧ T, T ] .

(5)
Let n0 be the greatest number such that sn0

< TD(c) and let us assume that
n0 < n and tn0+1 < TD(c).

Let us consider several cases.

• Wtn0+1
≥WTD(c). In this case
(

Wsn0+1
−Wtn0+1

− c
)

+
≤
(

Wsn0+1
−WTD(c) − c

)

+
.

and
n
∑

i=1

(Wsi −Wti − c)+ ≤
n0
∑

i=1

(Wsi −Wti − c)+ +
(

Wsn0+1
−WTD(c) − c

)

+

+

n
∑

i=n0+2

(Wsi −Wti − c)+ . (6)

7



• Wtn0+1
< WTD(c) and Wsn0+1

≤ WTD(c)sup . In this case tn0+1 < T sup
D (c)

(since for T sup
D (c) < t < TD(c), Wt > WTD(c)) so

(

Wsn0+1
−Wtn0+1

− c
)

+
≤
(

WT sup
D

(c) −Wtn0+1
− c
)

+

and

n
∑

i=1

(Wsi −Wti − c)+ ≤
n0
∑

i=1

(Wsi −Wti − c)+ +
(

WT sup

D
(c) −Wtn0+1

− c
)

+

+

n
∑

i=n0+2

(Wsi −Wti − c)+ . (7)

• Wtn0+1
< WTD(c) and Wsn0+1

> WT sup

D
(c) = WTD(c) + c. In this case

(

Wsn0+1
−Wtn0+1

− c
)

+
= Wsn0+1

−Wtn0+1
− c

= WT sup

D
(c) −Wtn0+1

− c+Wsn0+1
−WT sup

D
(c)

= WT sup

D
(c) −Wtn0+1

− c+Wsn0+1
−WTD(c) − c

=
(

WT sup
D

(c) −Wtn0+1
− c
)

+
+
(

Wsn0+1
−WTD(c) − c

)

+

and

n
∑

i=1

(Wsi −Wti − c)+ ≤
n0
∑

i=1

(Wsi −Wti − c)+ +
(

WT sup

D
(c) −Wtn0+1

− c
)

+

+
(

Wsn0+1
−WTD(c) − c

)

+
+

n
∑

i=n0+2

(Wsi −Wti − c)+ .

(8)

Thus for tn0+1 < TD(c) inequality (6), (7) or (8) holds and we may assume,
adding in the case tn0+1 < TD(c) new terms in the partition and renaming
the old ones, that

0 ≤ t1 < s1 < ... < tn0
< sn0

≤ TD(c),

TD(c) ≤ tn0+1 < sn0+1 < ... < tn < sn ≤ T.

In order to prove (5) without loss of generality we may assume that
for any 1 ≤ i ≤ n0, (Wsi −Wti − c)+ > 0 (otherwise we may omit the
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summand (Wsi −Wti − c)+). From definition of TD(c) we have that for any
1 ≤ i ≤ n0 − 1, Wsi −Wti+1

< c, so

(Wsi −Wti − c)+ +
(

Wsi+1
−Wti+1

− c
)

+

= Wsi −Wti − c +Wsi+1
−Wti+1

− c

= Wsi+1
−Wti − c+

(

Wsi −Wti+1
− c
)

< Wsi+1
−Wti − c.

Iterating the above inequality, we obtain
n0
∑

i=1

(Wsi −Wti − c)+ ≤Wsn0
−Wt1 − c ≤ sup

0≤t<s≤TD(c)∧T

(Ws −Wt − c)+ .

This, together with the obvious inequality
n
∑

i=n0+1

(Wsi −Wti − c)+ ≤ UTV c
µ [TD(c) ∧ T, T ]

proves (5). Taking supremum over all partitions 0 ≤ t1 < s1 < t2 < s2 <
... < tn < sn ≤ T we finally get

UTV c
µ [0, T ] ≤ sup

0≤t<s≤TD(c)∧T

(Ws −Wt − c)+ + UTV c
µ [TD(c) ∧ T, T ] .

Since the opposite inequality is obvious, we finally get (3).

Now we are ready to state

Lemma 4. Let λ be an arbitrary complex number and let

L(λ, T ) := E exp(λUTV c
µ [0, T ]),

T > 0, be a family of moment-generating functions of variables UTV c
µ [0, T ] .

This family satisfies the following integral equation

L(λ, T ) =

∫ T

0

∫ ∞

c

eλ(y−c)L(λ, T − t)P

(

TD (c) ∈ dt, sup
0≤s≤TD(c)

DUs ∈ dy

)

+

∫ T

0

L(λ, T − t)P

(

TD (c) ∈ dt, sup
0≤s≤TD(c)

DUs < c

)

+

∫ ∞

c

eλ(y−c)P

(

TD (c) > T, sup
0≤s≤T

DUs ∈ dy

)

+ P

(

TD (c) > T, sup
0≤s≤T

DUs < c

)

. (9)
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Proof. By Lemma 3 we have that for any T > 0

UTV c
µ [0, T ] = sup

0≤s≤TD(c)∧T

(DUs − c)+ + UTV c
µ [TD (c) ∧ T, T ] .

From dependence ofWt, t ∈ [0, TD (c) ∧ T ] andWt−WTD(c)∧T , t ∈ [TD (c) ∧ T, T ] ,
only through TD (c) , and by equality of distribution of UTV c

µ [TD (c) ∧ T, T ]
and UTV c

µ [0, T − TD (c) ∧ T ] we have

E exp
(

λUTV c
µ [0, T ]

)

= E exp

(

λ sup
0≤s≤TD(c)∧T

(DUs − c)+ + λUTV c
µ [TD (c) ∧ T, T ]

)

=

∫ ∞

0

E exp

(

λ sup
0≤s≤t∧T

(DUs − c)+

)

E exp
(

λUTV c
µ [0, T − t ∧ T ]

)

P (TD (c) ∈ dt)

=

∫ T

0

∫ ∞

c

eλ(y−c)E exp
(

λUTV c
µ [0, T − t]

)

P

(

TD (c) ∈ dt, sup
0≤s≤TD(c)

DUs ∈ dy

)

+

∫ T

0

E exp
(

λUTV c
µ [0, T − t]

)

P

(

TD (c) ∈ dt, sup
0≤s≤TD(c)

DUs < c

)

+

∫ ∞

c

eλ(y−c)P

(

TD (c) > T, sup
0≤s≤T

DUs ∈ dy

)

+ P

(

TD (c) > T, sup
0≤s≤T

DUs < c

)

.

In the third line of the calculations above we have used iterated expecta-
tion, strong Markov property and the shift invariance of upward truncated
variation for stopping time TD(c).

Hadjiliadis and Zhang in their recent paper (Hadjiliadis and Zhang [2009])
calculated for a, b > 0 the densities

p (t; a, b) dt = P (TD (a) ∈ dt, TU (b) > t)

and
q (t; a, b) dt = P (TU (a) ∈ dt, TD (b) > t) .

Using these densities we are able to write equation (9) in more elegant form.
Indeed, we have

10



Lemma 5. The family L(λ, T ) satisfies the following integral equation

L (λ, T ) =

∫ T

0

L (λ, T − t)

{

p (t; c, c) +

∫ ∞

c

eλ(y−c)∂p (t; c, y)

∂y
dy

}

dt

−
∫ T

0

P (TD (c) > T − t)

{

q (t; c, c) +

∫ ∞

c

eλ(y−c)∂q (t; y, c)

∂y
dy

}

dt

+ P (TD (c) > T ) . (10)

Proof. We have

P

(

TD (c) ∈ dt, sup
0≤s≤TD(c)

DUs ∈ dy

)

= P (TD (c) ∈ dt, TU (y + dy) > t) −P (TD (c) ∈ dt, TU (y) > t)

=
∂p (t; c, y)

∂y
dydt (11)

and

P

(

TD (c) ∈ dt, sup
0≤s≤TD(c)

DUs < c

)

= P (TD (c) ∈ dt, TU (c) > t)

= p (t; c, c) dt. (12)

In order to express P
(

TD (c) > T, sup0≤s≤T DUs ∈ dy
)

with p(t; a, b) and
q(t; a, b) let us notice that for y > 0

P

(

TD (c) > T, sup
0≤s≤T

DUs ≥ y

)

=

∫ T

0

P (TU (y) ∈ dt, TD (c) > T )

=

∫ T

0

P (TU (y) ∈ dt, TD (c) > t)P (TD (c) > T − t)

=

∫ T

0

q (t; y, c)P (TD (c) > T − t) dt (13)

The equality

P (TU (y) ∈ dt, TD (c) > T )

= P (TU (y) ∈ dt, TD (c) > t)P (TD (c) > T − t)
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holds since the event {TU (y) ∈ dt} also means that the process Wt reaches
a new maximum at the moment t. Now for y > 0 we calculate

P

(

TD (c) > T, sup
0≤s≤T

DUs ∈ dy

)

= P

(

TD (c) > T, sup
0≤s≤T

DUs ≥ y

)

−P

(

TD (c) > T, sup
0≤s≤T

DUs ≥ y + dy

)

=

∫ T

0

{q (t; y, c) − q (t; y + dy, c)}P (TD (c) > T − t) dt

= −
∫ T

0

∂q (t; y, c)

∂y
P (TD (c) > T − t) dtdy. (14)

Using similar reasoning, by (13) we also have

P

(

TD (c) > T, sup
0≤s≤T

DUs < c

)

= P (TD (c) > T, TU (c) > T )

= P (TD (c) > T ) −
∫ T

0

q (t; c, c)P (TD (c) > T − t) dt. (15)

Thus, from (9), (11), (12), (14) and (15) we obtain the integral equation (10)
satisfied by the family of moment-generating functions of upward truncated
variation:

L (λ, T ) =

∫ T

0

∫ ∞

c

eλ(y−c)L (λ, T − t)
∂p (t; c, y)

∂y
dydt

+

∫ T

0

L (λ, T − t) p (t; c, c) dt

−
∫ ∞

c

eλ(y−c)

∫ T

0

∂q (t; y, c)

∂y
P (TD (c) > T − t) dtdy

+ P (TD (c) > T ) −
∫ T

0

q (t; c, c)P (TD (c) > T − t) dt

=

∫ T

0

L (λ, T − t)

{

p (t; c, c) +

∫ ∞

c

eλ(y−c)∂p (t; c, y)

∂y
dy

}

dt

−
∫ T

0

P (TD (c) > T − t)

{

q (t; c, c) +

∫ ∞

c

eλ(y−c)∂q (t; y, c)

∂y
dy

}

dt

+ P (TD (c) > T ) .
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In order to shorten notation let introduce new functions of parameters t
and λ

p (λ, t) := p (t; c, c) +

∫ ∞

0

eλy
∂p (t; c, y + c)

∂y
dy,

q (λ, t) := q (t; c, c) +

∫ ∞

0

eλy
∂q (t; y + c, c)

∂y
dy

and for such pairs of complex numbers (λ, ν) that the integral
∫∞

0
eνtL (λ, t) dt

exists, let us define

M (λ, ν) :=

∫ ∞

0

eνtL (λ, t) dt,

T (ν) :=

∫ ∞

0

eνtP (TD (c) > t) dt.

By (10) we have

M (λ, ν) =

∫ ∞

0

eντL (λ, τ) dτ =

∫ ∞

0

eντ
∫ τ

0

L (λ, τ − t) p (λ, t) dtdτ

−
∫ ∞

0

eντ
∫ τ

0

P (TD (c) > τ − t) q (λ, t) dtdτ + T (ν)

=

∫ ∞

0

eνtp (λ, t)

∫ ∞

t

eν(τ−t)L (λ, τ − t) dτdt

−
∫ ∞

0

eνtq (λ, t)

∫ ∞

t

eν(τ−t)P (TD (c) > τ − t) dτdt + T (ν)

= M (λ, ν)

∫ ∞

0

eνtp (λ, t) dt− T (ν)

∫ ∞

0

eνtq (λ, t) dt+ T (ν) .

Thus we obtained a formula for the Laplace transform with respect to T of
the moment-generating function of UTV c

µ [0, T ] :

M (λ, ν) = T (ν)
1 −

∫∞

0
eνtq (λ, t) dt

1 −
∫∞

0
eνtp (λ, t) dt

. (16)

Using results of Hadjiliadis and Zhang [2009] and Taylor [1975] we are
able to compute M (λ, ν) more directly. We have
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Theorem 6. For ν with negative real part and any complex λ the following
formula holds

M (λ, ν) = −1

ν
− λeµc

ν2
µ sinh (cUµ (ν)) − Uµ (ν) cosh (cUµ (ν))

λUµ(ν)
ν

+ sinh (2cUµ (ν)) − 2 λ+µ
Uµ(ν)

sinh2 (cUµ (ν))
, (17)

where Uµ (ν) =
√

µ2 − 2ν.

Proof. Integrating by parts, we obtain

T (ν) =

∫ ∞

0

eνtP (TD (c) > t) dt

=
eνt

ν
P (TD (c) > t) |t=∞

t=0 −
∫ ∞

0

eνt

ν

d

dt
P (TD (c) > t) dt

= −1

ν
+

1

ν
EeνTD(c). (18)

Similarly, we have

p (λ, t) = p (t; c, c) +

∫ ∞

0

eλy
∂p (t; c, y + c)

∂y
dy

= −λ
∫ ∞

0

eλyp (t; c, y + c) dy,

hence
∫ ∞

0

eνtp (λ, t) dt = −λ
∫ ∞

0

∫ ∞

0

eλyp (t; c, y + c) dydt

= −λ
∫ ∞

0

eλy
∫ ∞

0

eνtP (TD (c) ∈ dt, TU (y + c) > t) dy

= −λ
∫ ∞

0

eλyEeνTD(c)I{TU (y+c)>TD(c)}dy. (19)

Using notation from Hadjiliadis and Zhang [2009], page 11, we have

EeνTD(c)I{TU (y+c)>TD(c)} =
(

1 − L−W
0 (−ν; c) eT−µ,1(−ν,c)y

)

EeνTD(c)

thus
∫ ∞

0

eλyEeνTD(c)I{TU (y+c)>TD(c)}dy

=

(∫ ∞

0

eλy
[

1 − L−W
0 (−ν, c) exp (T−µ,1 (−ν, a) y)

]

dy

)

EeνTD(c)

=

(

L−W
0 (−ν, c)

T−µ,1 (−ν, c) + λ
− 1

λ

)

EeνTD(c)
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and finally from (19) we obtain

∫ ∞

0

eνtp (λ, t) dt =

(

1 − λ
L−W
0 (−ν, c)

T−µ,1 (−ν, c) + λ

)

EeνTD(c). (20)

Similarly

q (λ, t) = q (t; c, c) +

∫ ∞

0

eλy
∂q (t; y + c, c)

∂y
dy

= −λ
∫ ∞

0

eλyq (t; y + c, c) dy,

hence
∫ ∞

0

eνtq (λ, t) dt = −λ
∫ ∞

0

eνt
∫ ∞

0

eλyq (t; y + c, c) dydt

= −λ
∫ ∞

0

eλyEeνTU (y+c)I{TU (y+c)<TD(c)}dy.

Again, by results of Hadjiliadis and Zhang [2009] and using symmetry of
standard Brownian motion, we have

EeνTU (y+c)I{TU (y+c)<TD(c)} = L−W
0 (−ν; c) eT−µ,1(−ν;c)y,

and finally we get
∫ ∞

0

eνtq (λ, t) dt = −λ
∫ ∞

0

eλyEeνTU (y+c)I{TU (y+c)<TD(c)}dy

= −λ
∫ ∞

0

eλyL−W
0 (−ν, c) eT−µ,1(−ν,c)ydy

= λ
L−W
0 (−ν, c)

T−µ,1 (−ν, c) + λ
. (21)

Finally from (16), (18), (20) and (21) we obtain

M (λ, ν) =

(

−1

ν
+

1

ν
EeνTD(c)

) 1 − λ
L−W
0 (−ν,c)

T−µ,1(−ν,c)+λ

1 −
(

1 − λ
L−W
0 (−ν,c)

T−µ,1(−ν,c)+λ

)

EeνTD(c)

= −1

ν

(

1 − λ
L−W
0 (−ν,c)

T−µ,1(−ν,c)+λ

)

(

1 − EeνTD(c)
)

1 −
(

1 − λ
L−W
0 (−ν,c)

T−µ,1(−ν,c)+λ

)

EeνTD(c)
. (22)
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It is possible to express the obtained formula for M (λ, ν) with the ele-
mentary functions. We have (cf. Hadjiliadis and Zhang [2009] and Taylor
[1975]):

L−W
0 (−ν, c) =

Uµ (ν)

−2ν

{

eµc (Uµ (ν) coth (cUµ (ν)) − µ)

sinh (cUµ (ν))
− Uµ (ν)

sinh2 (cUµ (ν))

}

,

EeνTD(c) =
Uµ (ν) e−µc

Uµ cosh (cUµ (ν)) − µ sinh (cUµ (ν))

and
T−µ,1 (−ν, c) = µ− Uµ (ν) coth (cUµ (ν)) ,

where
Uµ (ν) =

√

µ2 − 2ν.

Substituting the above formulas in (22) we obtain (17).

4. Examples of applications

The direct application of the derived formula may be calculation of the
moment-generating function L (λ, T ) (with the use of the inverse Laplace
transform formula). However, we will start with simpler formulae.

4.1. Exact formula for the expected value of UTV c
µ [0, T ].

Using formula

EUTV c
µ [0, T ] = lim

λ→0

1

λ
(L (λ, T ) − 1)

we obtain

lim
λ→0

1

λ
(M (ν, λ) −M (ν, 0))

= lim
λ→0

1

λ

(
∫ ∞

0

eνtL (λ, t) dt−
∫ ∞

0

eνtL (0, t) dt

)

=

∫ ∞

0

eνt lim
λ→0

1

λ
[L (λ, t) − 1] dt

=

∫ ∞

0

eνtEUTV c
µ [0, t] dt. (23)
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On the other hand, from (22) we have

lim
λ→0

1

λ
(M (ν, λ) −M (ν, 0))

= lim
λ→0

1

λ



−1

ν

(

1 − λ
L−W
0 (−ν,c)

T−µ,1(−ν,c)+λ

)

(

1 − EeνTD(c)
)

1 −
(

1 − λ
L−W
0 (−ν,c)

T−µ,1(−ν,c)+λ

)

EeνTD(c)
+

1

ν





=
L−W
0 (−ν, c)

νT−µ,1 (−ν, c) (1 −EeνTD(c))
, (24)

which, by (23) and after substituting in (24) the formulas for L−W
0 (−ν, c) ,

EeνTD(c) and T−µ,1 (−ν, c) yields

∫ ∞

0

eνtEUTV c
µ [0, t] dt =

eµc
√

µ2 − 2ν

2ν2 sinh
(

c
√

µ2 − 2ν
) . (25)

Inverting the formula (25) we are able to obtain exact formula for the
expected value of EUTV c

µ [0, T ] . Let L−1
s (g) denote inverse of the Laplace

transform of the function g(s) =
∫∞

0
e−s·tf (t) dt, i.e. the function f (t) . We

have
L−1

s

(

s−2
)

= t (26)

and, by the last formula on page 641 of Borodin, Salminen [2002]

L−1
s

( √
2s

sinh
(

c
√

2s
)

)

=

√
2√

πt5/2

∞
∑

k=0

(

(2k + 1)2 c2 − t
)

e−(2k+1)2c2/(2t).

Hence, by properties of Laplace transform

L−1
s





√

2s+ µ2

sinh
(

c
√

2s+ µ2
)





=

√
2√

πt5/2
e−µ2t

∞
∑

k=0

(

(2k + 1)2 c2 − t
)

e−(2k+1)2c2/(2t). (27)

Finally, by (26), (27) and Borel convolution theorem for the Laplace trans-
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form, we obtain

EUTV c
µ [0, T ]

= L−1
s





eµc
√

2s+ µ2

2s2 sinh
(

c
√

2s+ µ2
)





=
eµc√
2π

∫ T

0

(T − t)
e−µ2t

t5/2

∞
∑

k=0

(

(2k + 1)2 c2 − t
)

e−(2k+1)2c2/(2t)dt

=
eµc√
2π

∞
∑

k=0

∫ T

0

(T − t)
(2k + 1)2 c2 − t

t5/2
e−µ2t−(2k+1)2c2/(2t)dt. (28)

4.2. Estimation of the expected value of UTV c
µ [0, T ] .

In  Lochowski [2008] we obtained a formula for function F (µ, c, T ) , such
that

ETV c
µ [0, T ] ∼ F (|µ| , c, T ) , (29)

where relation ”∼” means that the ratio ETV c
µ [0, T ] /F (|µ| , c, T ) is sepa-

rated from 0 and infinity by universal constants, which do not depend on
µ, c, T .

On the other hand, we see that the exact formula (28) for EUTV c
µ [0, T ]

may be stated in the form

EUTV c
µ [0, T ] = eµcG (|µ| , c, T ) , (30)

where

G (|µ| , c, T ) =
1√
2π

∞
∑

k=0

∫ T

0

(T − t)
(2k + 1)2 c2 − t

t5/2
e−µ2t−(2k+1)2c2/(2t)dt

does not depend on the sign of µ. Using (2), (30) and the fact thatDTV c
µ [0, T ]

has the same distribution as UTV c
−µ [0, T ] we see that

ETV c
µ [0, T ] ∼ EUTV c

µ [0, T ] + EDTV c
µ [0, T ]

= EUTV c
µ [0, T ] + EUTV c

−µ [0, T ]

∼ e|µ|cG (|µ| , c, T ) . (31)

Comparing (29) and (31) we see that

G (|µ| , c, T ) ∼ e−|µ|cF (|µ| , c, T )
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and finally we get estimates up to universal constants for EUTV c
µ [0, T ] :

EUTV c
µ [0, T ] ∼ eµc−|µ|cF (|µ| , c, T )

= eµc−|µ|c











T/c+ |µ|T if
√
T ≥ χ(c, µ);

2
√
T + |µ|T − c if

√
T ∈ (c− |µ|T, χ(c, µ)) ;

T 3/2 exp(−(c−|µ|T )2/(2T ))

(c−|µ|T )2
if
√
T ≤ c− |µ|T ,

where χ (c, µ) =
√

e2µ|c|−2µ|c|−1
2µ2 = c

√

1 + 2
3
|µ| c + ... ≥ c.

4.3. Laplace transform of the second moment of UTV c
µ [0, T ]

Similarly as (28) we may obtain a formula for the Laplace transform of
the second moment of UTV c

µ [0, T ] :

∫ ∞

0

eνtE
(

UTV c
µ [0, t]

)2
dt =

[

∂2

∂λ2
M (ν, λ)

]

λ=0

= −2L−W
0 (−ν, c)

(

1 − EeνTD(c) + L−W
0 (−ν, c)EeνTD(c)

)

ν (T−µ,1 (−ν, c) (1 − EeνTD(c)))
2 . (32)

After substituting in formula (32) the formulas for L−W
0 (−ν, c) ,EeνTD(c)

and T−µ,1 (−ν, c) , it simplifies to

∫ ∞

0

eνtE
(

UTV c
µ [0, t]

)2
dt

= −
eµcUµ (ν)

[

U2
µ (ν) + ν (1 − cosh (2cUµ (ν)))

]

2ν3 [Uµ (ν) cosh (cUµ (ν)) − µ sinh (cUµ (ν))] sinh2 (cUµ (ν))
.

Remark 7. Using formulas from Borodin, Salminen [2002] (page 642) it is

possible to invert the above formula and obtain expression for E
(

UTV c
µ [0, t]

)2

in terms of parabolic cylinder functions.

5. Interpretation of upward truncated variation in financial math-

ematics

As it was mentioned earlier, upward truncated variation appears naturally
in the expression for the least upper bound for the rate of return from any
trading of a financial asset, dynamics of which follows geometric Brownian
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motion, in the presence of flat commission. Similar result was proved in
 Lochowski [2008] for truncated variation, however, truncated variation is not
the least upper bound.

Indeed, similarly as in  Lochowski [2008], let us assume that the dynamics
of the prices Pt of some financial asset (e.g. stock) is the following Pt =
exp (µt+ σBt). We are interested in the maximal possible profit coming
from trading this single instrument during time interval [0, T ] . We buy the
instrument at the moments 0 ≤ t1 < ... < tn < T and sell it at the moments
s1 < ... < sn ≤ T, such that t1 < s1 < t2 < s2 < ... < tn < sn, in
order to obtain the maximal possible profit. Furthermore we assume that for
every transaction we have to pay a flat commission and γ is the ratio of the
transaction value paid for the commission.

The maximal possible rate of return from our strategy reads as (cf.
 Lochowski [2008])

sup
n

sup
0≤t1<s1<...<tn<sn≤T

Ps1

Pt1

1 − γ

1 + γ
...
Psn

Ptn

1 − γ

1 + γ
− 1.

Let Mn be the set of all partitions

π = {0 ≤ t1 < s1 < ... < tn < sn ≤ T} .

To see that exp
(

σUTV
c/σ
µ/σ [0, T ]

)

−1 with c = ln 1+γ
1−γ

is the least upper bound

for maximal possible rate of return let us substitute

sup
n

sup
Mn

n
∏

i=1

{

Psi

Pti

1 − γ

1 + γ

}

= sup
n

sup
Mn

n
∏

i=1

{

exp (µsi + σBsi)

exp (µti + σBti)
e−c

}

= sup
n

sup
Mn

exp

(

σ

n
∑

i=1

{(µ

σ
si +Bsi

)

−
(µ

σ
ti +Bti

)

− c

σ

}

)

= exp

(

σ sup
n

sup
Mn

n
∑

i=1

{(µ

σ
si +Bsi

)

−
(µ

σ
ti +Bti

)

− c

σ

}

)

= exp
(

σUTV
c/σ
µ/σ [0, T ]

)

.

This gives the claimed bound.
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