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1 Introduction

This goal of this meeting is the search for exotic states of matter in compact as-
trophysical objects. Over the years many possible signatures for phase transitions
in compact stars have been suggested, for example unusual masses, radii or cooling
histories, or sudden changes in the spin frequency. In this contribution we will take a
very conservative approach and study the predictions of weak coupling QCD for the
equilibrium and transport properties of the densest phases of QCD. This includes the
color-flavor-locked (CFL) phase [1], and phases that arise from modifications of the
basic CFL pairing pattern due to the effects of the non-zero strange quark mass. A
flavor rotation of the CFL condensate leads to kaon condensation (CFL-K) [2], and a
spatial modulation of the CFL state leads to the meson supercurrent state (curCFL)
[3, 4].

We refer the reader to our recent review [5] for a detailed discussion of quark
matter phases at lower density. Some of these phases are stable in weak coupling,
and their properties are rigorously computable in perturbative QCD. This includes
crystalline color superconductivity [6, 7], and single flavor spin-one color supercon-
ductivity [8, 9]. Other phases require strong coupling, for example the 2SC phase
[10, 11], chiral density waves (and the quarkyonic phase) [12, 13, 14], or gapless color
superconductivity [15, 16].

The goal of our research program is to compute the properties of all these phases,
and to determine whether hybrid neutron/quark matter stars containing quark mat-
ter in the CFL phase or one of the lower density quark phases are consistent with
observation. Current data on the masses and radii of compact stars are consistent
with pure neutron stars as well as with hybrid quark matter stars [17, 18]. There are
some results that indicate that other observational properties also do not clearly dis-
tinguish neutron stars from hybrid quark stars. In that case evidence for the existence
of a high density phase in compact stars may have to come from careful studies of the
mass-radius relation of compact stars [19], or from the observation of gravitational
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waves from binary compact star mergers. Laboratory experiments involving heavy
ions have established meaningful constraints on the equation of state of dense matter
[20], and the next generation of these experiments may demonstrate the existence of
a first order transition at densities that are achieved in compact stars.

2 Matter at the highest densities

2.1 The CFL Phase

Calculations based on weak-coupling QCD indicate that the ground state of three
flavor baryonic matter at the highest densities is the color-flavor-locked (CFL) phase
[1, 21, 22]. The CFL phase is characterized by a pair condensate

〈ψa
i Cγ5ψ

b
j〉 = (δai δ

b
j − δaj δ

b
i )φ. (1)

This condensate leads to a gap in the excitation spectrum of all fermions and com-
pletely screens the gluonic interaction. Both the chiral SU(3)L × SU(3)R and color
SU(3) symmetry are broken, but a vector-like SU(3) flavor symmetry remains un-
broken.

The gap in the fermion spectrum can be computed in perturbative QCD. The nine
quarks species (three flavors and three colors) form an octet and a singlet under the
unbroken SU(3) flavor symmetry. The octet and singlet quarks have gaps ∆0 and
2∆0, respectively, where [23, 24, 25, 26]

∆0 ≃ 2−1/3512π4µ

(

2

3g2

)5/2

exp

(

− 3π2

√
2g

− π2 + 4

8

)

. (2)

Here, µ is the chemical potential and g is the strong coupling constant. At this order
in g we can compute the coupling by evaluating the one-loop running coupling at
the scale µ. At large µ the coupling constant is small and the gap is exponentially
small compared to the Fermi energy Ef = µ. For densities relevant to neutron stars
µ < 500 MeV and the coupling is not small. In this regime higher order correction to
equ. (2) are not small and the gap is quite uncertain. It is remarkable, however, that
both extrapolations of the weak coupling result to the regime of moderate coupling
[27] as well as model calculations based on Nambu-Jona Lasinio (NJL) or similar
interactions [28] give gaps in the range ∆0 ≃ (50 − 100) MeV at a density ρ ≃ 5ρ0,
where ρ0 is the nuclear matter saturation density.

Perturbation theory can also be used to compute the gluon screening mass. Screen-
ing arises from the Meissner effect, as it does in ordinary superconductors. We find
[29, 30]

m2 =
21− 8 log(2)

54

g2µ2

2π2
, (3)
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which shows that the gluon screening length is short compared to the coherence
length ξ ∼ ∆−1

0 . We conclude that color superconductivity is type I. We note that
electromagnetism is unbroken, and the photon is not screened. The physical photon
in the CFL phase is a mixture of the bare photon and the bare gluon, and interesting
effects occur at the interface of normal nuclear matter and the CFL phase [31].

2.2 Effective theory of the CFL phase

For excitation energies smaller than the gap the only relevant degrees of freedom are
the Goldstone modes associated with the breaking of SU(3)L×SU(3)R chiral symme-
try, the U(1)B phase symmetry associated with baryon number, and the approximate
U(1)A phase symmetry. The interaction of the low energy modes is described by an
effective field theory. The structure of the effective lagrangian is determined by the
symmetries of the CFL phase, and the coefficients that appear in the lagrangian can
be computed in perturbative QCD. We will see that, with one notable exception,
these coefficients agree with estimates based on naive dimensional analysis.

The effective lagrangian for the low energy modes has two important applications.
First, it determines the spectrum and the interactions of quasi-particles. Based on
this knowledge we can compute the specific heat and the transport properties of the
CFL phase. Second, the effective theory determines the response of the CFL phase
to non-zero quark masses and to external fields, such as lepton chemical potentials or
magnetic fields. The effective lagrangian therefore determines the phase structure at
non-asymptotic densities.

The Goldstone mode associated with superfluidity is related to the phase ϕ of the
order parameter

〈ψα
i Cγ5ψ

β
j 〉 = ǫαβAǫijBe

2iϕφB
A , (4)

where φB
A parametrizes the color-flavor orientation of the order parameter. The field

ϕ transforms as ϕ → ϕ + α under U(1)B transformation of the quark fields ψ →
exp(iα)ψ. At leading order in the weak coupling limit the effective lagrangian is
completely fixed by Lorentz invariance and U(1)B symmetry. One can show that [32]

L =
3

4π2

[

(∂0ϕ− µ)2 − (∇ϕ)2
]2

+ . . . , (5)

where . . . denotes terms that are higher order in g, or terms of the form ∂nϕm with
n > m. In the low energy limit we can expand the lagrangian in powers of ∂ϕ. We
also rescale the field as φ = (3µ/π)ϕ in order to make it canonically normalized. We
will refer to φ as the phonon field. The phonon lagrangian is

L =
1

2
(∂0φ)

2 − 1

2
v2(∂iφ)

2 − π

9µ2
∂0φ(∂µφ∂

µφ) +
π2

108µ4
(∂µφ∂

µφ)2 + . . . , (6)
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where v = 1/
√
3 is the speed of sound. We observe that three and four phonon

vertices are suppressed by powers of |∂φ|/µ2.
The effective lagrangian for the Goldstone modes associated with chiral symmetry

breaking has the same structure as the chiral lagrangian at T = µ = 0. The main
difference is that Lorentz invariance is broken and only rotational invariance is a good
symmetry. The effective lagrangian is given by [33]

Leff =
f 2
π

4
Tr
[

∇0Σ∇0Σ
† − v2π∂iΣ∂iΣ

†
]

+
[

BTr(MΣ†) + h.c.
]

+
[

A1Tr(MΣ†)Tr(MΣ†) + A2Tr(MΣ†MΣ†)

+A3Tr(MΣ†)Tr(M †Σ) + h.c.
]

+ . . . . (7)

Here Σ = exp(iφaλa/fπ) is the chiral field, fπ is the pion decay constant and M is
the mass matrix. The chiral field and the mass matrix transform as Σ → LΣR† and
M → LMR† under chiral transformations (L,R) ∈ SU(3)L × SU(3)R. In order to
determine the structure of the effective theory we treat M as a field, but in practice
we are interested in the case M = diag(mu, md, ms).

The coefficients fπ, vπ, B,Ai, . . . can be computed in weak coupling perturbation
theory. In the case of fπ and vπ this is most easily done my matching the screening
masses for flavored gauged fields. The coefficients B,Ai are related to the quark mass
dependence of the condensation energy in the CFL phase.

At leading order in αs the Goldstone boson decay constant and velocity are [29]

f 2
π =

21− 8 log(2)

18

(

p2F
2π2

)

, v2π =
1

3
. (8)

The coefficient B is related to instanton effects. We find [34]

B = c

[

3
√
2π

g
∆

(

µ2

2π2

)]2 (
8π2

g2

)6 Λ9
QCD

µ12
, (9)

which shows that B is strongly suppressed at large chemical potential. The Ai terms
receive perturbative contributions and are given by [29, 35]

A1 = −A2 =
3∆2

4π2
, A3 = 0. (10)

Finally, one can show that XL = MM †/(2pF ) and XR = M †M/(2pF ) act as effec-
tive chemical potentials for left and right-handed fermion. These effective chemical
potentials appear in the time derivative of the chiral field [2],

∇0Σ = ∂0Σ + i

(

MM †

2pF

)

Σ− iΣ

(

M †M

2pF

)

. (11)
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Figure 1: Phase structure of CFL matter as a function of the effective chemical
potential µs = m2

s/(2pF ) and the lepton chemical potential µQ, from Kaplan and
Reddy [36]. A typical value of µs in a neutron star is 10 MeV.

3 Matter at non-asymptotic density

At non-asymptotic densities we can not rely on perturbative QCD calculations to
determine the magnitude of the gap parameter, but the argument that pairing oc-
curs and that the CFL phase is energetically favored is quite general, and does not
depend on details of the interaction. The dominant stress on the CFL phase at non-
asymptotic densities arises from flavor symmetry breaking due to the quark masses.
We will focus on the physically relevant case ms ≫ md ≃ mu. In this case the main
expansion parameter is m2

s/(µ∆), which is the ratio of the mass correction to the
Fermi energy of the strange quark over the magnitude of the gap.

3.1 Kaon condensation

Using the chiral effective lagrangian we can determine the dependence of the order
parameter on the quark masses. The effective potential for the order parameter is

Veff =
f 2
π

4
Tr
[

2XLΣXRΣ
† −X2

L −X2
R

]

− A1

[

(

Tr(MΣ†)
)2 − Tr

(

(MΣ†)2
)

]

. (12)

The first term contains the effective chemical potential µs = m2
s/(2pF ) and favors

states with a deficit of strange quarks (with strangeness S = −1). The second
term favors the neutral ground state Σ = 1. The lightest excitation with positive
strangeness is the K0 meson. We therefore consider the ansatz Σ = exp(iαλ4) which
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allows the order parameter to rotate in the K0 direction. The vacuum energy is

V (α) = −f 2
π





1

2

(

m2
s −m2

2pF

)2

sin(α)2 + (m0
K)

2(cos(α)− 1)



 , (13)

where (m0
K)

2 = (4A1/f
2
π)m(m+ms). Minimizing the vacuum energy we obtain

cos(α) =







1 µs < m0
K

(m0

K
)2

µ2
s

µs > m0
K

(14)

Using the perturbative result for A1 we can get an estimate of the critical strange
quark mass. We find

ms(crit) = 3.03 ·m1/3
d ∆2/3, (15)

from which we obtain ms(crit) ≃ 70 MeV for ∆ ≃ 50 MeV. This result suggests
that strange quark matter at densities that can be achieved in neutron stars is kaon
condensed. The phase structure as a function of the strange quark mass and non-
zero lepton chemical potentials was studied by Kaplan and Reddy [36], see Fig. 1.
We observe that if the lepton chemical potential is non-zero charged kaon and pion
condensates are also possible.

3.2 Fermions in the CFL phase

Kaon condensation occurs for µs/∆ ∼ √
mms/µ ≪ 1. For conditions relevant to

neutron stars µs/∆ can get significantly larger, reaching µs/∆ ∼ 1. In this case some
of the fermion modes may become gapless or almost gapless [16]. In order to study
this regime we have to include fermions in the effective field theory. The effective
lagrangian for fermions in the CFL phase is [37, 38]

L = Tr
(

N †ivµDµN
)

−DTr
(

N †vµγ5 {Aµ, N}
)

− FTr
(

N †vµγ5 [Aµ, N ]
)

+
∆

2

{(

Tr (NLNL)− [Tr (NL)]
2
)

− (L↔ R) + h.c.
}

. (16)

NL,R are left and right handed baryon fields in the adjoint representation of flavor
SU(3). The baryon fields originate from quark-hadron complementarity [39]. We
can think of N as describing a quark which is surrounded by a diquark cloud, NL ∼
qL〈qLqL〉. The covariant derivative of the nucleon field is given by DµN = ∂µN +
i[Vµ, N ]. The vector and axial-vector currents are

Vµ = − i

2

{

ξ∂µξ
† + ξ†∂µξ

}

, Aµ = − i

2
ξ
(

∇µΣ
†
)

ξ, (17)

where ξ is defined by ξ2 = Σ. F and D are low energy constants that determine the
baryon axial coupling. In perturbative QCD we find D = F = 1/2. The effective
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Figure 2: This figure shows the fermion spectrum in the CFL phase. Forms = 0 there
are eight fermions with gap ∆ and one fermion with gap 2∆ (not shown). Without
kaon condensation gapless fermion modes appear at µs = ∆ (dashed lines). With
kaon condensation gapless modes appear at µs = 4∆/3.

chemical potentials (XL, XR) appear in the covariant derivative of the nucleon field.
We have

D0N = ∂0N + i[Γ0, N ], (18)

Γ0 = − i

2

{

ξ (∂0 + iXR) ξ
† + ξ† (∂0 + iXL) ξ

}

,

where XL = MM †/(2pF ) and XR = M †M/(2pF ) as before. (XL, XR) covariant
derivatives also appears in the axial vector current given in equ. (17).

We can now study how the fermion spectrum depends on the quark mass. Since the
fieldN has the quark numbers of the baryon octet and singlet we will use (p, n,Σ,Ξ,Λ)
to label the fields. In the CFL state we have ξ = 1. For µs = 0 the octet has an energy
gap ∆ and the singlet has gap 2∆. As a function of µs the excitation energy of the
proton and neutron is lowered, ωp,n = ∆− µs, while the energy of the cascade states
Ξ−,Ξ0 particles is raised, ωΞ = ∆+µs. All other excitation energies are independent
of µs. As a consequence we find gapless (p, n) and (Ξ−,Ξ0)−1 excitations at µs = ∆.
The situation is more complicated when kaon condensation is taken into account. In
the kaon condensed phase there is mixing in the (p,Σ+,Σ−,Ξ−) and (n,Σ0,Ξ0,Λ8,Λ0)
sector. For m0

K ≪ µs ≪ ∆ the spectrum is given by

ωpΣ±Ξ− =

{

∆± 3
4
µs,

∆± 1
4
µs,

ωnΣ0Ξ0Λ =











∆± 1
2
µs,

∆,
2∆.

(19)
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Figure 3: Left panel: Energy density as a function of the current K for several
different values of µs = m2

s/(2pF ) close to the phase transition. Right panel: Ground
state energy density as a function of µs. We show the CFL phase, the kaon condensed
CFL (CFLK) phase, and the supercurrent state (curCFLK).

Numerical results for the eigenvalues are shown in Fig. 2. We observe that mixing
within the charged and neutral baryon sectors leads to level repulsion. There are
two modes that become light in the CFL window µs ≤ 2∆. One mode is a linear
combination of proton and Σ+ particles, as well as Ξ− and Σ− holes, and the other
mode is a linear combination of the neutral baryons (n,Σ0,Ξ0,Λ8,Λ0).

3.3 Meson supercurrent state

What happens when gapless fermions appear in the spectrum? Several authors have
shown that gapless fermion modes lead to instabilities in the current-current correla-
tion function [40, 41]. Motivated by these results we have examined the stability of
the kaon condensed phase against the formation of a non-zero current [3, 4]. Consider
a spatially varying U(1)Y rotation of the kaon condensate

U(x)ξK0U †(x) =







1 0 0

0 1/
√
2 ieiφK(x)/

√
2

0 ie−iφK (x)/
√
2 1/

√
2





 . (20)

This state is characterized by non-zero currents ~V and ~A. In order to determine
the stability of the CFLK state we compute the vacuum energy as a function of the
kaon current ~K = ~∇φK . The meson part of the effective lagrangian gives a positive
contribution

E =
1

2
v2πf

2
π

2
K . (21)

A negative contribution can arise from gapless fermions. In order to determine this
contribution we have to calculate the fermion spectrum in the presence of a non-zero
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current. The spectrum is determined by the effective lagrangian (16). The dispersion
relation of the lowest mode is approximately given by

ωl = ∆+
(l − l0)

2

2∆
− 3

4
µs −

1

4
~v · ~K , (22)

where l = ~v · ~p − pF and we have expanded ωl near its minimum l0 = (µs + ~v ·
~K)/4. Equation (22) shows that there is a gapless mode if µs > 4∆/3 − K/3. The
contribution of the gapless mode to the vacuum energy is

E =
µ2

π2

∫

dl
∫

dΩ

4π
ωlθ(−ωl), (23)

where dΩ is an integral over the Fermi surface. In Fig. 3 we show the ground state
energy as a function of the current. We observe that there is a first order transition
to a state with a non-zero current. The ground state energy as a function of µs is
shown in Fig. 3, see [42, 43] for more details. Once the current becomes large the
effective theory ceases to be reliable and states with multiple currents may appear.
These states can be thought of as continuously connected to the crystalline quark
matter phase [6].

4 Transport Properties

Non-equilibrium properties, such as shear viscosity, bulk viscosity, thermal conduc-
tivity and neutrino emissivity, play an important role in constraining the structure
of compact stars. Shear and bulk viscosity control r-mode instabilities which, if not
suppressed by viscous damping, lead to a fast spin-down of rapidly rotating compact
stars. Neutrino emissivity controls the cooling behavior of the star, and neutrino
opacities determine the spectral shape of the initial neutrino burst. In addition to
these specific constraints there has been significant progress, in both theory and ob-
servation, of tying together the rotation of the star, the magnetic field, and thermal
properties. Exploiting these connections in order to constrain the phase structure of
compact star matter will require a detailed understanding of transport properties.

4.1 Hydrodynamics of the CFL phase

The spontaneous breaking of U(1)B is related to superfluidity, and the U(1)B effective
theory can be interpreted as superfluid hydrodynamics [32]. We can define the fluid
velocity as

vα = − 1

µ0
Dαϕ, (24)

where Dαϕ ≡ ∂αϕ+ (µ, 0) and µ0 ≡ (DαϕD
αϕ)1/2. Note that this definition ensures

that the flow is irrotational, ~∇× ~v = 0. The identification (24) is motivated by the
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fact that the equation of motion for the U(1) field ϕ can be written as a continuity
equation

∂α(n0vα) = 0, (25)

where n0 = 3µ3
0/π

2 is the superfluid number density. At T = 0 the superfluid density
is equal to the total density of the system, n = dP/dµ|µ=µ0

. The energy-momentum
tensor has the ideal fluid form

Tαβ = (ǫ+ P )vαvβ − Pgαβ, (26)

and the conservation law ∂αTαβ = 0 corresponds to the relativistic Euler equation
of ideal fluid dynamics. We conclude that the effective theory for the U(1)B Gold-
stone mode accounts for the defining characteristics of a superfluid: irrotational,
non-dissipative hydrodynamic flow.

At non-zero temperature the hydrodynamic description of a superfluid contains
dissipative terms. Similar to the two fluid model of liquid helium we can describe the
CFL phase, or any other relativistic superfluid, as a mixture of an ideal superfluid
and a dissipative normal component [44, 45]. We will denote the densities of the
superfluid and normal components by ρs and ρn. We also define uµ to be the velocity
of the normal component, and wµ to be the difference between the superfluid and
normal velocities. The normal fluid provides both non-dissipative and dissipative
contributions to the energy momentum tensor. In the rest frame of the normal fluid
the dissipative terms are

δTij = −η
(

∂iuj + ∂jui −
2

3
δij∂kuk

)

− δijζ1∂k (ρswk)− δijζ2∂kuk (27)

and
δT0i = −κ∂iT . (28)

Here η is the shear viscosity, ζ1,2 are bulk viscosities, and κ is the thermal conductivity.
Two additional bulk viscosities, ζ3,4, control dissipative corrections to the equation of
motion for the superfluid velocity. There is a symmetry relation between the kinetic
coefficients that requires that ζ4 = ζ1. Note that in the normal phase there is only
one bulk viscosity, ζ ≡ ζ2.

4.2 Transport Coefficients

The normal fluid is composed of quasi-particle excitations. In the CFL phase all quark
modes are gapped and the relevant excitations are Goldstone bosons. At very low
temperature, transport properties are dominated by the massless Goldstone boson ϕ
associated with the breaking of the U(1)B symmetry. The effective lagrangian (6)
determines the rates for the relevant scattering processes.

10
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Figure 4: Bulk viscosity ζ ≡ ζ2 as a function of temperature for an oscillation period
τ = 2π/ω = 1 ms. CFL phase: contribution from the process K0 ↔ ϕ + ϕ for
different values of δm ≡ mK0 −µs and contribution from ϕ↔ ϕ+ϕ. 2SC phase and
unpaired quark matter: contribution from the process u+ d↔ u+ s.

Shear viscosity is related to momentum transport. At low temperature the shear
viscosity of the CFL phase is determined by ϕ + ϕ ↔ ϕ + ϕ scattering. Manuel et
al. find [46]

η ≃ 1.3× 10−4 µ
8

T 5
. (29)

The bulk viscosity is sensitive to particle number changing processes. This includes
purely strong decays like ϕ ↔ ϕ + ϕ, or electroweak processes like the strangeness
changing reaction K0 → ϕ + ϕ. We first consider the pure QCD contribution. Bulk
viscosity vanishes in an exactly scale invariant system. For realistic quark masses the
dominant source of scale breaking is the strange quark mass. The contribution from
the process ϕ↔ ϕ + ϕ is [47]

ζ2 ≃ 0.011
m4

s

T
. (30)

We show this contribution in Fig. 4. The electroweak process K0 ↔ ϕ + ϕ was
studied in [48]. The weak contribution has a significant frequency dependence. In
Fig. 4 we show the results for an oscillation period τ = 2π/ω = 1 ms. We observe
that at T ≃ (1− 10) MeV the bulk viscosity of CFL matter is comparable to that of
unpaired quark matter. For T < 1 MeV, ζ2 is strongly suppressed. Depending on the
poorly known value for δm ≡ mK0 − µs the pure ϕ contribution given in equ. (30)
may dominate over the K0 ↔ ϕ+ ϕ reaction at low enough temperatures. However,
for T < 0.1 MeV the ϕ mean free path is on the order of the size of the star, i.e., the
system is in the collisionless rather than in the hydrodynamic regime, and the result
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ceases to be meaningful.
The thermal conductivity of a CFL superfluid was studied by Braby et al. [49]. The

calculation is subtle because κ vanishes for a system of quasi-particles with exactly
linear dispersion relations [50]. The reason is that κ measures the rate of energy
transport relative to the motion of the fluid, but in a gas of massless particles with
linear dispersion one cannot transport energy without transporting momentum. As
a consequence, thermal conductivity is sensitive to non-linearities in the dispersion
relation. Braby et al. find [49]

κ ≃ 4.01× 10−2 µ
8

∆6
MeV2 . (31)

They also estimate the contribution to κ from phonon scattering on kaons. This term
grows as

√
T , but it is significantly smaller than the phonon contribution in the regime

where the calculation is reliable. Non-linearities in the dispersion relation also play
a role in determining the remaining two bulk viscosities, ζ1 and ζ3 [51]. Mannarelli
and Manuel find ζ1 ∼ m2

s/(µT ) and ζ3 ∼ 1/(Tµ2). Note that ζ3 is non-zero even in
the approximately conformal limit ms → 0.

4.3 Neutrino emissivity

In CFL quark matter the neutrino emissivity is dominated by reactions involving
pseudo-Goldstone modes such as

π±, K± → e± + νe ,

π0 → νe + νe , (32)

ϕ+ ϕ → ϕ+ νe + νe .

These processes were studied in [52, 53]. The decay rates of the massive mesons π±,
K±, and π0 are proportional to their number densities and are suppressed by Boltz-
mann factors exp(−E/T ), where E is the energy gap of the meson. The emissivity
from π± decay is

ǫπ =
1

8π
(G2

F f
2
π m

2
e)m

2
π nπ

(

1 + 2
(

1− v2π
)

+
2mπT

v2πm
2
e

(

1− v2π
)2
)

, (33)

where nπ is the number density of pions. Similar results can be derived for π0 and
K± decay. Since the pseudo-Goldstone boson energy gaps are on the order of a few
MeV, the emissivities are strongly suppressed as compared to unpaired quark matter
for temperatures below this scale. Neutrino emission from processes involving the ϕ
is not exponentially suppressed, but it involves a very large power of T ,

ǫν ∼ G2
FT

15

f 2µ4
, (34)
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and is numerically very small. Reddy et al. also studied the neutrino mean free path
lν . For T ∼ 30 MeV the mean free path is on the order of 1 m, but for T < 1 MeV,
lν > 10 km [53].

5 Outlook

There are a variety of issues that remain to be studied. While the calculation of
transport coefficients in the CFL phase is now essentially complete, this is not the
case for many of the less dense phases. There are calculations of shear and bulk
viscosity as well as neutrino emissivity in the CFL-K phase [54, 55, 56], but there are
essentially no results for the spatially inhomogeneous or anisotropic phases. There is
also much work to be done in order to understand many phenomena that are relevant
in compact stars, like mutual friction between the normal fluid and superfluid vortices
[57, 58], or the role of the quark-hadron interface.
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