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Preface

The purpose and motivation of these lectures can be sumadairizthe following
two questions:

e What is the ground state (and its properties) of dense r?atter
e What is the matter composition of a compact star?

The two questions are, of course, strongly coupled to edwr.ddepending on your
point of view, you can either consider the first as the mairstjioe and the second
as a consequence or application of the first, or vice versa.

If you are interested in fundamental questions in partitigsics you may take
the former point of view: you ask the question what happensdtier if you squeeze
it more and more. This leads to fundamental questions beatisome level of suf-
ficient squeezing you expect to reach the point where thesfimeatal degrees of
freedom and their interactions become important. Thattispme point you will
reach a form of matter where not molecules or atoms, but thetitoents of an
atom, namely neutrons, protons, and electrons, are theargldegrees of freedom.
This form of matter, and its variants, constitute one imaotrtopic of these lec-
tures and is termed nuclear matter. If you squeeze furtloernyight reach a level
where the constituents of neutrons and protons, namelkgaad gluons, become
relevant degrees of freedom. This form of matter, termedlqoetter or strange
quark matter, is the second important subject we shall ds&sdBy studying dense
matter, we shall thus learn a lot about the fundamental ibgand interactions of
elementary particles. When trying to understand this kirdemse matter, we would
like to perform experiments and check whether our fundaelé¢neories work or
whether there are new phenomena, or maybe even new thetbaésye have not
included into our description. Unfortunately, there arerently no experiments on
earth which can produce matter at such ultra-high densiteesire talking about.
However, this does not mean that this kind of matter does xist & nature. On
the contrary, we are pretty sure that we have observed shjjeat contain matter
at ultra-high density, namely compact stars. We may thusiden compact stars
as our “laboratory”. Thinking about the first question hasréfiore led us to the
second.



Vi Preface

If you are primarily interested in phenomenology, or if yog an astrophysicist,
you may start from the second question: you observe a corsfacin nature and
would like to understand its properties. In this case yort §tam observations like
the rotation frequency, the temperature of the star etc.aakdwhy does the star
rotate so slow/so fast, why does it cool down so slow/so fAstPthese questions
will inevitably lead you to the attempt to figure out the mistopic structure of the
star, although you have started from macroscopic obse¥salibu need to know
whether the star contains nuclear matter or quark matteotbr, m which phase the
respective matter is present, and which properties theasegthave. It is thus very
natural, also from the astrophysicist’s point of view, tadst the first question.

In any case, we see that both questions are closely relattevardon’t have
to decide which of the two points of view we take. If | have tadcterize what
awaits you in these lectures | would nevertheless say thahak lean a bit more
towards the fundamental aspects. In other words, we shgléctemany complica-
tions that arise from considering a realistic compact statar is a finite system, it
is inhomogeneous, it underlies the laws of general retgitetic. Although our dis-
cussions are always motivated by the astrophysical apigicave mostly discuss
infinite, homogeneous systems and do not elaborate on deaktvistic effects.
Only in discussing the consequences of our microscopialtzlons we shall, on a
qualitative level, discuss the more realistic setting.

So what kind of physics will we discuss and which theoreticals do we need?
Since our focus is on nuclear and quark matter, the domiméettaiction that gov-
erns the states of matter we are interested in is the stré@gtion. The underlying
theory for this interaction is Quantum Chromodynamics (QGithough this the-
ory is uniquely determined by very simple symmetry prineglit is extremely hard
to solve for most applications. Unfortunately (or fortuglgt because this makes it
interesting and challenging) matter at compact star dess#iudes rigorous first-
principle calculations. Therefore, we often have to rétteaimple phenomenolog-
ical models or have to perform rigorous QCD calculationssgtgtotically large
densities and then extrapolate the results down to the tgaregiime we are inter-
ested in.

In the physics of compact stars also the weak interactioysfa important role.
We shall see that it is responsible for the chemical equaitibn of the system, i.e.,
it fixes the various chemical potentials. It is also impotfanthe understanding of
cooling mechanisms of the star or for transport properti@esiolear and quark mat-
ter. Furthermore, our (mostly field-theoretical) treatingways includes nonzero
chemical potentials and sometimes nonzero temperaturengay applications the
zero-temperature approximation is sufficient). In thissgeihgoes beyond the stan-
dard vacuum field theory formalism. Basic elements of théguantum field theory
at finite chemical potential are therefore explained in heeadix.

All this may sound exciting on the one hand, because it shbatsthe physics
of compact stars is extremely rich (due to the diversity ¥blaed physics | found
it helpful to include a glossary of important terms at the ehthese lecture notes).
But on the other hand it may also sound like a big challenggdaiif you are not fa-
miliar with advanced field theory. Nevertheless, thesauleatotes are not primarily
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intended as a review for researchers (although they migthtitfinseful too) but as
a pedagogical introduction for graduate students and adévhandergraduate stu-
dents. For some of our discussions all you need as a preitegaisome knowledge
in thermodynamics and statistical physics, for instancehiaptel’2, which deals
almost exclusively with noninteracting systems. Some roseetions, for instance
the calculation of the neutrino emissivity in chapfer 5 iedenakes use of advanced
field-theoretical methods at finite temperature. It is netititention of these lectures
to develop the theoretical tools in all details before wetheen. More importantly,
all calculations are physically motivated, thus by undmrding the physics behind
the results and calculations, these lectures aim at makindamiliar with the the-
ories and technicalities via “learning by doing”. So at tinel ef these lectures you
will have heard about the basic phenomena and possible seimpic explanations
of the physics of compact stars, but also will be prepareddd gheoretical re-
search in this exciting field yourself, to possibly conttito the answers to the two
questions we have started with.

These lectures are based on a course given in the summertse2@39 at the
Vienna University of Technology. | thank all participanfglus course for the lively
discussions and the numerous questions and comments thatlhimprove these
lecture notes. | am also grateful to M. Alford, P. Jaikumard Nieuwenhuizen,
F. Preis, A. Rebhan, T. Schafer, I. Shovkovy, S. StrickesfONWalliser, Q. Wang,
and F. Weber for helpful comments and discussions.

Vienna, January 2010 Andreas Schmitt
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Chapter 1
Introduction

1.1 What is dense matter?

The QCD phase diagram collects the equilibrium phases of @Cihe plane of

quark (or baryon) chemical potentigl and temperatur&. We show a sketch of
this phase diagram in Fif._1.1. In this introduction, we aseaoncerned with the
details of this diagram. We observe that compact stars,@sdhles of this diagram,
live in the region of small temperatures and intermediatesidies. They may live

in the region where quarks are confined, i.e., in the hadrph&se. This would

imply that they are neutron stars. They may also live in theodéned region which

would make them quark stars. A compact star may also contaim deconfined

and confined quark matter because the star actually has aydamsile rather than

a homogeneous density. In the interior, we expect the detwsive larger than at
the surface. Therefore, the third possibility is a hybrat stith a quark core and a
nuclear mantle.

We do currently not know the exact location of most of the phesnsition lines
in Fig.[T.1. Therefore, we do not know the ground state ofsjipinteracting quark
(or nuclear) matter at the relevant density. As a consegjevecan to some extent
only speculate about the matter composition of the starr@ason is, simply speak-
ing, that QCD is notoriously hard to solve for temperatures densities present in
a compact star. With the help of the phase diagram we can fzustdtement in a
wider context: QCD iswsymptotically free, which means that for large momentum
exchange the interaction becomes weak. Hence, at sufficiange temperatures
and/or densities, we deal with weakly interacting quark$ gloons. In the case of
large densities (or large chemical potentials) this canrtaketstood from the uncer-
tainty principle which relates small distances (the intérey particles are very close
to each other) to large momenta. As a result of asymptotediven, regions in the
phase diagram wheygeand/orT are sufficiently large can be understood from rigor-
ous first-principle calculations. These regions, althothgioretically under control,
are far from being experimentally (even astrophysicalbgessible.
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Fig. 1.1 Conjectured phase diagram of QCD in the plane of quark crematentialy and tem-
peratureT. While matter at low density and high temperature is prolrebeavy-ion collisions,
cold and dense matter can only be found in neutron stars @cisgars). We may find (superfluid)
nuclear matter and/or deconfined quark matter inside aBe&monfined quark matter is, at high
temperatures, termed quark-gluon plasma (QGP) and iswaelmperatures, expected to be in a
color-superconducting state, here labelled by CFL (ctéer locking), discussed in S¢c. .2, and
non-CFL (some color superconductor other than CFL).

If we now go to lower temperatures and densities we have tescadarge un-
known territory. Only at small temperatures and densitidgn we are deep in the
hadronic phase we have reached an area which again is unueolcat least to
some extent. Theoretically, it is more complicated thanpeurbatively treatable
asymptotic regions. After all, hadrons are quite compéidaibjects once we try to
describe them in terms of their constituents. However, weus effective descrip-
tions which can be supported, confirmed, and improved byraxgats in the lab.
Furthermore, at least for vanishing chemical potentiaéscan perform brute-force
QCD calculations on the computer which gives us solid thgzakknowledge for
certain quantities (at nonvanishing chemical potentiaésé calculations are prob-
lematic due to the so-calledgn problem).

We thus see that compact stars (as well as the quark-glusmplareated in
heavy-ion collisions) reside in a region of the phase diagwéich is hard to ac-
cess. More positively speaking, this region is interesting challenging because
exciting and unknown physics may be discovered and new éfieal tools may
need to be developed. Or, in other words, the cold and dengermase talk about
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in these lectures is interesting from the theoretical pofntiew because, on the
characteristic scale of QCD, it is only moderately, not extely, dense.

The theoretical tools used in current research to descdlikand dense matter
are based on the above observations: if we describe quatkmaat may use per-
turbative methods which are valid at asymptotically largaesities and extrapolate
the results down to intermediate densities. We shall do smftance in chaptéd 2
where we treat quarks as noninteracting or in 5e¢. 4.3 whereaieulate the color-
superconducting gap within perturbative QCD. However, aeehto be aware that
the extrapolation of the results pushes the calculatiohsfatheir range of validity
by many orders of magnitude. On the other hand, we may use Isnfmtenuclear
matter which are established at low densities by experiatefata. We do so for
instance in chaptéd 3. This time we have to extrapolaterger densities. Again,
the extrapolation is in principle uncontrolled.

These theoretical challenges emphasize the significanastafphysical obser-
vations: we do not simply like teonfirm the results of our calculations by using
astrophysical data, we need astrophysical inputitterstand the theory which we
believe to be the underlying theory of strongly interactingtter, namely QCD.
Therefore, the connection between astrophysical obskvalnd microscopic cal-
culations is one of the main subjects of these lectures.

1.2 What is a compact star?

Only beaten by black holes, compact stars are the secorskstasbjects in nature.
They have masses of the order of the mass of the Bur, 1.4M,, but radii of
only about ten kilometer® ~ 10km. Thus the mass of the s, = 1.989. 10°3g
is concentrated in a sphere with a radiu$ fitnes smaller than that of the sun,
R = 6.96- 10°km. We thus estimate the average mass density in a compata sta
be

p~7-10%gcm 3. (1.1)

This is a few times larger than the density present in heaglenuhe nuclear ground
state density
po=2.5-10"gcm 3, (1.2)

which corresponds to a baryon number densitygof 0.15fm 3. Mass and radius
of the star are determined by the equation(s) of state of thtemphase(s) inside
the star. This is the subject of chagdiér 2.

In the traditional picture of a compact star, the star is maateof neutron-rich
nuclear matter. Hence the traditional name is actualytron star. This is some-
times still the preferred term, even if one talks about a #tat contains a quark
matter core (which then might be called “exotic neutron”$tadere we shall al-
ways use the more general tetmpact star to include the possibilities of more
exotic matter; after all, a significant part of these lecéuiseabout this exotic matter.
The term compact star will thus be used in these lecturesffobgect with charac-
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teristic mass, radius etc. as given in this subsectionneitfer be made of nuclear
matter or variants thereofiéutron star), of a quark matter core with a surround-
ing mantle of nuclear mattehybrid star) or exclusively of (strange) quark matter
(quark star or strange star)El Here are a few more basic properties of compact stars:

e Compact stars are born in a supernova, a spectacular explogia giant or
supergiant star due to the gravitational collapse of ite cBupernovae are very
complex, nonequilibrium processes which astrophysitigt® understand with
hydrodynamic simulations. We shall not be concerned wiffesaovae in these
lectures but should keep in mind that some properties oftdlrensay be a result
of these violent explosions. A possible example is the higlbaity with which
some of the compact stars travel through space.

e Compact stars are not only extreme with respect to theirige@me of them
also rotate very fast with rotation periods in the millisedaegime, such that
their frequencies are

v<ims?. (1.3)

To see that this is really fast, notice that a point on the tquzas a velocity
of 2rR/1ms~ 0.2¢, i.e., it moves with 20% of the speed of light. The current
record holder is the star PSR J1748-24zﬁant,ating with a period of 1.39 ms.
Several observations are related to the rotation frequétist of all, compact
stars have been discoveredmagsars, by observing pulsating radio signals, for
the first time in 1967. These periodic signals are due to gigHhiouse effect, i.e.,
radio emission is aligned in a beam along the magnetic axiseopulsar which
spins around the rotation axis, crossing the earth’s tefeseperiodically. More
interestingly for our purpose, the pure fact that the rotatif some compact stars
can be so fast requires some explanation. From the micr@sgoint of view, this
is related to transport properties such as viscosity of thganinside the star, see
Sec[6.2. Alsgulsar glitches, sudden jumps in the rotation frequency, must find
an explanation in the properties of dense matter.

e Compact stars also have huge magnetic fields,

B ~ 10*2G. (1.4)

Even larger surface magnetic fields of the ordeB ef 101°G have been observed
(the magnetic field in the core of the star possibly being énvgher). Such highly

magnetized stars are also termegknerars. Compare these magnetic fields for
instance to the earth’s magnetic fieRl~ 0.6 G, a common hand-held magnet,

1 The term compact star is in general also used to inclide: dwarfs, stars which are less dense
than neutron stars, hybrid stars, or quark stars, and sareeteven to include black holes. Since
we are not concerned with either of these objects here, weesanve the term compact star as
explained in the text.

2 The label of the star says that it is a “Pulsating Source ofi&Rachission” (PSR) located on the

celestial sphere at right ascension 17 h 48 min wii® 46’ declination; the ‘J’ indicates the use

of the J2000 coordinate system, the suffix ‘ad’ is used tdardjstsh the object from other pulsars

in the same globular cluster Terzan 5.
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B ~ 100G, or the strongest steady magnetic fields in the labgrago~ 4.5-
10°G.

e Compact stars are cold. This may sound odd, given their teatyres which,
right after they are born in a supernova explosion, can bégisas? ~ 10M1K.
This corresponds, in units where the Boltzmann constanngs kg = 1, to
T ~ 10MeV. During the evolution of the star, the temperaturerel@ses down
to temperatures in the keV range. The dominant cooling nréstrais neutrino
emission which we discuss in chagiér 5. There are two reagbysn our con-
text it is appropriate to call compact stars cold, in spitehaf apparently large
temperatures. First, temperatures in the keV range arel sorapared to the
scale set by QCD, for instance the deconfinement transitiearashing quark
chemical potential of about ~ 170 MeV. This means compact stars are located
basically on the horizontal axis in the QCD phase diagramign[E]. Second,
temperatures in compact stars are small compared to thk @urdraryon) chem-
ical potential,T < p. This is important for our calculations since it impliesttha
T = 0is a good approximation in many cases.

1.3 Further reading

Before we start with the main part, let's mention some liter@a Extensive text-

books about compact stars are Réfs, [L] 2, 3]. A shorterdotrtion to compact stars
and dense matter can be found in the review artidle [4]. @inmidviews are Refs.

[5l 6], with emphasis on quark matter, and REf. [7], with eai on astrophys-
ical observations. A more theoretical review about quarktengmore precisely,

about color-superconducting quark matter), with a secloout compact star appli-
cations is Ref.[[B]. For an introduction to thermal field thesee the textbook5][9]

and [10], on which the appendix of these lecture notes isgiigrbased. As became
clear above, in this course we shall deal with questions lwhie under debate in
current research. Therefore, some of the material inclhéee has so far only been
available in research papers. The respective referendidsengiven in the various

chapters. | will not try to be exhaustive in the referencelig rather point out se-

lected references which are useful for a deeper understardiwhat we discuss
in these lectures. If you are interested in more referencasyn find plenty in the

quoted papers and textbooks.
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Chapter 2
Mass and radius of the star

In this chapter, we will discuss the most basic properties@mpact star, its mass
and radius. We have already given typical values for thesatifies above. Below
we shall connect them with microscopic properties of nucea quark matter. This
connection is made by the equation of state from which, itipdar, an estimate for
the maximum mass of the star can be obtained. Let us begirevgitinple estimate

of mass and radius from general relativity. For the stahidlftthe star we neell > R
whereR is the radius of the star, amtl = 2M G the Schwarzschild radius, with the
mass of the sta#/ and the gravitational constatt= 6.672- 10" 11m3kg1s 2 =
6.707-1073°GeV 2. (We shall mostly use units common in nuclear and particle
physics,h = ¢ = kg = 1, although astrophysicists often use different units)) Fo
R < R, the star becomes unstable with respect to the collapse ok hole. Let

us build a simple star made out of a number of nucleonsth massn ~ 939 MeV
and a distancey ~ 0.5- 10 13cm (that's where the nucleon interaction becomes
repulsive). We thus cover a volumergA and thus have a radius

R~ rgAY3, (2.1)
(for our rough estimate we are not interested in factorg)pand a mass
M ~mA. (2.2)

Now from the limitR = 2M G we obtain

ro \3/2 ;
A~ (MG) ~2.6-10°7. (2.3)
This is the number of nucleons up to which we can fill our stdoizeit gets unsta-
ble. In other words, the Schwarzschild radius is propogtiom the mass of the star
and thus increases linearly in the number of nuclebnshile the radius increases
with AY/3; therefore, forA smaller than the limitA ~ 2.6-10°7 the star is stable,
while it collapses into a black hole for nucleon numbersédarfan this limit. We
can plug the limit value foA back into the radius and mass of the star to obtain
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R~ 7km, M ~23M;. (2.4)

Adding more nucleons would make the star too heavy in reddtaits radius. We
see that these values are not too far from the observed oresigiSed_1)2.

Besides giving an estimate for the baryon number in the starsee from
this simple exercise that general relativistic effectd W@ important because the
Schwarzschild radius will be a significant fraction of thdites of the star. We can
also estimate the gravitational energy of the star. To this e need the differential
mass of the star at a given radius (i.e., the mass of a thirrisphkayer)

dm=p(r)dv, (2.5)

wheredV = 41r2dr is the volume of the thin spherical layer at radiu§or a rough
estimate let us (unrealistically) assume a constant depsit) = p such that the
massm(r) of the star up to a radius < R, is given bym(r) = 43p. Then we
obtain

R 2
%m:/‘&WMM”~§m4:0uM, (2.6)

r 5 R
where we have used the above realistic valdes 1.4M., andR ~ 10km. We thus
see that the gravitational energyay is more than 10% of the mass of the star.
This suggests that for the mass-radius relation we need aatieq that incorpo-
rates effects from general relativity. For simplicity, let first derive the equation
that relates mass and radius without general relativigtects and include them
afterwards. We are looking for an equation that describesibgum between the
gravitational force, seeking to compress the star, and pp®sing force coming
from the pressure of the matter inside the star. In the casecoimpact star, this
pressure is the Fermi pressure plus the pressure cominglfistrong interactions
of the nuclear or quark matter inside. The differential pugedP at a given radius
r is related to the gravitational fore& via

dF
P=— 2.7
d 4mr2’ @7
with Gm(r)d
mir m
dF = - (2.8)

The equation for the differential mags(2.5), together \Eith (Z.7) (into which we
insert Egs.[(2]5) and(2.8)), yields the two coupled diff¢iad equations,

dm 2
o = 4rree(r), (2.9a)
%:_QQ?@_ (2.9b)

where we have expressed the mass density through the erengiyd () = p(r)
(in units wherec = 1). The second equation, which is easy to understand from el-
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ementary Newtonian physics, receives corrections froneggmelativity. It is be-
yond the scope of these lectures to derive these correctigasimply quote the
resulting equation,

g ool sl ), ]

dr r2

This equation is called Tolman-Oppenheimer-Volkov (TOYiation and the deriva-
tion can be found for instance in Refl [1]. In order to solveoite first needs the
energy density for a given pressure. Only then do we havesadlsystem of equa-
tions. This input is given from the microscopic physics whidelds an equation

of state in the fornP(g). We have thus found a first example how the microscopic
physics can potentially be “observed” from astrophysi@hdnamely from mass
and radius of the star. We shall encounter many more of thesages. The equa-
tions of state for noninteracting nuclear and quark mattérbe discussed in the
subsequent sections.

For a given equation of state one needs two boundary condifiar the TOV
equation. The first is obvioushy(r = 0) = 0, the second is a boundary value for the
pressure in the center of the stBfy = 0) = Py. Then, the solution of the equations
will produce a mass and pressure profile-), P(r) with the pressure going to zero
at some point = R, giving the radius of the star. The mass of the star is thet rea
off at this pointM = m(R). Doing this for varying initial pressurg yields a curve
M(R) in the mass-radius plane, parametrizedyThis curve depends strongly on
the chosen equation of state.

2.1 Noninteracting nuclear matter

We start with a very simple system where we neglect all ictéwas. In this case,
all we need is basic statistical physics and thermodynariics thermodynamic
potential for the grand-canonical ensemble is given by

Q=E—uUN-TS, (2.11)

with the energyE, chemical potential, particle numbew, temperaturgl” and
entropysS. The pressure is then

Q
P:—V:—S—i—un—i—Ts, (2.12)

whereV is the volume of the system. Number density= N/V, energy density
€ = E/V, and entropy density= S/V are, for a fermionic system, given by
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. 3
0= 2/%@ (2.13a)
. 3
£ = 2/ %Ekfk, (2.13b)
3
s= 2 [ Gl A=A )+ Al (2130)

We shall first be interested in a system of neutror)sgrotons p), and electrons
(e), each giving a contribution to the pressure according te. E12) and[(2.13).
Since they are spi%—fermions, we have included a factor 2 for the two degenerate
spin states. The Fermi distribution function is denotedihy

1

W= o (214)

and the single-particle energy is

Ep=\Vk2+m?. (2.15)

Inserting number density, energy density, and entropy itleirgo the pressure

@I2) yields
P:2T/d3—kln [1+e*<Ek*“>/T} . (2.16)
(2m)3

This corresponds to the result obtained from field-thecaktnethods in appendix
[AZ], see Eq.[(A71). There also the antiparticle contrinuts included, which can
here, due to the large positive chemical potential, safelydglected. One can easily
check that number density and entropy are obtained fromressprel(2.16) via the
usual thermodynamic relations, i.e., by taking the dermeatwith respect tqu and
T. For the following we now take the limif = 0. This is a good approximation
since the temperature of a compact star is typically in thédamge and thus much
smaller than the chemical potentials and masses of theang:le

ForT = 0 the Fermi distribution is a step functiofy,= ©(kr — k), and thus the
k integrals will be cut off at the Fermi momentuip, i.e.,

1 ke 2k
1 ke
€= dkk>\/ k2 +m?
0
1 kp + \/kZ 4+ m?
= 5= (263 + kg )\ J K2 +m2 —mPin—V | (2.17b)
m

Then, withp = /k% + m?, the pressure is
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1 (ke
P:ﬁ/ dkK2 (1 — 2+ m?)
0
ki + /K2 +m?
23 — 3mPep )\ JK2 +m2+ 3t —V | (2.18)
m

24

This can either be obtained by inserting E§s. (2.17a) add®}.into Eq.[(2.1R) or,
equivalently, by taking th& = 0 limit in Eq. (2.16). For the latter one makes use of
limr_oTIn(1+e%7) = xO(x).

Forn, p, e matter, the total pressure is

1 ke o 2,2
P:Fi_nzw/o kK2t — /K2 + m2). (2.19)

The Fermi momenta can be thought of as variational paraseteich have to be
determined from maximizing the pressure, i.e., from thedéions

oP
Okp;i

i = \/ Kz +m?. (2.21)

We have additional constraints on the Fermi momenta frorfolf@ving two condi-
tions. Firstly, we have to require the star to be electryuaﬁutraﬁ, i.e., the densities

0, i=n,p,e, (2.20)

which implies

1 In fact, a compact star has to be electrically neutral to § kiégh accuracy, as one can see from
the following simple estimate. Suppose the star has an ibwdr@rge ofZ times the elementary
chargeZe, and we consider the Coulomb repulsion of a test particieagaoton, with mass and
chargee (e having the same sign as the hypothetical overall chargeeo$tiédrZe). The Coulomb
force, seeking to expel the test particle, has to be smdikar the gravitational force, seeking to
keep the test particle within the star. This gives the caolit

(Ze)e ~ GMm
<
R2 — R?

(2.22)

with the mass¥ and radiusk of the star. Even if we are generous with the limit on the Figaind
side by assigning the upper limi{ < Am to the mass of the star (if the star containaucleons,
its total mass will be less thatvn due to the gravitational binding energy), we will get a very
restrictive limit on the overall charge. Namely, we find

Z GAm? 2
(Rez)e < RZ’ = z<G’:’—2A. (2.23)

With the proton mass: ~ 10°MeV, the elementary chargé ~ 10~ (remembemx = ¢?/(41) ~
1/137), and the gravitational constafit~ 7- 10-3°GeV 2, we estimate

7<10°%4A, (2.24)

i.e., the average charge per nucleon has to be extremelYismader to ensure the stability of the
star. Since we have found such an extremely small numbsiirieievant for the argument whether
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of protons and electrons has to be equal,
Ne =1Np. (2.25)

With Eq. (Z.17h) this means
kF,e = kF,p . (226)

Secondly, we require chemical equilibrium with respech®weak processes

n—ptetv,, (2.27a)
pte—>n+v,. (2.27b)

The first of these processes is the usBalecay, the second is sometimes called
inverse [3-decay or electron capture. We shall assume that the neutrino chemical
potential vanishegy,, = 0. This is equivalent to assuming that neutrinos and an-
tineutrinos, once created by the above processes, simglg line system without
further interaction. This assumption is justified for coripstars since the neutrino
mean free path is of the order of the size of the star or lagergpt for the very
early stages in the life of the star). Consequer8hequilibrium, i.e., equilibrium
with respect to the processés (2.27), translates into fleing constraint for the
chemical potentials,

Hn = Hp + He - (228)

Inserting Eq.[(2.21) into this constraint yields

VR m2 = [, m2 4\ [+, (2.29)

We can eliminate the electron Fermi momentum with the helgaf(2.26) and
solve this equation to obtain the proton Fermi momentum ametion of the neu-
tron Fermi momentum,

(K2, +m2 —m2)? — 2(kZ , + mZ+m2)m? + m'}
4Kz, +m2)

Kz, = (2.30)

To illustrate the physical meaning of this relation, let oasider some limit cases.
First assume a vanishing proton contributiép,, = 0. Then the equation gives
(which is most easily seen from Ef. (2129))

Kz, = (mp~+mg)*—m§ < 0. (2.31)
This expression is negative because the neutron is sligievier than the elec-

tron and the proton togethen,, ~ 9383 MeV, m, ~ 939.6 MeV, m, ~ 0.511 MeV.
Thereforekr, = 0 is impossible and there always has to be at least a sméilnac

we use a proton or an electron as a test particle. The esséttue argument is the weakness of
gravitation compared to the electromagnetic interactiantny electric charge per unit volume,
distributed over the star, is sufficient to overcome theiktalfrom gravity.
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of protons. Now let’s assumig:, = 0, which leads to

2 my; -+ — m127 ’ 2 2

F,p = T -—m, =~ 1.4MeV~. (232)

This is the threshold below which there are no neutrons amdhlarge neutral sys-

tem in 3-equilibrium contains only protons and electrons of equahher density.
In general, we may consider a given baryon density= n, +n, to express the

neutron Fermi momentum as
k= (3Png — k3 ,)"/3. (2.33)

Inserting this into Eq[{Z.30) yields an equation £gr, as a function of the baryon
density. In the ultrarelativistic limit, i.e., neglectima) masses, Eq{Z.B0) obviously
yieldskr,, = kr,,/2 and thus:, = n, /8 or

n
n,= EB . (2.34)
By solving Eq. [[2.3D) numerically one can check that thistlimapproached from
below for large baryon densities, i.e., in a compact stataining nuclear matter
we deal with neutron-rich matter, which justifies the termtnen star.
As a crude approximation we may thus consider the simpleaigsere neutron
matter. We also consider the nonrelativistic limif, > kr . In this case, the energy

density [Z.17b) and the pressure (2.18) become

4 k3 k5
my, F.n F.n
~ LI =10 . 2.35
¢ 37T2[m§+ <mg>]’ ( 3)
md [ kz kf:
P~_—" | 4 - . 2.35b
15m2 [mg + m/ ( )

(To see this, note that the In term cancels the term line&y iim the case o€, and
the linear and cubic terms iy in the case of.) Consequently, keeping the terms
to lowest order irkg,, /my,

5/3  _5/3
3"2> £ (2.36)

P(e):( o2

mpy
We have thus found a particularly simple equation of stateere the pressure is
given by a power of the energy density. The general (numiidiscussion of the
equation of state, including protons and electrons, isttefhe reader, see problem
2.1.

The next step to obtain the mass-radius relation of thestaiinsert the equation
of state into the TOV equation. The simplest case is a poawgibkehavior as in Eq.
(2.38). The general form of such a so-called “polytropictiation of state is
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P(e)=KeY. (2.37)

Using the Newtonian form of the mass-radius equations, @08), this yields

dm 4t 2.1
g = KT/VI" P /y(l"), (2383)
P G PYY(rym(r) (2.38b)

dr —  KYv r?

Even in this simplest example, we need to solve the equatiomerically, see prob-
lem[2.2. The results of this problem show that the maximumsmeached within
this model is about < 0.7M, which is well below observed neutron star masses.
(See also Refs. [2] B] 4] for a pedagogical introduction theoequation of state and
mass-radius relation from solving the TOV equation.) Thisis maximum mass is

a consequence of the assumption of noninteracting nucldakség into account
interactions will increase the maximum mass significantly.

2.2 Noninteracting quark matter

Whenever we talk about quark matter in these lectures werégtihee charm ),
bottom §), and top ) quarks. The quark chemical potential inside the star is at
most of the order of 500 MeV and thus much too small to createpalation of
these states. Therefore, we only consider at most thre& faaors, namely upu),
down (), and strangesf. We shall mostly neglect the masses of#tendd quarks;
their current masses arem, ~ my; ~ 5MeV <« u ~ (300— 500) MeV. The mass
of the strange quark, however, is not negligible. The curstrange quark mass
is my ~ 90MeV, and the density-dependemwiistituent mass can be significantly
larger, making it non-negligible compared to the quark cicaipotential.

If we consider free quarks, the energy densityhe number density, and the
pressureP, are obtained in the same way as demonstrated for nucledns previ-
ous subsection. We only have to remember that there aredblee for each quark
flavor, N, = 3, i.e., the degeneracy factor for a single quark flavoNs2 6, where
the factor 2 counts the spin degrees of freedom. Consegutmteach quark flavor
f=u,d,s we have at zero temperature (cf. Egs. (2.17). (2.18)),

3
ke
b2

3 [k,
_ 21 2
& = 7T2/o dkk®\ [k2 +m?, (2.39D)
3 ke,
2 _ k22
Py = 712/0 dkk (uf \Vk —|—mf) . (2.39¢)

(2.39a)
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Again, we need to impose equilibrium conditions with regpge¢he weak interac-
tions. In the case of three-flavor quark matter, the relepeotesses are the leptonic
processes (including a neutrino or an antineutrino)

d—=u+e+v,, s ute+v,, (2.40a)
u+e—d+v,, u+e—s+v,, (2.40Db)

and the non-leptonic process
stu<rd+u. (2.412)

These processes yield the following conditions for the kjaaud electron chemical
potentials,

Ha = He+ Hu, Mg = He+ Hu- (2.42)

(This automatically impliegt; = L;.) The charge neutrality condition can be written
in a general way as
z gmg—ne=0, (2.43)
f=ud,s

with the electric quark charges

h= =, =qy=—=, 2.44
9u= 3 94 =4 3 (2.44)

and the electron densiiy.

2.2.1 Strange quark matter hypothesis

Before computing the equation of state, we discussdlaage quark matter hypoth-
esis within the so-calletbag model. The bag model is a very crude phenomenolog-
ical way to incorporate confinement into the descriptionuwdid matter. The effect
of confinement is needed in particular if we compare quarkienatith nuclear
matter (which is ultimately what we want to do in this secjiodPut another way,
although we speak of noninteracting quarks, we need to atdoua specific — in
general very complicated — aspect of the interaction, npewifinement.

To understand how the bag constant accounts for confinemerdpmpare the
pressure of a noninteracting gas of massless pions withrésspre of a noninteract-
ing gas of quarks and gluons at finite temperature and zemichépotential. The
pressure of a single bosonic degree of freedom at0 and at large temperatures
compared to the mass of the boson is

d’k g1\ Tt

Phoson™ —T/ (

This is derived in appendx’Al1 within thermal field theorgesEq. [[A.3V). Anal-
ogously, a single fermionic degree of freedom gives (see(Edd) of appendix
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A yry 1 TeT?
Prermion ~ T'/ Wln (1+€ ) =3 90 (2.46)
Therefore, since there are three types of pions, their press
T4
Pr=3 90 (2.47)

This is a simple approximation for the pressure of the codfpifease. In the decon-
fined phase, the degrees of freedom are gluonsZBand quarks (#.N; = 24).
Thus with 2x 8+ 7/8 x 24= 37 we have

T4
Pq,g:37W—B, (248)

where thebag constant B has been subtracted for the following reasoms Mvere
zero, the deconfined phase would have the larger pressurthasdvould be pre-
ferred for all temperatures. We know however, that at seffity small tempera-
tures, the confined phase (that's the world we live in) musptederred. This is
phenomenologically accounted for by the bag constant B hwadats like an energy
penalty for the deconfined phase. Without this penalty, astlén this very sim-
ply model description, the deconfined phase would be “toorfave” compared
to what we observe. As a consequence, by including the bagfaarthere is cer-
tain critical temperatur&, below which the confined phase is preferrgg > P, ,,
and above which the deconfined phase is prefeigd,> Pr. This is indeed what
one expects from QCD, where the deconfinement transitiopeeature is expected
to beT, ~ 170MeV. (As can be seen in the QCD phase diagram in[Eig. 14, th
deconfinement transition is rather a crossover than a phassition in the strict
sense.)

In the context of compact stars we are not interested in sarge temperatures.
In this case, the chemical potential is large and the tentyergractically zero.
Nevertheless we compare nuclear (confined) with quark fdfewd) matter and
thus have to include the bag constant in the pressure andebeifiergy of quark
matter,

P+B= ;Pf : (2.49a)

€= ;ef+3. (2.49b)

This phenomenological model of confinement is calledbfyemodel [5,[6] because
the quarks are imagined to be confined in a bag. One can viemitr®scopic
pressuré ; Py of the quarks to be counterbalanced by the pressure of thg bad
an external pressuie

Equipped with the bag model, we can now explain the strangekquatter hy-
pothesis. For simplicity we consider massless quarks. Zeanstrange quark mass
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will slightly change the results but is not important for tigalitative argument. We
will also ignore electrons. They are not present in threesflanassless quark mat-
ter at zero temperature. They are however required in twaiflguark matter to
achieve electric neutrality. But also in this case theiryafion is small enough to
render their effect unimportant for the following argument

With m; = 0 we simply have

3 4 4
_ K _ 3y _ K
T YT g I~ a2 (250
which in particular implies
p= (2.51)

3
For the strange quark matter hypothesis we consider thgghagver nucleon num-

berA,

E £

- =— 2.52

A= (2552)
wherenp is the baryon number density, given in terms of the quark rerrdbnsities
as

1
np = § ;nf, (253)

because a baryon contaiNs = 3 quarks. At zero pressur,= 0, Egs. [[2.40) and
(Z.51) implye = 4B and thus
E 4B

A np

We now apply this formula first to three-flavor quark mattesti@nge quark mat-
ter”), then to two-flavor quark matter of only up and down dsafor strange quark
matter, the neutrality constraifif (2143) becomes

(2.54)

2n, —ng—ny=0. (2.55)
Together with the conditions from chemical equilibridun42). this implies
M= Ha = Hs = H. (2.56)

We see that strange quark matter is particularly symmeftie. reason is that the
electric charges of an up, down, and strange quark happeafdta@to zero. Now
with ng = u3/m? and

3u*
(still everything atP = 0) we have

E = (4m)Y43%/4BY/* ~ 5714BY/* ~ 829MeVB} ;.  (2.58)

Alny=3
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We have expressekl/4 in units of 145 MeV,B},t = BY/4 /(145 MeV).
For two-flavor quark matter (neglecting the contributiorelictrons), the charge
neutrality condition is

ng =2n,. (2.59)
Hence,
pa =23y, (2.60)
Then, withng = u3/m? and
_ (@23
we find
E
Al = (41%)Y/* (14 2*/3)3/4 BY/* ~ 6.441BY/* ~ 934MeVB] 2. (2.62)
=

By comparing this to Eq[{Z.58) we see that two-flavor quarkenéas a larger en-
ergy per baryon number than three-flavor quark matter. Bragdirect consequence
of the Pauli principle: adding one particle species (angkegthe total number of
particles fixed) means opening a set of new available lowegrsates that can be
filled, thus lowering the total energy of the system.

We can now compare the resu[is(2.58) dnd (2.62) with theggmer nucleon in
nuclear matter. For pure neutron matter, it is simply givemhg neutron mass,

E

B =m, = 9396MeV. (2.63)

neutrons

For iron,%8Fe, itis

E

A

~ 56my —56-8.8MeV
SoFe 56

= 930MeV, (2.64)

with the nucleon massay = 9389 MeV and the binding energy per nucleon in iron
of 8.8 MeV. Since we observe iron rather than deconfined goeaiter, we know

that
E

A

E

=  BY4>1444VevV. (2.65)
sope A

Ny=2

We have thus found a lower limit for the bag constant from tabitity of iron with
respect to two-flavor quark matter. Now what if the bag camtstgere only slightly
larger than this lower limit? What if it were small enough taree-flavor quark
matter to have lower energy than iron? The condition forwusid be

E

A

E

= BY4 < 1628MeV. (2.66)
n=3 A
S

56Fe
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This would imply that strange quark matter is absolutelplgtdstable a® = 0),
while nuclear matter is metastable. This possibility, vahieould be realized by a
bag constant in the window 145Me¥ BY* < 162MeV, is calledstrange quark
matter hypothesis, suggested by Bodmer|[7] and Witten [8], see also [9].

Note that the existence of ordinary nuclei daes rule out the strange quark
matter hypothesis. The conversion of an ordinary nucletessinange quark matter
requires the simultaneous conversion of many (roughlylspgat many)u and
d quarks intos quarks. Since this has to happen via the weak interactios, it
practically impossible. In other words, there is a huge gynéarrier between the
metastable (if the hypothesis is true) state of nuclearenattd absolutely stable
strange quark matter. This means that strange quark maseoibe created in an-
other way (“going around” the barrier), by directly formiagjuark-gluon plasma.
This can for instance happen in a heavy-ion collision. Oremimportantly in our
context, it may happen in the universe, giving rise to staad@rentirely out of quark
matter, so-calledrrange stars.

Small “nuggets” of strange quark matter are calledngelets (a strange star
would then in some sense simply be a huge strangelet). lbaggtet is injected
into an ordinary compact star (a neutron star), it wouldyassg the strange quark
matter hypothesis to be true, be able to “eat up” the nucledtem converting the
neutron star into a strange star. Note the difference betwes transition and the
above described impossible transition from ordinary rarcheatter to strange quark
matter: once there is a sufficiently large absolutely statsbngeletsuccessive con-
version of up and down quarks into strange quarks increasgzh of the strangelet;
the energy barrier originating from thénultaneous creation of a large number of
strange quarks now cannot cause the system to relax backsrdaginal nuclear
(metastable) state. This argument has important consegsdithere exist enough
sizable strangelets in the universe to hit neutron staesy neutron star would be
converted into a strange star. In other words, the observai a single ordinary
neutron star would rule out the strange quark matter hygigh&herefore, it is
important to understand whether there are enough strasgeleund. It has been
discussed recently in the literature that there may not be@mstrangelet§ [10], in
contrast to what was assumed before.

2.2.2 Equation of state

Next we derive the equation of state for strange quark makterinclude the effect
of the strange quark mass to lowest order and also includ&etes. It is convenient
to express the quark chemical potentials in terms of an geegaiark chemical
potentialy = (u, + s + s) /3 and the electron chemical potential
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2

My = H— §IJEa (2-673-)
1

Ha = M+ g He, (2.67b)
1

Hs = H+ 5“3- (2-67C)

Written in this form, the conditions fronB-equilibrium [2.42) are automatically
fulfilled. Taking into account the strange quark mass, thenFenomenta for the
approximately massless up and down quark and the massivestquark are given

by

keu = Hu, (2.68a)
kra = Ha, (2.68Db)

ks = /2 —m2. (2.68¢)

The energy density and the pressure are

By 3ug 3 R, o W
& = 47'[2+H+F 0 dkk“\/k —i—ms—i-4n2, (2.69a)

4 4 K 4
— Hy & i/ Fs 2 N 2 2 M,
Pi= gt gt s | A6k (= /R m? )+ 5 (2.69b)

i=u,d,s.e

where we have neglected the electron mass. The neutraligitcan can now be
written as

0

0 2 1 1
arm i:uZd‘s‘ePi = —énu + §nd + éns +ne. (2.70)

(Note thaty, is defined as the chemical potential fegative electric charge.) Solv-
ing this equation to lowest order in the strange quark masldyi

m?

Ue =~ @ ) (2.71)
Consequently, the quark Fermi momenta become
2
n
kpy~U— =, 2.72
F, H T ( a)
m2 b
kpg ~ > 2.72
F.d U + 12“ 3 ( )
2
kg ~ 11— oy (2.72¢)
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Fig. 2.1 lllustration of the Fermi momenta for neutral, unpaired fguaatter inB-equilibrium
with quark chemical potentigl. The splitting of the Fermi momenta is due to the strangelquar
massmn; which is assumed to be small compareduto

We see that the Fermi momenta are split by an equal distane€ g#u), and
kps < kru < kpq, see FigLZI1. The splitting and the order of the Fermi moment
can be understood from the following physical picture:tstaom the symmetric
situationm,; = L, = 0. In this case, all quark flavors fill their Fermi spheres to a
common Fermi momentum given hy, and the system is neutral. Now switch on
the strange quark mass. This lowers the Fermi momentum daftthege quark ac-
cording to Eq.[(2.68c). Consequently, there are fewer gaajuarks in the system
and thus there is a lack of negative charge. To counterbalhicmissing negative
charge, the system responds by switching on a chemical fieten. Because of
B-equilibrium, the Fermi momenta of all quark flavors aredigicoupled to this
change. Electric neutrality is regained by lowering the uprg Fermi momentum
and raising the down and strange quark Fermi momenta (whadestor the catchy
phrase “the Fermi momentum of thewn goesup”). Since the strange quark Fermi
momentum was already lowered by the finite mass, it is clestrthie resulting or-
deriskr, < kru < kpq4. The electron contribution to the negative charge density i
negligibly low, n, 0 u2 0 m8/u3, while the contribution of the quarks due to the
strange quark mass is proportionajta?. The splitting of the Fermi momenta due
to the effects of the strange quark maBsequilibrium, and electric neutrality is
very important in the context afblor superconductivity. Since color superconduc-
tivity is usually based on Cooper pairing of quarks of diéfiet flavor, a mismatch
in Fermi surfaces tends to disfavor this pairing. We shaltdss superconductivity
in quark and nuclear matter in chapfér 4 and give a brief tatadé discussion of
the consequences of Fermi surface splitting for color stgretuctivity at the end
of that chapter.
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Here we continue with unpaired quark matter and insert theltréor p, (2.73)
back into the energy density and the pressure. Again keepihgterms to lowest
order in the strange quark mass yields

out  3uZm?
Zsl ~aE T T4 (2.73a)
3u*  3u’m?
P~—— L. 2.73b
Z 4m2 4 ( )
Consequently,
3u?m?
Zei ~ 3ZB+ ot (2.74)
With Eq. [2.494) the pressure, including the bag constaupimes
3u* 3uPm?
P s =T B, (2.75)

and, expressin@ in terms of the energy density, we obtain with the help of Eq.

(2.49D)

po ET4B_HImD
3 212
This is the equation of state of noninteracting, unpaireghste quark matter within
the bag model with strange quark mass corrections to lowdst.o

(2.76)

2.3 Mass-radius relation including interactions

Let us briefly discuss the results for the mass-radius oglaif a compact star for
given equations of state for nuclear and quark matter. Shrcenderlying calcula-
tions in general are complicated and have to be done on a demme only quote
some results to illustrate the physical conclusions. Saviahave only discussed
the simplest cases of noninteracting matter. Interactiang a significant effect on
both the equation of state and the mass-radius relation dWealiscuss these effects
briefly, only in the subsequent chapters shall we study the@eand details of these
interactions (and discuss their relevance to other obbbrsdhan the mass and the
radius of the star).

The maximum mass of a star for noninteracting nuclear metter0.7M., (see
for instance Ref[]4] or solve probldm2.2); including irstetions increases the mass
to values well aboveM,,. The significance of the equation of state and interactions
for the maximum mass is easy to understand: if the pre3{aefor a given en-
ergy densitye is large, the system is able to sustain a large gravitatifomeé that
seeks to compress it. Comparing two equations of state ayieea energy density
range, the one with the larger pressure (for all energy tieasn the given range) is
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thus termed stiff, the one with the smaller pressure is tdrsadt. Soft equations of
state can sustain less gravitational force and thus leadt® with lower maximum
masses. In the case of noninteracting nuclear matter, itlistbe Fermi pressure
from the Pauli exclusion principle that prevents the stanfithe collapse. Inter-
actions increase this pressure because the dominant efftué case of nuclear
matter at the relevant densities is the short-range repulsétween the nucleons.
Therefore, the maximum mass is significantly larger in tlaisec

In Figs.[Z22 an@ 213 several models for the nuclear equafistate are applied
to obtain maximum masses up to42/.. For the case of quark matter, we can
understand some of the corrections through interactiorthénfollowing simple
way. A generalization of the pressure (2.75) is

e
AR

(1—c)—3iz(m§—4A2)—B. (2.77)

P
4712

This equation contains two corrections compared to [Eq5j2@ne is included in
the coefficientc and originates from the (leading order) correction of thentte
momentum due to the QCD coupling,

204
kp=pu <1— 371) , (2.78)

resulting in a correction of thg* term in the pressure with= 2a, /7. (This mod-
ification of the Fermi momentum will also become importanthia context of neu-
trino emissivity in chaptdi]5.) Higher order calculationggest > 0.3 at densities
relevant for compact stars. However, the exact valueisfunknown because per-
turbative calculations are not valid in the relevant dgnsggime, cf. discussion in
Sec[I1. Therefore,can only be treated as a parameter with values around 0.3, as
done for example in Fi§._2.2. To get an idea about perturbaticulations beyond
leading order imog, you may consult the recent Ref. [11].

The second correction in E@. (2]77) is the quamlityThis is the energy gap aris-
ing from color superconductivity whose microscopic origia discuss in chapter 4.

It gives a correction to thg? term in the pressure. One might think that this correc-
tion is negligible compared to the* term and the bag constant. However, it turns
out that for reasonable values of the bag constant theseemntstlargely cancel
each other and the? term becomes important. However, the effect of superconduc
tivity is still hard to determine. Firstly, it would requigeprecise knowledge of the
strange quark mass. Secondly, it turns out that the maximassmof a hybrid star

is not very sensitive to the value af — 442 [12].

As a result of this discussion and the results in Higs. 2.242a8dtwo points are
important for the further contents of these lectures. Kirate should now be moti-
vated to learn more about the nature and the consequencgsrafations in nuclear
and quark matter. Secondly, we have learned that, givengmarance of the pre-
cise quantitative effects of the strong interaction anditheertainty in astrophysical
observations, the mass and the radius of the star are natienffio distinguish be-
tween a neutron star, a hybrid star, and possibly a quarkistarefore, we also have
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APR + Phenomenological QM EoS

2.5 ‘ \ ‘ \
APR only ,

10 12
R (km)

Fig. 2.2 Mass-radius plot from Refl_[12] which shows the dependerfidheomass-radius curve
on the (uncertain) parameters of the quark matter equafistate in a hybrid star. We see that
reasonable choices of the parameters lead to similar cawésr nuclear matter (here with the
APR equation of state). In this plot, the transition dengjityin units of the nuclear ground state
densitynp) between quark matter and nuclear matter has been used asraeper, rather than
the bag constant. From our discussion it is clear that onebeatranslated into the other. The
coefficientc describes QCD corrections to the quark Fermi momentum arsitththep* term in
the pressure, see ER._(2177).
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Fig. 2.3 Mass-radius plot from Refl[13]. A comparison of a neutraar,sdifferent hybrid stars,
and a quark star is shown, using several nuclear equaticstatef(DBHF, APR, HHJ) and several
quark phases (CFL, 2SC). For more details and explanatitthe @arious abbreviations, see Ref.

to take into account other observables which are linkedeailcroscopic physics.
While the equation of state is a bulk property, i.e., it isedgtined by the whole
Fermi sea, there are other phenomena which are only sengitithe low-energy
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excitations at the Fermi surface. One class of such phenaim@iven by transport
properties. They can possibly be related to observableshadrie more restrictive
than mass and radius for the question of the matter compositi the star. We
shall discuss such observables in chajpter 5 where we rékateobling of the star
to neutrino emissivity, and in chapfer 6 where we qualityivdiscuss other such
observables.

Problems

2.1. Equation of state for noninteracting nuclear matter

Find the full equation of state for noninteractimgp, ¢ matter at’ = 0 numerically

by plotting P versuse. You should see the onset of neutrons and identify a region
where the equation of state is well approximated by the pdaweibehavior of pure
neutron matter in the nonrelativistic limit, E¢.(2136).

2.2. Mass-radius relation

(a) Solve Egs[(Z2.38) numerically (for nonrelativistic pureutron matter, i.ey, =
5/3) and plotn(r), P(r) for a given value of the pressufg = P(r = 0).

(b) UsePy as a parameter to find the mass-radius relatiR). To this end, you
need to do (a) for several values Bf and find for eachP, the radiusk at which
P(R) = 0 and the corresponding maggR).

(c) You may incorporate general relativistic effects frdme fTOV equation[{2.10)
and/or the full (numerical) equation of state for noninttireg nuclear matter from

Problenf2.1L.
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Chapter 3

Basic models and properties of dense nuclear
matter

There are numerous models to describe cold and dense itmgracclear matter.
Some of them have been used to obtain the curves in[Eids. @[2.AnFrom these
curves we see that the models may differ significantly inrtpegdictions of the
properties of neutron stars and hybrid stars. The reastraighey all are extrapo-
lated into a regime where there is little theoretical controother words, for densi-
ties below the nuclear ground state density there are erpatal data for instance
from atomic nuclei or neutron scattering which serve to fitplarameters of the nu-
clear models unambiguously. However, it is very challeggmconstruct a model
which reliably predicts the properties of nuclear matteddoger densities. Put an-
other way, currently the only “experiments” in this densigime are astrophysical
observations which themselves are naturally less coattdfian experiments in the
laboratory. Therefore, the state of the art in describitgracting nuclear matter at
high densities is a competition between several modelshwdli@re prone to uncer-
tainties. In these lectures we do not attempt to give an éewraver these models.
We rather focus on two basic models and discuss them in détadl first is the
Walecka model and its extensions. The second is chiral yetion theory, which
is an effective model based on chiral symmetry of QCD and tsm@ous breaking
thereof in nuclear matter. We shall use it to discuss kaomleonsation in nuclear
matter.

To put the following in the perspective of understanding Q@@ should keep
in mind that nucleons are ultimately built of quarks and gisiavhich are the fun-
damental degrees of freedom of the strong interactions dtiighly nontrivial task
to describe even the mass of a nucleon from quarks and glieirspne nuclear
interactions. An important tool for such a case is an effedtieory which has non-
fundamental degrees of freedom, baryons and mesons irsdtgadrks and gluons.
An effective theory can in principle be obtained by taking tbw-energy limit of
the underlying fundamental theory, in this case QCD. Howeties procedure may
turn out to be very difficult. Therefore, one tries to “gueas’effective theory, for
instance guided by symmetry principles. One obtains a yhwih some unknown
parameters which have to be fit, for instance to experimeasailts. Once the pa-
rameters are fitted, one may extrapolate the theory bey@iktime where the fit

27



28 3 Basic models and properties of dense nuclear matter

has been done. In our case, this will be the high-densitprefgir which we have no
experiments in the laboratory. There is of course no guaesthiat this extrapolation
works. Models for interacting nuclear matter at high deesibhave to be understood
in this spirit. Of course, an upper density limit for the dly is the deconfinement
phase transition to a phase where quarks and gluons ardekarredegrees of free-
dom. This limit density is not precisely known but may wellreached in compact
stars.

3.1 The Walecka model

The Walecka model contains nucleons which interact via xcb@nge of the scalar
o meson and the vectos meson. The Lagrangian is

gng‘i‘go”w‘i‘o%, (31)

Here, the free nucleon Lagrangian is
Ly =W (i O —my+ py°) o, (3:2)
where = ¢Ty°, andy = <$”

P
For a basic discussion of the field-theoretical treatmemiaiinteracting fermions,
in particular the roles of finite temperature and chemicadéptial, see appendix
[A2 The free mesonic Lagrangian is

> with the neutron and proton spinagg andi,.

1 1 1
Low="5 (0uo0H o —m50?) - 70w + zmﬁ,oo“a)“ : (3.3)
wherew,y = dywy — dvwy, and the interaction Lagrangian with Yukawa interac-
tions between the nucleons and the mesons is

Z1=goPoP+ gy auy. (3.4)

We shall consider isospin-symmetric matter, i.e., the m&ssd chemical poten-
tials of protons and neutrons are assumed to be identicgkmeralu is a matrix
u = diag( i, 4p) = diag(us + Hr, Up — Hr) With the baryon and isospin chemical
potentialsus and ;. Thus, in other words, we assume the isospin chemical poten-
tial to vanish. We can then simply dengie= up = p, = U,. Also the interactions
between the nucleons are assumed to be symmetric, i.eunthep, andnp in-
teractions are identical. An isospin asymmetry in the Bxtgons can be included
by addingp-meson exchange. We will briefly discuss this in $ecl 3.20Alson
condensation induces an asymmetry, discussed i Séc. 3.3.

The parameters of the model are the masses and the couplistants. The
masses are
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my = 939MeV, my = 7183MeV, mg = (500— 600) MeV. (3.5)

Theo mesonis in fact a broad resonance and thus we can only appately assign
a mass to this meson. Below we shall uge= 550 MeV. The additional parameters
are the coupling constangs, g.,. We shall discuss below how they are fixed.
In order to compute the equation of state, we need to considgrartition func-
tion i i
z:/@w@wga@w exp/X 2 (3.6)

/XE/OBdT/d3x, 3.7)

with the inverse temperatufie=1/T. We shall allow for vacuum expectation values
of the mesons. To this end, we write the meson fields as a suhreafandensate
and fluctuations,

where we abbreviated

o— 0+0, (3.8a)
Wy — Woloy + Wy, (3.8b)

as explained in appendix A.1 for a general bosonic field. Nmsimplest approxi-
mation is to neglect the fluctuations. This correspondsdarikan-field approxima-
tion. In this case the interaction between the nucleonslaadiesons is simplified
to a mesonic background, or mesonic mean field, which is sgehebnucleons.
We can then simply drop all derivative terms of the mesonsaA®nsequence,
the meson mean fields merely act as corrections to the nuolese and chemical
potential, and we obtain the Lagrangian

— . 1 1
L =P iy O — my + o) Y — 5mg 0 + Smeyah (3.9)
with
my = my —go0, (3.10a)
=~ gwln. (3.10b)

Itis important to keep in mind that the actual chemical pt&rassociated with nu-
cleon number, igt, not u*. This becomes important for the correct thermodynamic
relations, see footnote before EJs.(3.26). The new effetthemical potential”
u* nevertheless has physical meaning since it determinesetmilenergy as we
shall see below.

The partition function now becomes

7 — ot (—3m5 0%+ 3miy) /@(y@wexp/ G (iyHou —my+ ) w.  (3.11)

X

The evaluation of the free fermionic part (with modified mass chemical poten-
tial) is now straightforward and is done in detail in apperifli2l Here we only
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repeat the most important steps. One first introduces thedfdtansforms

ﬂKX lﬁ

o SR

Our conventions ar& = (—iw,,k), X = (—iT,x), andK - X = koxo — k- x =
—(w, T + k- x), with the fermionic Matsubara frequencies = (2n+ 1)riT. Thus,
after performing the&X integral in the exponent one obtains

w(x KX G(K) . (3.12)

1
7 = ot (—3m50%+gmp /@uﬁ@wexp[ Zqﬁ GT(K)I,U(K) . (3.13)
with the inverse nucleon propagator
G YK) = —yHKy — you* +mpy. (3.14)

Now using the standard formula for the functional integraraGrassmann variables

one obtains
G 1K)

7 — et (—3m5 0%+ 3mb8) et , (3.15)

where the determinant is taken over momentum space, Diaeespnd the (here
trivial) neutron-proton space. Consequently,

V(1 1
InZ = T ( > %52 5’”%}“%)
—|—4V/ d’k [Ek +In (l—i—e (B—u* /T) +In (1+e (Exctp” /T)} (3.16)

where we have performed the Matsubara sum and taken thedtdgmamic limit,
and where we have defined the single-nucleon energy

Ep = \/k?+ (m})?. (3.17)
The pressure then becomes
T 1 1

with the nucleon pressure (after subtracting the vacuur) par
PN_4T/ (1+e EHIT) i (140 EHOTY] L (329)

We have thus derived the fermionic pressure already usethaptel 2, see Eqg.
(2.18), from thermal field theory. The factor 4 counts the spin degrees of free-
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dom and the two baryon degrees of freedom (proton and ndu¥malso have
obtained the contribution of antiparticles, for whigh — — ™.

The meson condensates have to be determined by maximizangessure. We
obtain

0= Fr =-mg0 —go—=——r am; (3.20a)
opr _ 0Py
0= —= =m0 — go—— 3.20b
In terms of the baryon and scalar densities
oPy _ aPN d3k
= W) =5 e; | Grp e @21
- k. my 1
= 3.21b
n= (YY) = dmN (2m)3 Ey elEx—er?)/T 417 ( )
we can write the equations for the condensafes|3.20) as
o=, (3.22a)
g
—~ 8
W = m—‘;’ng. (3.22b)
w

It is useful to rewrite the first of these equations as an égudbr the corrected
massny, rather than for the condensate

. 85
my =my =5 ns, (3.23)
g

where we have used Ed._(3.10a). We now take the zero-tempedanit, 7 <
my, 4, which is justified since the temperatures of interest anm@sdt of the or-
der of 10 MeV, while the baryon chemical potentials are abib¢&eV. The Fermi
distribution function then becomes a step function. Inipalar, all antiparticle con-
tributions vanish. We obtdih

1 One has to be careful with the thermodynamic relations iiviey the energy density (3.26b):
remember that the actual chemical potential associatddhaityon numbeng is u, not u*. This
means that the pressure at zero temperature can be writfesase + png. The last term of the
pressure (term in square brackets on the right-hand side.d8BE26&)) comes from a term of the
structure—gg + U*np, cf. for instance Eq{2.18). With* = 1 — g, ap and the expression fan

in Eq. [3:22b) we can write this as

1g2 lg
P=—&+Uu nBJrE—(:)nIZ;fE—gn

16 o, 15
<s +§m—‘*’n3+§—g + Ung, (3.24)

2
s
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%—2”% - %—% ?
e | (348~ 0nioPae ) £+ ) CLEE ] (3260
- 5523t
e | (262 0nk) ) B o CEEE | a.20m)
where we have defined the Fermi energy
Ep = p" = \/kf+ (my)?, (3.27)
and where the zero-temperature densities are
np = gi:’; (3.28a)
ny = ";[N [kFEF (m)2In kF;*VE; ] . (3.28b)

Pressure and energy density in EQS. (8.26) define the equadtiiate which has to
be determined numerically. We may discuss the limits of E(@al— 0) and large
(kp — o) density analytically. For small density we find

= ng, (3.29)

neglecting terms of the order &f /(m})? < k3 and higher. Therefore, from Eq.

(3:23) we conclude
my ~my, (3.30)

where we have suppressed terms of the ordeh%gzﬁfn?, < my. The pressure and
the energy density are, within this small-density appration, dominated by the
nucleonic pressurgy,

2k3 2myk3

Comparing with Eqs[{2.35) we see that we have exactly remedithe noninteract-
ing limit. This is no surprise because the only effect of titeiactions in the present

from which we can read off the energy density

1gh 2 185 »
E=& +§m—wng+§—%ns (325)

which yields Eq.[[3.28b).
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np[fm ™3]

Fig. 3.1 Density-dependent effective nucleon magsat 7 = 0 in the Walecka model in units of
the zero-density massy and as a function of the baryon density. Solid line: full numerical
result. Dashed line: high-density approximation from B338).

approach is the modification @f andmy. In the small-density limit these effects
are negligible and we are back to the noninteracting restiére the equation of
state has the form 0 £%/3,

For largekr, on the other hand, we have

mk k2
g~ 17\_’[2F , (3.32)
and thus my
my ~ 22 (3.33)
1+22%

We see that the effective nucleon mass goes to zero for langsties. For general
values of the Fermi momentum, the effective mass has to beet@u numerically
from Egs. [3.2B) and (3.28b), see Hig.13.1.

At large densities, the nucleonic pressiieas well as the pressure from the
scalar meson (which is proportionaltg/m2) behave likek. Therefore, the total
pressure is dominated by the vector meson contribution lwisigroportional to
n%/m2, and thus behaves lik&,,

P~eg~ (3.34)

NI =
oQ

SSN‘S"’
S
SN

Consequently, the speed of sound approaches the speettdadtligrge densities,

)

9P 1. (3.35)

2
Cy <
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Fig. 3.2 Binding energy per nucleon at zero temperature in the Waleckdel as a function of
baryon density, obtained from computing the energy densitly the density-modified nucleon
mass. The binding energy has a minimum at which the pregsisreero, i.e., at this point nuclear
matter is self-bound, and the corresponding density isd&dturation density. The two parameters
of the model, namely the coupling constapgsandg,,, are fixed such that the binding energy per
nucleon istp = —16.3MeV at the saturation densiby = 0.153fm 3.

So far, our model cannot be used quantitatively since we hateyet fixed the
numerical values of the coupling constants. To do so oneinegjthe model to
reproduce the saturation densityand the binding energy per nucleon at saturation
Eo,

no=0153fm3, Eg= <ni - mN> = —163MeV. (3.36)
B np=ng

Note the difference between the binding energy in (infinitelear matter and the
binding energy in finite nuclei. The latteris8.8 MeV for iron, see Eq[{2.64).

We leave it as an exercise to compute the coupling constemts the values
(3:38), see proble3.1. One obtayfs/ (41) = 14.717 andg? /(41) = 9.537. The
result for the density-dependent binding energy with thedees for the coupling
constants is shown in Fif.3.2. This figure shows that thegefigite densityng
where the binding energy is minimal. This is a basic featfiraiclear matter which
has to be reproduced by any physically meaningful modekctifig the properties
of the nuclear forces. It says in particular that if you addleans to a large nucleus
the density will stay approximately constant because tieeepreferred distance
between the nucleons that minimizes the energy. We havedithpimade use of
this fact in our estimate of the nucleon number in a neutranattthe beginning of
chaptef®. In the limit of infinite symmetric nuclear mattedagnoring the Coulomb
forces, this density at which the binding energy is mininsalg = 0.153fm 3. It
is calledsaturation density. At the saturation density nuclear matter is self-bound,
i.e., it is stable at zero pressure. We have indicated in[E@ that the minimum
of the binding energy divides the stable density regime wdbkitive pressure from
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the unstable regime with negative pressure. The behavititeopressure follows
from the thermodynamic relatiah = —3—5, whereE = €V is the energy andl the
volume, which implies
2 0(¢/np)

P=njp I (3.37)
Consequently, at the minimum @f/npg as a function ofnp the system has zero
pressure. Moreover, we see thatearease in the binding energy per baryon number
uponincreasing the baryon number leads to a negative pressure. (At veryl smal
densities, barely visible in the plot, the energy also iasss with density, i.eP, > 0.
This is the regime where the nucleons are too far apart tottie@l attraction; the
increasing energy is then a consequence of the increasietjkenergy.)

In our context of compact stars, the self-boundedness déaumatter implies
that nuclear matter can exist at the surface of the star whengressure vanishes. In
the interior, the gravitational pressure compresses thenta densities larger than
no. As we see from the figure, this compressed matter, in tursjtealf positive
pressure to counterbalance the pressure from gravity. i$hise reason why the
high-density part of the curve in Fig_3.2 is relevant foraghysical applications.
We shall see in the next subsection why the Walecka modelarsitmple form
discussed here cannot be trusted for densities much langemgy and how the
model can be improved to yield predictions for the high-dgnmegime.

3.1.1 Including scalar interactions

The Walecka model accommodates important aspects of munkgger such as the
existence of a saturation density whose realistic valuegsaduced upon fitting the
parameters of the model. We have already discussed on ¢igneuads that ex-
trapolations to high densities are uncontrolled, and thas/¥alecka model (and all
similar models of this kind) have to be improved in an intaypWith experimen-
tal observations, for example astrophysical data. Butetieeven a more obvious
shortcoming of the simple version of the Walecka model dised so far. Even at
the saturation density it fails in its prediction for theompressibility of nuclear
matter which is defined as
2 0%(¢/np)

K=ky oz

This quantity is a measure for the stiffness of nuclear mdtiesome literaturek

is also callectompression modulus or, somewhat misleadingly, “compressibility”.
To see that a large value &f corresponds to “stiff” matter, start from the usual
thermodynamic definition for the compressibiljty

(3.38)

oP  ,0%
= nB—

1
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This definition says that easily compressible (“soft”) matias a small change in
pressure upon changing the density. For the second equalitave used Ed. (3.37).
On the other hand, from the definitidn (3138) we obtain

2 2 2
=) ()7
ong Okp ong
% e Oe

wheredng/dkr = 3np/kr (see Eq.[(3.28a)) has been used. Now recall that in equi-
librium, i.e., at the saturation density where the presganéshesg /np as a function
of ng has a minimum,

d(&/ng)

O - 0n3

1 (i_ﬁ) . (3.41)
np np 0n3 ng=ng

Consequently, the second term on the right-hand side ofZ40) vanishes atz =
ng and the relation betweenandk becomes at saturation

ngp=ng

linoK

X 97
i.e., a large compressibility corresponds to a small incompressibilky as it
should be.

The calculation of the incompressibility in the given mogieldsK ~ 560 MeV.
This is more than twice as much as the experimentally inflevedue. Also the nu-
cleon mass itself can be determined experimentally and aoedgo the prediction
of the model. In total, there are thus four values which thelehshould reproduce.
To improve the model, we add cubic and quartic scalar sédf-actions of the form

(3.42)

Lo = —gmN(goo)?’— %(800)4 (3.43)
to the Lagrangiari(3}1). Besides the phenomenological aktese terms, there is
also a theoretical reason for their presence: the modehbesoenormalizable. With
the self-interactions we have introduced two new dimersgmconstantd andc
which can be used, together with the two coupliggsg to fit four experimental
values. Namely, the two from Ed.(3]136) plus the incomphekfsi and theLandau

mass

K ~ 250MeV, my = 0.83my . (3.44)
The Landau mass is defined as
myp = kr , (3.45)
VF
where
VE = 9k (3.46)
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Fig. 3.3 Binding energy per nucleon as a function of density in theddke model, including cubic
and quartic scalar self-interactions (solid line). Therfparameters of the model are fixed to the
saturation density, the binding energy per nucleon at thea#on density, the incompressibility,
and the Landau mass. For comparison, the dashed line shewssthit from Figi 312, i.e., without
scalar interactions. The scalar interactions account foueh softer equation of state.

is the Fermi velocity. It is plausible that the Landau massxigerimentally more
accessible than the mass parametgrsince it is an effective mass for fermions at
the Fermi surface where all low-energy excitations aretkxta

In the mean field approximation, it is easy to include the cffef the scalar
self-interactions. The pressure becomes

1 b — c
P= —Em%? — §mN(ggU)3 — Z
with Py defined in Eq.[(3.19). The implicit equation for the effeetivucleon mass
(3:23) now receives contributions from the additional teland becomes

1
(g00)*+ Emﬁ,(ﬁg—i—PN, (3.47)

2 2
my =my — g—gnx—i— g_g [me(mN—ml*v)2+c(mN—m]’§,)3] . (3.48)
mg mg

To fit the four above mentioned values, one has to chags€4m) = 6.003,
g2,/ (41m) = 5.948,b = 7.950- 103, andc = 6.952- 10~*. The numerical evalua-
tion of the binding energy is left as an exercise. The resuftlotted in Fig[ 3.3
and shows that the behavior at large densities has chang@ficzsintly compared
to the case without scalar interactions. In particular,|tiveer value of the incom-
pressibility goes along with a softer equation of state ejdadensities. In other
words, if you choose a fixed binding energy on the verticas 3xiu find a larger
baryon density after taking into account the scalar intéwas. The matter has thus
become easier to compress in the high-density regime, iordance with a lower
incompressibility. (See also discussion about stiff arftlesuations of state in Sec.

23)
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| lp [ n [ A [5][3[5[=] = |
m (MeV) 939 1115 1190 1315
A 2] 12| 0 |10 1| 12] -1/2
0 1 0 0 110 1] o0 1
S 0 -1 -2
J 1/2
quark content || uud | udd | uds | uus | uds | dds | uss | dss

Table 3.1 Mass, isospin, electric charge, strangeness, spin, andk goatent for the spin-1/2
baryon octet.

3.2 Hyperons

In the interior of a compact star, densities can be as higbwsal times nuclear sat-
uration density. Therefore, baryons with strangenegs;rons, may occur (as well
as muons). The lightest of these states are given by the hagtet, see Table3.1.
It is rather straightforward to incorporate hyperons in kivel of model discussed
above. Of course, the evaluation becomes more laboriodshamodel has many
more parameters. Let us therefore briefly discuss the moitelthe hyperon octet
without going into too much detail.

The interaction between the baryons is now extended byaidtiens mediated
by thep andp vector mesons. (Th@ meson has quark contesit the p meson has
the same quark content as a pion, i.e., it can be conside@t@ascited state of the
pion.) The Lagrangianis

L =30 (iyH O —mj+ WiYo + 80,0 — g VH @Wu — 8o V¥ B — 8o V" PiTa) W)
J

+ % (0" 00y0 —mio?) — gmN(go—U)s - %(800)4

— %w“"oow + %mﬁ,w“wu

At TR

- % i Py + %m%p#pﬁ : (3.49)

Here,j runs over all eight baryons ang are the isospin generators. In a compact
star, we have to require chemical equilibrium with respet¢he weak interactions.
In the case of hyperons, the conditions are

Hp = Hn — He, HA = Hn (3.50a)
Hs+ = Hn—He, M50 = My (3.50Db)
Hs- = Hn+He,  Hzo=Hy (3.50¢)

Hz=— = Hp+ He, (3.50d)
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Fig. 3.4 Density fractions of baryons and leptons (and quarks, forag lbonstantB =
250MeV/fm~3) as a function of the baryon number density. The figure isrtdkem Ref. [1]
where more details about the underlying calculation carobad. For sufficiently large densities,
hyperons and muons appear, and at densities of a few timésanground state densities their
density fractions becomes comparable to the fractions dfouas and electrons. There is a region
of coexistence of deconfined quark matter and baryonic mate Sed._3l4 for a discussion of
these mixed phases. The curves shown here depend on the chodels for nuclear and quark
matter and the value of the bag constant.

and, including muongy, = p,. The conditiond(3.30) all come from weak processes
which we have already discussed, see Hgs.2.40). For eraimplprocess —

>+ +e+Vv,, which gives rise to the conditiops+ = u, — L., can be understood
from the elementary processes as

u+e—>s+Ve
d—ut+e+V, udd — uus +e+Vv,. (3.51)
d—u+e+v,

Electric neutrality is given by the constraint
np+ns+ =ne+ny+ns—+n=—. (3.52)

We show the result of baryon and lepton density fractionsrimoael similar to the
one discussed here in Fig. B.4.

As a result of this rough discussion and the curves in thedigug learn that hy-
perons can be included in a rather straightforward extarnsithe simple Walecka
model and that hyperons do appear for sufficiently large ileasThe physical
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reasons are that) they can appear because the baryon chemical potential is large
enough to provide energies larger than their m&gsthey do appear becaude)

the systems seeks to acquire neutrality and does so witti@sat low densities; if
hyperons are available, electrons in high-energy statebeaeplaced by hyperons

in low-energy states an@) the system seeks to become isospin symmetric; at low
densities it is highly isospin asymmetric, and hyperonfwinzero isospin number
provide a means to symmetrize the system.

3.3 Kaon condensation

Another possible variant of dense nuclear matter, besliesdcurrence of hyper-
ons, is the condensation of mesons. Originally, pion cogaéon was suggested
[2]. Only many years later, it was realized that kaon condtos is possible in
compact stars [3]. This is somewhat surprising since kaomsnaich heavier than
pions and thus pion condensation seems more likely. Howgvére medium, the
effective kaon mass becomes sufficiently small to allow fka@an condensate.

Kaon condensation is of interest for these lectures forraéveasons. Besides
being a variant of dense matter and thus relevant for theighg§compact stars, its
discussion requires the introduction of several importamicepts in the theory of
the strong interaction. It is thus also interesting from adamental point of view.
Moreover, we shall encounter kaon condensation againitateese lectures, when
we discuss the quark-matter relatives of the kaon, sed S&d. 4

To explain kaon condensation, we will first have to say whaaarkis and will
do so with the help of chiral symmetry and spontaneous bnggkiereof. Then, we
will discuss chiral perturbation theory. This is one pokesimethod to study kaon
condensation and has been used in the original viork [3]. Foth&r approach, us-
ing models similar to the above discussed Walecka modefoséestance Ref[[4]
and references therein. The evaluation of the chiral modsgltb be done numeri-
cally, so we will more or less only be concerned with settipcgand understanding
the basic equations. As a modest goal, we will try to undedsthe onset of kaon
condensation, i.e., we will show how to compute the critizadyon density at which
there is a second-order phase transition to the kaon-ceserdgrhase.

3.3.1 Chiral symmetry of QCD

Kaon condensation can be discussed in a low-energy eféettteory, here chiral
perturbation theory. This theory should describe the fumetatal theory, QCD, in
the low-energy limit. In order to construct the theory, weetiéo understand the
underlying symmetries. The QCD Lagrangian is

Zocp = ‘ﬁ(iV“Du'f‘UVO_M)W‘f‘fgluons, (3.53)



3.3 Kaon condensation 41

with the quark spinoty in color, flavor, and Dirac space, the mass matrix in flavor
space
m, 0 O
M=| 0my O |, (3.54)
0 0 my

and the covariant derivative, = d,, — igT,A{,, whereT, = A,/2 (a =1,...8) are
the generators of the color gauge gréiip(3). with the Gell-Mann matricea,, A},
are the corresponding gauge fields, gnslthe strong coupling constant. The chem-
ical potentialu is a diagonal matrix in flavor space. Without taking into aaucthe
weak interactions, each flavor is conserved and there age thdependent chem-
ical potentials. We have already seen in the previous sectitat after taking into
account weak interactions there are only two chemical pigtenone for quark
(baryon) number, and one for electric charge.

The purely gluonic contribution to the Lagrangian is given b

1
fgluons: _—vaGa (355)

4 Hve
whereGy,, = 0uAY, — 0vAf + g f“""A’;,A@ with theSU (3),. structure constants is the
gluon field strength tensor. Here we are not interested m ghionic part, since
we focus on the transformations of the fermion fields and éiselting symmetries
of the Lagrangian. Also later, when we shall use QCD for exptalculations,
the gluonic part is negligible because we always work at wengll temperatures
compared to the quark (or baryon) chemical potential. Ttexattions of the quarks
via gluon exchange, included in the covariant derivatisegficourse important; in
Sec[4.B this interaction will be used on the microscopiellev
We now introduce the chirality projectors

1+w 1-w
Pr="2" p=—". 3.56
=, P= (3.56)
They obey the identities
PE, = PryL, P;/szR/L, PP =0, Pr+P =1, (3.57)

i.e., they form a complete set of orthogonal projectorse§ehidentities are obvious
with y52 =1 andy;r = y.) For a physical picture, remember that, for massless guark
chirality eigenstates are also eigenstates of helicitgrétore, in this case, there is
a one-to-one correspondence between chirality and thegiion of the fermion
momentum onto its spin. We define left- and right-handedlgsinors by

YriL =P/l (3.58)
such thaty = Priy+ PLY = Yr + Yr. Then, using

{¥s,Yu} =0, (3.59)
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we can write the Lagrangian as

Zacp = Yr(iY' Dy + pyo) Wr + Qr(iy* Dy + 1yo) Y
—UrRM L — YLM g + Lguons: (3.60)

Let us first discuss the massless cdges 0. In this case, separate rotations of left-
and right-handed spinors leave the Lagrangian invariant,

wR — ei(p’gt“ wR, wL — ei(pftu wL . (361)

Since we are interested in three quark flavorsre the nine generators of the fla-
vor groupU (3), 1o =1 and#, = T, (a = 1,...8). Consequently, the Lagrangian is
invariant undet/ (3), x U(3)g. The corresponding Noether currents are

Jg,R/L = r/LYHta L - (3.62)
They can be rewritten in terms of vector and axial-vectorenis

oy =g+ dor = OV Y, (3.63a)
Ty = e —TE, = Oy sy (3.63b)

To see this, note thakys = Pr andPLys = —P.. In QCD the singlet axial-vector
current is in general not conserved,

8°Ns

u
e T

G GhY, (3.64)
whereGHY = %e“""PGop is the dual field strength tensor. This is referred to as the
axial anomaly. We are left with the symmetry groit/ (3)gr x SU(3) x U (1)y. The
vector symmetry/(1)y corresponds to baryon number conservation and is therefore
also denoted a8 (1). The flavor symmetry groufU (3)g x SU(3),, is referred to
aschiral symmetry. As we can see from Ed.(3160), nonzero masses break thé chira
symmetryexplicitly. They do not break th€ (1)y symmetry, and for the special case
my, = my = my the subgroupgU (3)g. ., of simultaneou® andL rotations remains a
symmetry of the Lagrangian.

Spontaneous breaking of chiral symmetry is realized by a chiral condémsd
the form (. yr). This is analogous to spontaneous symmetry breaking inlsimp
models such ag* theory (see for instance the discussion of Bose-Einsteiden-
sation in appendikAl1), or in a superconductor, or in thegdignechanism. The
chiral condensate is only invariant under simultaneoustrignd left-handed rota-
tions, i.e., the symmetry breaking pattern is

GESU(?J)RXSU(3)L—>HESU(3)R+L (365)

As a comparison, igp* theory with a complex scalar fietd we haveG =U (1), H =
1, which gives rise to the familiar “Mexican hat” potentialttvia negative quadratic
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and a positive quartic term ip|. Spontaneous breaking of a global symmetry goes
along with massless Goldstone bosons. In the Mexican herte tis one massless
excitation along the bottom of the Mexican hat, given by thgudar component of
the order parameter (while the radial component corresptmd massive mode).
Here, the bottom of the Mexican hat is not just a one-dimeraitine. It is rather
given by the coset spa®/H (which is simplyU (1) in ¢* theory). This space has
dimG — dimH generators. Consequently, with dim= 8-+ 8 = 16 and dinH = 8,
there are 8 Goldstone modes. They are described h§iflig) matrix

U = bl fm (3.66)

with the pion decay constarff; ~ 93MeV. The meson field§, of the Goldstone
octet are usually reparametrized as

n n
—t+— K+
V2 /6
n
O, A = T -+ — KO . 3.67
B (3.67)
K- o /2
3’7

Since the rows (columns) of this matrix carry left-handeddtgright-handed anti-
flavor) labels, it is easy to read off the quark content of tadous mesons, e.g.,
K™ ~su, m" ~ du etc. According to its chiral structure, the chiral matrixrtsforms

under a transformation= (g,,gr) € G as

U— gLUgITQ. (3.68)

3.3.2 Chiral Lagrangian

In the (unrealistic) case of vanishing quark masses, thalchymmetry is an exact
symmetry and the Goldstone bosons are exactly massleshitthgprthe analogy
to the Mexican hat potential, this means that the bottom @Mlexican hat is truly
flat. Quark masses break the chiral symmetry explicitly. Eosv, if the masses
are small compared to the characteristic scale of chiralnsgtry breaking\ ~
Amfr~ 1GeV we can still consider the chiral symmetry as approxénigie bottom
of the Mexican hat then gets distorted on a scale small comptarthe deepness
of the potential, and the Goldstone bosons acquire smalk@sasn this case it is
more appropriate to speak pfeudo-Goldstone bosons. One might still hope to
describe the system at low energies by an effective theoilighnis built on the
underlying chiral symmetry, although this symmetry iscilyi speaking broken.
The mass matrix/, now nonvanishing, is required to transform just as theathir
fieldU,i.e.,

M — g Mgh. (3.69)



44 3 Basic models and properties of dense nuclear matter

We require the chiral Lagrangian to be invariant un@ei he kinetic term and the
mass term of the resulting effective theory are

2
Ly = %Tr[duUz?“UT] +eTMU+MUT + . (3.70)

where the trace is taken over flavor space. The two consfardaadc have to be
fitted to experimental values, similarly to the constantshef Walecka model. In
principle, higher order terms iti are allowed but shall be neglected here. Note that
the Goldstone fields themselves appear in the exponent dietdd/, i.e., they are
already present to all orders.

In the context of compact stars, we do not only want to desdsiblated mesons.
We also need to include baryons and their interactions. Bingom octet fields are
given by the matrix

0 A
e
V2 V6 P
_ 50 A
2
= =0 L JEA
3

which includes the protop, the neutrom, and the hyperons from Table B.1. A
simple way to understand the structure of this matrix is dlevis. Consider the
baryons as composed of a diquark and a quark. The diquarksfioantitriplet, i.e.,
one can think of the columns of the matrix as labellediy/, s) which corresponds
to the quark contenfds, us,ud). Then the rows are simply labelled by the flavors
in the fundamental representationd, s), and one easily checks that this yields the
quark content of the baryons as given in Tablé 3.1.

The free baryon Lagrangian is

L =Tr[B(iy"dy —mg)B], (3.72)

wheremp ~ 1.2GeV is theSU (3). x SU(3)g symmetric baryon mass. To write
down the interaction between baryons and the mesons it iseo@ent to decompose
the chiral field into left- and right-handed fields,

U=E&E&, (3.73)
where, without loss of generality, we may choose
E=&=¢), (3.74)

such that
U=¢&2. (3.75)
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We now add the meson-baryon interaction term$13, 5] (seediapter 7 of Ref.
[6] for more details),

L = iTtBy ¥, B]] + DTt[Byuys{J¥ B}] + F Tr[Byu s/, B]]
+arTr[BY(EME + ETMTET)B] + axTr[B'B(EME + ETMTET)]
+asTr[B'BTrME2+ MT(ET)?], (3.76)

with the additional constan®, F, a1, ap, a3, and the vector and axial-vector cur-
rents

R = 2(ETHE + EoMET), 3772)
s = S(EToHe —gore). (3.77D)

The Lagrangian is an expansionlify A andd /A with the scale of chiral symmetry
breakingA. Higher order terms in these parameters are omitted. In sumwe
have the Lagrangian

L =L+ L+4. (3.78)

Later we shall also add electron and muon contributionsthHaytare simple and we
ignore them for now to keep the notation brief.

3.3.3 Kaon-nucleon matter

Since we expect (charged) kaon condensation in a compacasiar than any other
meson condensation (possibly there is pion condensagbngifor simplicity drop
all mesons other than the kaons. We can then write

U = e =cosQ +isinQ, (3.79)
with
7 0 0 @a-ig
0= z @Ay = 0 0 @—ip |, (3.80)
a=4 O +igs gs+igr O

where we have absorbégd into the fieldsg, = 6,/ fr such that they,’s are dimen-
sionless. We can now compute a simple expression for thexiatiTo this end we
first verify by explicit matrix multiplication

0= ¢%0, (3.81)

where

P=@+E+E+¢. (3.82)
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From Eq.[(3.811) we obtain (for instance via complete indroti
0% = ¢?" Y02, (3.83)

for all n > 1, which can be used to compute

21 4l 21 4l
0?
=1-=(1- 3.84
<p2( cosp), (3.84)

and

2 4 2 2
sinQ:Q(l—Q—+Q——...):Q(l—Q—Jr‘pz—Q—...)

3! 51 3! 5!
@0 . ¢do 0.
_Q_TJF?—..._Esmqo. (3.85)

As a further simplification let us now drop the neutral kaotdBeqg; = ¢ = 0,
because we expect charged kaon condensation. Then, fron{Zg#) and[(3.85)
we obtain

cosp 0 1.404;(0!% sing
U= 0 1 0 . (3.86)
z’M@l(’o5 sing 0 cosp

Now we interpret the fieldgy s as vacuum expectation valueg,s — (@), and
neglect the fluctuations around this background. The gépayaeedure to describe
Bose-Einstein condensation, including fluctuations, {fl@&xed in appendixAl1 for
the ¢* model. The condensates are assumed to be constant in spstcetamve the
time dependence(r,x) — @e 'Hk! i.e., our ansatz is

(K™) = (@u) +ilgs) = g, (3.872)
(K*) = (@) —i{gs) = gelb. (3.870)

The real, constant (i.e., space-time independent) valug luds to be determined
later from minimizing the free energyx plays the role of a kaon chemical po-
tential, as we shall see more explicitly below. More prdgisgy is the chemical
potential forK~ while — g is the chemical potential fat ™. We thus arrive at

cosp 0 ietH'sing
U= 0 1 0 . (3.88)

ie”™Mk'sing 0 cosp
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We are now prepared to evalua#§, from Eq. [3.70). We shall neglect the masses
of the up and down quarks such thidt~ diag(0,0,m,). We also define the kaon

mass
2cmy

1z
Rather tharm, we shall later use the kaon masg ~ 494 MeV as a parameter of the
model. This yields

m = (3.89)

Ly =—V(0) (3.90)

with the tree-level potential

v( _ IR g 2 £2(1 _
Q) = 5 S @+ mi fr(1—cosp), (3.91)

where we have subtracted the constant vacuum contribitigpr= 0). This potential
contains the kaon condensate to all orders. We shall wotkthiis expression below,
but it is instructive to expand it up to fourth ordergn

2

A — mi (fr0)*. (3.92)

2,2
V(@) = S () + S

2

This is the familiar expression from @ model for the free energy of a Bose
condensate with chemical potentjat, massmg, and effective coupling4u? —
m%)/(6£2), see for instance EJ_{A1L8) in the appendix. As expecteatieosation
occurs foruZ > m2 because in this case the quadratic term is negative and ére qu
tic term positive, i.e., we have recovered the Mexican h&emiial (where we have
already picked one direction singeis real).

For the baryonic Lagrangian we only keep the lightest basytire proton and
the neutron. From Eq._(3.F72) we thus obtain

g = pliyH 0y — mp+ YPW,) p + nliyH oy — mp + Y pu)n, (3.93)

where we have added the proton and neutron chemical pdssmfiandp,. For the
interaction terms we need

cog¢/2) 0 ie'Hk'sin(¢p/2)
£ = 0 1 0
ieM'sin(@p/2) 0  cog/2)

which obviously fulfillsé? = U. By inserting this into Eqs[{3.77) we see that the
spatial components of the currents vani$ph,= J4 = 0 (since there is no spatial
dependence in the condensate), and the temporal comp@ments

: (3.94)
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-100
7= iuKsinz((p/2)< 0 oo) ,

001
0 0 —eiHxt
J9 = iugcog@/2)sin(p/2){ O 0 0 |. (3.95a)
ek 0 0
Hence the various nonzero terms needed#pin Eq. (3.76) become

Tr{BYo [0, B]] = Hx (2p" p+n'n)sir(¢/2), (3.96a)

arTr[BY(EME +&"MEN)B] = —2aim, p' psint(¢/2), (3.96b)
apTr[B'B(EME + ETMTET)] = 2aoms(p'p +n'n)cod(9/2),  (3.96c)

asTr[B'B|Tr[ME? + MY (E)2] = 2azm(pTp +n'n)[1— 2sirf(p/2)] (3.96d)

It is left as an exercise to verify these results. Insertinig tnto Eq. [3.76), and
putting together the contributions from the chiral fieldgs traryons, and the interac-
tions between them, the total Lagrangian can be written as

&L = =V(@) + pliy* 9y —mp+ YV (kp + 1y)]p
+nliyH Oy — mp + VP (M + 117 (3.97)
Similar to the Walecka model in Sdc. B.1, the effect of thenkeondensate on the
nucleons can be absorbed into an effective chemical patehtia slightly different

notation than in Se€._3.1 (wherewas absorbed intp*), we have kept the actual
thermodynamic chemical potentials separate, and we have

Wy = 2(az+ az)mg+ [2Ux — 2(a1 + az + 2az)ms] sin*(9/2),  (3.98a)

W = 2(az+ az)mg + [Ug — 2(az + 2az)my] sir(@/2). (3.98b)
We can now, analogously to Séc.13.1, evaluate the partitiontfon at7 = 0 to
obtain the thermodynamic potential densidy= —7/V InZ which can be written

as
Q =V(9)+ & — (Hy + Hn)nn — (M, + Hp)np, (3.99)

with the nucleon number densities andn,,, and the nucleon energy density

- 73
=2 Z /([217_:;3“](2_’_”1129@(](1:’1._]()’ (3100)

i=p.n

wherekg; are the respective Fermi momenta.

Before adding the lepton contribution we need to find thetieia between the
various chemical potentials through the conditions of cleahequilibrium. The
leptonic processes including nucleons are
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n—p+l+vy, p+l—n+vy. (3.101)

Here,l = e, u can either be an electron or a muon. We also have the purebnliep
processes,
e— U+ Vy+ Ve, H— e+ Vet Vy, (3.102)

and the processes involving kaons,
n<p+K-, e K +V,. (3.103)
These processes lead to the independent conditions

He=Hk =My, Hn= Hp+ He. (3.104)

The system is thus characterized by two independent chepatentials, say, and
U,. We implement the constraip, = u, + . by rewriting the terms containing the
nucleon chemical potentials in the potential (3.99ua®, + Upn, = Uuntg — Hentp.
Since we want to work at fixetk = n, +n,, we perform a Legendre transformation
of Q with respect to the variablgs, andg—z = —ng. This amounts to adding the
term ,np to Q which yields the relevant free energy for the baryons andkéuosn
condensate,

Qpx =V(9)+ep— [(1y — He)xp+ (1 —xp) k] 1. (3.105)

Here we have introduced the proton fraction

Xp=L (3.106)
ng
which has to be determined dynamically from minimizing theefenergy. We can
now add the lepton contributions to arrive at

QB,K,E = QB,K + & — Hene + @(uez - mi)(gu - Ilenu) ) (3107)
where we have useg, = L, whereg; are the lepton energy densities= e, ),
and where

i  (WE—mp)
T3 T 32
are the corresponding lepton number densities. The stepidumnn the muon con-
tribution accounts for the fact that muons only appeat ifs larger than their mass
my =106 MeV. On the relevant energy scale, electrons are madsi@svery good
approximation and thus are present for any nonzgro

For a given baryon numbesg, the variables of2;  ; are the proton fractiom,,

the kaon condensatg and the chemical potential for (negative) electric charge
They are determined by minimizing the free energy with resfmex, andg and by
requiring charge neutrality,

3/2
(3.108)

ne
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Qe _ 0Qpke  9QBKe _
Oxp oo o,

0. (3.109)

It is straightforward to compute the various derivativesi after a few lines of
algebra the result can be written as

1 053

T pcoR(@)2) Iy, | s tart(¢/2), (3.110a)

He =

0 = cosp— m_12< + 8 [&(14—)@,) — (a1xp +azx+ 2a3)ms} , (3.110b)
M HEfRL2

0 = fAHeSIF @ — ng [x,cOS(9/2) —sirf(¢/2)]
+ne+nu@(UZ —ms) . (3.110c)

The second equation has been obtained after dividing bdes dby sinp. This
means thatp = 0 is always a solution and Eq. (3.110b) is only valid for nanva
ishing condensates. In the third equation we recover thewscontributions to the
electric charge density: the first term on the right-hané sdhe pure contribution
from the kaon condensate. It gives a positive contributmthe negative charge
density fory, > 0. The second term on the right-hand side arises from thecansl|
and their interactions with the kaon condensate. OnlyferO does it give the pure
proton contribution—n, = —x,ng. Finally, the other two terms are the expected
contributions from the leptons.

The onset of kaon condensation can be determined by seitin@ in all three
equations. This yields three equations which can be sotweq f i, andng, where
ng is the critical density beyond which there is a condensatiexgny; the values
of the proton fraction and the charge chemical potentiahist density. Since Eq.
(3.110b) is only valid forp # 0, this has to be understood as approachijifrom
above.

We leave the numerical evaluation of the critical densityl #re general evalu-
ation for allng as an exercise, see probleml3.3. An important modificatidwghw
we have neglected for simplicity, has to be taken into actéamthis evaluation.
Namely, the energy densitg has to be modified due to interactions among nu-
cleons. It is beyond the scope of these lectures to derigentbdification, see Ref.
[5] and references therein for more details. Here we simphyte this modification
which is needed in order to get physically sensible res@itse needs to use an
expansion ofg around symmetric nuclear mattey = 1/2 of the form

& — €0+ np(1—2x,)°S(u), u=—. (3.111)
Here g is the energy density of symmetric nuclear matter, whose figsrnot rel-

evant because we only need the derivativepivith respect tax,. The nuclear
saturation density is denoted by, and



3.4 From hadronic to quark phases: possibility of a mixedspha 51

ni/ng

ng/nog

Fig. 3.5 Density fractions of neutrong), protons p), electrons{ ), muons {t1~), and the kaon

condensatek ) from Egs. [3.11D) wittez modified as given in Eqd_(3.1111]). (3.112). The param-
eters are (see Refl[5§hm; = —67MeV, apm; = 134MeV,azm; = —222MeV,my, = 106 MeV,
Jrn=93MeV,mg =494 MeV,mp = 1200 MeV. We see that for this parameter choice the onset of
kaon condensation is at about three times nuclear satrd¢iosity,n ~ 3.2n0.

3 (312no/2)%3

S(u) = (223 - 1) S

[u2/3 . F(u)} + SoF (u) (3.112)

is the nuclear symmetry energy (see Ref. [7] for a discussidime nuclear symme-
try energy in the context of the maximum mass of neutron steos the numerical
evaluation shown in Fid._3.5, the nuclear symmetry enerdghe@taturation point
So = 30MeV has been used, as well as the functitfn) = u. See caption of the
figure for the choice of the other parameters.

3.4 From hadronic to quark phases: possibility of a mixed phase

We have already mentioned the possibility of a hybrid star, a star with a quark
matter core surrounded by nuclear matter. How does thefacebetween these
two phases look? Is it a sharp interface or is there a shelhiybaid star where the
hadronic and quark phases coexist in a mixed phase? If theefds true, there will
be a jump in the density profile of the star, while the lattéova$ for a continuous
change in density.

Mixed phases are a very general phenomenon. In the contexnopact stars,
not only the mixed hadronic/quark matter phase is of relegaAlso in the inner
crust of a hybrid or neutron star one may find mixed phasesteTtiee expects a
neutron superfluid coexisting with a lattice of ions, i.emixed phase of neutron
matter and nuclei. In these lectures, we shall not disciespithperties of the crust
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H u

Fig. 3.6 lllustration of the possibility of a mixed phase. The press® of two phases A and B

is given by the respective curves as a function of a chemimignpial .. Note thatoP/du has to
increase with increasing (increasingu cannot lead to a decrease of the corresponding charge; this
would lead to an instability). Suppogeis the electric charge chemical potential and we require
charge neutrality. Then the squares mark the points at wahigkien phase is charge neutral. The
circle in the left panel marks a point where the two phasee bgual pressure and opposite charge.
Since this point has higher pressure than either of the squtris is the ground state (neglecting
surface tension and Coulomb energy). In this state, phased®Bacoexist and occupy different
volume fractions, determined by the different slopes ofdheves. In the right panel, there is no
point where both phases have equal pressure and oppositeesh@herefore, the square on the
curve B is the ground state.

of a compact star in detail. See Secl6.2 for a brief discossiml Ref.[[8] for an

extensive review. Other examples of mixed phases in diftesgstems are liquid-
gas mixtures or simply a solid, which is a mixture of an electgas and nuclear
matter (sitting in the lattice of ions).

In Fig.[3.8 the possibility of a mixed phase is illustrated: ¥ée that the condition
of charge neutrality plays an important role here. It is imgot that in a compact
star charge neutrality is required globally, not localfyother words, certain regions
in the star may very well have a nonzero electric charge agdsmother regions have
opposite charge to ensure an overall vanishing charge.

It is plausible that such a mixed phase will have a crystaltructure. For in-
stance, one phase may form spheres sitting at the pointsatfieel which is im-
mersed in the other phase. Other possibilities are rodsabs 0], such that the
mixed phase looks like spaghetti or lasagna, whereforegsysicists have termed
such phasesuclear pasta. In any case, if a mixed phase is possible because of a
general argument such as given in [Eigl 3.6, this does not tieait is indeed re-
alized. One has to take into account Coulomb forces (whiek s break charged
regions into smaller regions) and surface forces (whick seminimize the surface
and thus work in the opposite direction). We shall not disahese forces quantita-
tively but rather give some general arguments about mixedesh

We start from the simple picture that at small quark densityguark chemical
potential u) the hadronic phase is preferred and that there is a firgrgrbase
transition to the quark matter phase at some critical chalmpitential. The question
is whether there is a mixed phase between these two purepfidsepressures of
the two phases, (i, U.) andP, (U, 11.) depend on the quark chemical potential and
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the charge chemical potentig} (we work at zero temperature). Phase coexistence
is possible when the pressures of the two phases are equal,

Py(H, He) = Py, He) - (3.113)

Now suppose the neutrality condition wéoseal (which itisn’tin our context). Then
the charge must vanish in each phase separately,

Ol He) = Qq(H, He) = 0. (3.114)

These two conditions yielg, for each phase separately as a functiomofi” ()
andpd (u). Consequently, the condition of equal pressure,

Py(p, 1 (1)) = Py(, 14 (1)) (3.115)

yields a uniqueu. Only at thisu do the phases coexist. This amounts to a sharp
interface at a given value for the pressure, where on bot#s%flthe interface the
pure hadronic and the pure quark phases exist with diffetensities, i.e., there is
a density jump in the profile of the star.

Now we impose the weaker (and realistic) conditiogbal charge neutrality.
This means that in any mixed phase only the total charge haantish. We denote
the quark volume fraction by

VC/
Vii+Vy

Xq = €10,1], (3.116)
whereV, andV;, are the volumes occupied by the quark and hadron phasesgcresp
tively. Then, neutrality reads

(1= Xq)On (L, He) + XqQq (1, ) = 0. (3.117)

This yields a functior, (x4, ) which is then inserted into the condition of equal
pressure,

Pu(H, He(Xgs 1)) = Py(H, He(Xqs 1)) - (3.118)

The result is a chemical potential as a functiorxgf u(x,). Thus there is a finite
interval on theu-axis where a mixed phase is possible. We see that the looser ¢
dition of global charge neutrality allows for a shell with axed phase in a hybrid
star. These formal arguments become more transparent ioraggec picture, see
Fig.[3:1.

We shall not go into the details of an explicit calculationtieé quark/hadron
mixed phase because, even neglecting surface tension arldn@o energy, this
calculation eventually has to be performed numericallgtdad we show the result
of such a calculatiori[10] in Fi§.3.8 (cf. also Hig.13.4 wherehave already seen a
mixed phase). One recovers the (projection of the) topotddsig.[3.7 in Fig[3.8.
The figure shows the mixed phase being the preferred phaseeciriainu interval
without taking into account Coulomb energy and surface ggnén the complete
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Fig. 3.7 Schematic picture of a hadron-quark mixed phase in a finienal of u. Left panel:
the pressures of the two phases define two surfaces parasdeby u and L. The intersection
of the two surfaces forms a line where coexistence of the fwases is possible. Right panel: the
neutrality condition for each of the phases defines a cuntbam-p, plane, and thus a curve on
the respective surfaces (for illustrative purposes letctiege be nonzero — denoted by since
for zero charge there would have to be a valley of the presséinmixed phase may exist from A
(wherey, = 0) to B (wherey, = 1), provided that, for a givep, the pressure on this line is larger
than the respective pressure on the neutrality curves d&f phase. In this segment none of the
phases is neutral separately, but they may combine to alblotzutral phase. Note that the extra
direction i, is crucial to have a finite segment along fhexis where a mixed phase is possible.
If the mixed phase is realized, the arrows indicate the gitaiate for increasing values gf(the
pressure also has to increase along this line).

calculation one finds that a relatively small surface ené&gyeeded to destroy the
mixed phase. It thus appears unlikely that a mixed phase afkguand hadrons
exists in a hybrid star.

Problems

3.1. Binding energy and saturation density in the Walecka model

Solve Eq.[(3.2B) at zero temperature numerically for déiffeevalues of the baryon
density. Use the solution to compute the binding energy peteon and check
that the valued(3.36) are obtained upon using the valudseafdupling constants
g2,/ (4m) = 14.717,¢2% /(4m) = 9.537. In other words, reproduce the results from
Fig.[3:2. If you are a bit more ambitious you can also do it theoway around: set
up and solve the two equations that are needed to deterngrmtipling constants
from the conditiond(3.36).
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Fig. 3.8 Figure from Ref.[[ID] showing the transition from nuclearttea(NM) to a mixed phase
(mix) to a quark matter phase (CFL) (color-flavor locking (§fs explained in Sed_412). In the
mixed phasey, is lowered in order to make the nuclear phase positivelyggthiand the CFL
phase negatively charged. Taking into account Coulombggnand surface energy shows that
the u interval for the mixed phase shrinks with increasing swfgensiono until it completely
disappears foo > 40MeV/fm?. The exact value of is not known but it is likely to be larger than
that limit value such that a mixed phase appears unlikelg lirhit value does not depend much
on whether the mixed phase has spheres, rods, or slabs.

3.2. Walecka model with scalar interactions
Reproduce the result of Fig._3.3 numerically.

3.3. Onset of kaon condensation

Solve equation$ (3.110) — with the modifications given in.{gs[11) and[(3.112)
— numerically to determine the density fractions of nuckedaons, and leptons at
T = 0 as a function of baryon density. In particular, computedtigcal baryon
density for the onset of kaon condensation. See captiongo32 for the values of
the parameters and compare your result to the plot in thisdigu
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Chapter 4

Superconductivity and superfluidity in a
compact star

In our discussion of interacting nuclear matter we have sdgf@ored a very im-
portant physical effect. We have not included the possjbilf superfluidity and/or
superconductivity, although we have briefly mentioned tiece of superconduc-
tivity on the equation of state of quark matter, see §ed.|2.&e following, we
shall discuss these effects in more detail. But first let uspeulate what super-
conductivity is. Once we have introduced the basic concepghvall see that it may
appear in several variants in a compact star. And we willlsegitis crucial for the
understanding of transport properties of dense matter.tA@dransport properties
of dense matter, in turn, are related to the phenomenolotheddtar.

Consider a system of fermions at zero temperature with atedpotentialy and
free energy

Q=FE—uN. (4.2)

Now first suppose the fermions are noninteracting. Thenpgdalifermion with en-
ergyu, i.e., atthe Fermi surface, leaves the free en€@@pviously unchanged: the
energyE is increased by, but the second term subtracts the same amount since
we addN = 1 fermion. Now let us switch on an arbitrarily small attraetinterac-

tion between the fermions. Then, by adding two fermions etfRérmi surface, we
can actually lower the free energy because the attractteeaiction will lead to an
energy gain from the binding energy. Therefore, the Fermfase we have started
with is unstable. A new ground state is formed in which pafreamions are cre-
ated at the Fermi surface. Since two fermions formally camié&ed as a boson,
these fermion pairs will form a Bose condendhikhis formation of a condensate

1 In fact, the fermions are correlated in momentum space,matdl space. Consequently, in the
weak-coupling limit, the fermion pairs are not spatiallpamted bosons. The typical size of a
pair is rather larger than the mean distance between feenidrerefore, one apparently has to be
careful to describe the pairs as bosons. However, recemtriexgnts with cold fermionic atoms
show that there is no phase transition between the weakingupnit (where the pairs are wide
spread) and the strong-coupling limit (where the pairs ateah difermions, i.e., bosons). This is
the so called BCS-BEC crossover. This observation suggeg@rticular that it is not too bad to
think of the fermion pairs as bosons even in the weak-cogpimit.

57
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Fig. 4.1 Left panel: particle and hole excitations (solid lines) syatem of noninteracting ultrarel-
ativistic fermions with chemical potential. The dashed lines are the antiparticle and antiparticle
hole excitations. Right panel: quasiparticle excitatiafier switching on small interactions which,
via Cooper's Theorem, give rise to an energy gapmccording to Eq.[{4]2), here chosen to be
A = 0.5u. What were pure particle and pure hole excitations in thiepahel have now become
momentum-dependent mixtures of particles and holes.

of fermion pairs due to an arbitrarily small interaction &led Cooper’s Theorem
and the fermion pairs are call&boper pairs.

This mechanism is completely general, i.e., it holds foiteaby fermions with
a Fermi surface as long as their interaction is attractiveolds for electrons in a
usual superconductor, i.e., a metal or alloy, ¥ele atoms in superfluid helium, for
fermionic atoms in an optical trap etc. In our context, it t@napplied to protons,
neutrons, and quarks. Anticipating that the Cooper meshatgads touperfluidity
for neutral fermions and teuperconductivity for charged fermions, we thus expect
(i) neutron superfluidityi) proton superconductivity, ar@:) quark superconduc-
tivity to be in principle possible in a compact star. Quarkes af course a bit more
complicated since they not only carry electric charge bsw &blor charge. There-
fore, we need to make more precise what we mean by quark suphrctivity, see
Sec[4.D.

Let us first stay on a very general level and discuss the basisetjuences of
Cooper pairing. A Cooper pair is held together by a sort ohdling energy” (al-
though it is not a bound state), i.e., one needs a finite anwfugriergy to break a
pair. Consequently, the single-particle dispersion i@tedicquires an energy gap

& =/ (Ex— M)?>+ A2, (4.2)

with E; = vk2 +m? as in the previous chapters. One might think thatloes not
reproduce the usual dispersi@h — u for a vanishing gap, rathe, — |E; — U|.
This is no contradiction after taking into account the fesmiole excitations,
such that in the ungapped system= +(E; — u) to which theA = 0 limit of

& = ++/(Ex — 1)2+ A2 is indeed equivalent. The excitation described by Eql (4.2)
is also calledjuasiparticle since it contains the interaction of the original particles
in an effective way. To excite a quasifermion in a supercaetaya finite amount of
energy is needed, while a fermion at the Fermi surface of @ntenacting system
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can be excited by an infinitesimally small energy, see [Eifl. #he energy gap in

the dispersion relation is responsible for most of the phesmmlogical properties
of a superconductor. For instance, it gives rise to theidmdess charge transport in
an electronic superconductor, since (sufficiently low ggescattering of electrons
off phonons cannot excite a single-electron state. Or, énctintext of superfluid-

ity, the energy gap explains the frictionless flow in the savag. For quantitative

predictions it is thus crucial to compute the magnitudéotWe shall perform this

calculation within perturbative QCD for quarks in Sec]4.3.

The energy gap is in general a temperature-dependent tyudintypically de-
creases with temperature and becomes zero at and aboveia ceitical temper-
atureT,. This critical temperature indicates the phase transftiom the supercon-
ducting to the non-superconducting phase, as we shall demab@with the discon-
tinuity of the specific heat in the following section. Siné¢e tonset of supercon-
ductivity or superfluidity is a phase transition, there musta symmetry which is
spontaneously broken below the critical temperature. ttiquaar for quark matter,
the symmetry breaking pattern is very useful to charaaéhe superconductor, see
Sec[4.D.

4.1 Specific heat for isotropic and anisotropic superconductors

As a example of the effect df let us compute the specific heat of a supercondﬂctor.
The specific heat is easy to compute and shows charactdeatiores of a super-
conductor. We start from the free energy of a supercondutaole of fermions with
two degenerate (spin-) degrees of freedom,

Q= _ZT/(;’—jgg In (1+e*£k/T) : (4.3)

where the quasiparticle energy is given by Eq.[(4]2). We shall, for simplicity,
consider massless fermiortg,= k. The entropy (density) is given by the derivative
with respect to the temperature (with respect toehpdicir temperature dependence
only, there is also an implicit temperature dependencg)in

2Q " d3k
S=—or =" /W[(l—fk)ln(l—fk)‘i‘fkmfk]- (4.4)
with the Fermi distribution 1

To derive Eq.[(414) one uses the identities

2 More precisely, here we compute the fermionic contributimthe specific heat. There may be
light Goldstone modes which dominate the specific heat atl semperatures. In this section we
ignore such modes for the purpose of illustrating the eftdéthe fermionic energy gap.
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Ski

Z=In1-f)=Infe, In (1+e*€k/T) — In(1-f). (4.6)

From the entropy we then compute the specific heat (at cangthmme)

ds / Ak 0fi

CVET—:Z ngd_]"

= (4.7)

For the temperature dependence of the gap we assume theifglsimple form,

T2

A(T) = O(T. = T)oy [1- 7.

(4.8)

such that the zero-temperature gaplis the gap approaches zero%at T, and
vanishes for all temperatures larger tanThen, forT < T. we have

oA  NET dg, T A§ Ofi 1 T <e,§ Ag)

oT T TZA T oT w17 T 0T & (et 1P \12 T2
(4.9)

and consequently

43k & /T g2 A2
w=2[ <—’<2+—(2’>. (4.10)
(2m) (e5/T +1) e TI:

We are only interested in temperatures much smaller thactbmical potential,
T < W. Then, the main contribution comes from the Fermi surfacd vae can ap-
proximatedk k? — p?dk. We introduce the new variable= (k — ) /T, and define

A

=7 .

(4.11)
This yields

2 00 T
cvzg/ dx/ d0O sin@ <x2+¢2+
m Jo Jo

A2 e
_g> ., (412
Tc (e\/m+1)

where we have approximated the lower boundary-fy/T ~ — and have used
that the integrand is even n(which gives rise to the new integration boundaries
[0,00] and a factor 2). We have not yet performed thintegral since we shall al-
low for anisotropic gaps. From this general expression vaiyeget the limit of a
vanishing gapg = Ap = 0, i.e., the result for the non-superconducting state,

20 e 2 2
o H T/ x 12T
- X KT 413
V=T o dx1+coshx 3 (4.13)
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Before evaluating the specific heat in the superconductirag@ at small tempera-
tures, let us discuss the behaviorcpfat the critical temperature. This is best done
by looking at Eq.[(4.710). Approachiriy from abovey is given by settingly and
A(T) (appearing irg) to zero in that equation. In the superconducting phase, ap-
proachingr;. from below, we only sefl in g to zero. Consequently, @ there is a
jump in the specific heat which is given by

2 3 Ek/T
Acy 2A / d’k e ]
(2") (ef/T 4+1)
A&uz 1 A
T, Jo “T+coshe T, ’

(4.14)

where we have assumed the gap to be isotropic. This jump @E@atysignature for
a second-order phase transition, since the specific helag¢ isecond derivative of
the thermodynamic potential.

Next we evaluate Eq_{4.]12) for temperatures much smal&ert the gap, i.e., in
the limit ¢ — oo. First we consider an isotropic gap. We can approximate

e\/x2+¢2 f:ef\/m:e*(P*Xz

, % (4.15)
(V759 12)
Consequently,
2u2T 7 2. :
v ¢ [/ dxx’e” 2?’7—1—((1) TZ)/ dxe 27”]
V2T )y
~ o ¢5% (4.16)

where we used

00 7)(2 T 00 71.2 T
/ dxx’e % = ¢3/2\/j, / dxe 2 = ¢1/2\/j. (4.17)
Jo 2 0 2

The main result is that the specific heat is exponentiallypsegsed by the factor
e~ % = ¢~4/T for temperatures much smaller than the gap. The suppressitie
specific heat in a superconductor provides a good examplet teogne intuition for
the properties of superconductors. To this end, note tleagplecific heat is a mea-
sure of how many degrees of freedom are available to stoteAdé@rge number of
degrees of freedom means a lot of "storage room” and thugya kpecific heat. A
small specific heat, such as for a superconductor at suffigismall temperature,
thus means there are very few states available. This is atdiomsequence of the
energy gap which obviously leads to a region in the energgtsp@ with no al-
lowed states. Only by increasing the temperature does {henextial suppression
disappear because temperature provides the energy togi@gtdtes above the gap
which in turn are then available to store thermal energy.
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Next let us assume an anisotropic gap of the form
A — Asinf. (4.18)

In a compact star, anisotropic gaps may be realized in newsuperfluidity and
possibly for quark superconductivity. The reason is veffgdént in the two kinds of
matter: at large density, thewave interactions between neutrons become repulsive
and thus only interactions in thewave channel can lead to superfluidity (this is
in contrast to protons which do forsawave superconductors). In the case of quark
matter, anisotropic gaps may occur due to a mismatch in Feromenta of the
quarks that form Cooper pairs; anisotropies then ariseefibcause the mismatch
allows only for pairing in certain directions in momentunasp or because pairing
occurs in the spin-one channel which does not suffer frommfsenatch. In either
case, there are several possibilities for the specific fdrtheangular dependence
of the gap and it is not entirely clear which one is realizethia relevant density
regime. For more details see for instance Réls.][1, 2] fotfgaranatter and Ref.[3]
for quark matter.

With 6 being the angle between the momentum and:thgis, the form[(4.118)
implies point-like nodes of the gap function at the north aodth pole of the Fermi
sphere. In other words, although there is a nonzero ordanpster for superfluidity,
there are directions in momentum space where quasipartiatebe excited with in-
finitesimally small energy. For sufficiently small tempenais, these directions give
the dominant contribution to the specific heat. Therefarehe low-temperature
approximation, we only integrate over angles in the vigimf the nodes. We re-
strict the angular integration by requiring the quasigetenergy (with respect to
the Fermi surface) to be at most of the order of the scale sttebiemperature,

ApsSing < T, (4.19)

which, for small angle® and small temperatures impliés< 7/ ¢. Therefore, the
specific heat becomes (note the factor 2 since we obtain the sasult for north
and south pole)

2 00 .
pr ! /"/¢ 2 4202
- /0 dvgoe [ d06(:2+9%67)

5 4°T 1
4 3 ¢?

cy >~

1

(4.20)

We see that instead of an exponential suppression we nowpgster-law suppres-
sion (T /A)? of the specific heat compared to the non-superconductingfrés
this sense, the specific heat measures how effectively thsigarticle excitations
are suppressed by the gap. Our result shows that the dinmafisjoof the zero-
energy excitations in momentum space translates into thpegature dependence
of the specific heat: in the normal phase, there is a two-déineal Fermi surface
that contributes ar = 0, while for an isotropic gap, this Fermi surface is, simply
speaking, gone. The anisotropic ghp (#.18) is an internedise, its suppression
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lies between the normal and the completely gapped phasenfagehus expect
that between the zero-dimensional point nodes and thedalbped spectrum there
is another intermediate case, namely one-dimensionahbides, see problem4.1.

The low-temperature results for the specific heat are ratefea the physics of
compact stars because the superconducting gap of eithionic superconduc-
tivity/superfluidity or quark superconductivity may welebnuch larger than the
temperature of the star. In particular, the specific heahfgorrtant in the context of
the cooling of the star, for example through neutrino emigsic, . With ¢, being
the energy loss per unit time and volume through neutrinasion (for example
through the processds (2127) in nuclear matter or the pses@2.40) in quark mat-
ter), the relation betweesy, ¢y, and the change in temperature is

dTr
&(T) = —cV(T)d— . (4.21)
t
(The minus sign is needed since a positiyés an energy loss, i.e., the temperature
will decreasedT /dr < 0.) Integrating this relation from a tinrg (with temperature

T (tp) = Tp) yields

t—tg=— TdT/ ev (1) )
To &v(T)
This shows that the ratio of the specific heat and the neugnnissivity enters the
cooling behavior of the star. Typically, for a given phake,heutrino emissivity will
exhibit a similar behavior as the specific heat. For instaimca superconductor, the
emissivity as well as the specific heat are exponentiallpsegsed in which case
the subleading behavior becomes important. In a real conspeag however, there
is most likely not just a single phase and the phase that daesrthe behavior of
the emissivity is not necessarily the one that dominatesykeific heat.
The neutrino emissivity is much more difficult to computertliae specific heat,
and we devote a whole chapter to its discussion and to a eétzalculation for the
case of quark matter, see chajpter 5.

(4.22)

4.2 Color-flavor locked (CFL) quark matter

In our discussion of superconductivity and superfluiditcompact stars we first
focus on a density regime where we can perform rigorous tzloas from first
principles. This is the regime of asymptotically large dées, where we deal with
weakly coupled, deconfined quark mallefhe quarks are weakly coupled due to
asymptotic freedom, which says that the coupling of QCD becomes weak for large
exchanged momenta. For our purpose, the QCD coupling caormdered as a
function of the quark chemical potential and becomes atiyr small for large

3 We shall not go into details of neutron superfluidity and pnosuperconductivity. For a detailed
review of these matters, see REi. [4]. A shorter discussimnbe found for instance in Sec. 3.2 of

Ref. [H].
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chemical potentials. In other words, quarks at infinite cleairpotential are free.
Because of this important property of QCD we may use pertivdanethods at
high densities. The high-density region of the QCD phasgrdia shown in Fig.
[T is therefore maybe the best understood regime of QCD ofiter regimes in
that phase diagram are more complicated: we have seen thatdlear matter one
usually relies on phenomenological models; the high-teatpee, small-density re-
gion, where the QCD coupling also becomes small, has subtiperturbative ef-
fects because of infrared degrees of freedom; first-prieciCD calculations via
computer simulationddztice QCD) are much more complicated than perturbative
physics at high densities and are so far restricted to vangsthemical potential.

This possibility of understanding a region of the phase diagrigorously from
first principles is a good theoretical motivation to studiyraddense quark matter.
However, for our astrophysical purposes we need to pointraitthese studies are
valid at densities much larger than expected in compad.dtaa compact star, the
guark chemical potential is at most of the ordeof 500 MeV. The perturbative
calculation of the energy gap, to be discussed in Sdc. 1.3, can be estimated to be
reasonable at chemical potentials of the ordepgf 10°MeV (!) Given this dif-
ference of many orders of magnitude, extrapolation of pbative results down to
compact star densities may seem bold. However, the (rougntijative agreement
of these extrapolations with different approaches, uslmgnpmenological models,
gives us some confidence that the ultra-high density caloalenay be of relevance
for astrophysical calculations. Furthermore, we shab alsply general arguments,
based on symmetries, which we can expect to hold even at mteddensity where
the coupling is strong. In summary, the following discussktrictly speaking only
valid for extreme densities, is of theoretical interest amaly also give us insight
into compact star physics.

At this point we may remember that we have already discussedpproach to
compact star densities from the opposite side. In the Walewddel of Sed. 311 we
have constructed the model such that we have reproducedrtiespof nuclear mat-
ter at densities accessible in the laboratory. These demnsitelower than the ones
in compact stars. We had to extrapolate up to higher dessdiebtain predictions
of astrophysical relevance. Therefore, we learn that mattéde compact stars is
quite hard to tackle; we have to approach it from differetdésj and currently we do
not have rigorous control over our approaches. This reftaetdiscussion begun in
the introduction: it shows that the question “What is thetaratomposition inside
a compact star?” is, due to our lack of understanding of desteengly-interacting
matter, not only an application of QCD but also relevant tdenstand QCD.

From this somewhat philosophical discussion now back tesagmductivity in
quark matter. Cooper’s Theorem tells us that an attraatiezaction, however small
it may be, leads to the formation of a quark Cooper pair cogaten At asymptoti-
cally high densities, this attractive interaction is pa®nd by single-gluon exchange.
We can formulate quark pairing in terms of representatidisecolor gauge group
SU(3).,

U@ [BleoBlo=Blel6]. (4.23)
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On the left-hand side we have two quarks in the fundamenta¢sentation, i.e., two
complex three-vectors since the number of colors is tt¥ee;, 3. They interactin an
antisymmetric 4) anti-triplet channel and a symmetri§) (sextet channel which are
attractive and repulsive, respectively. The attractivenctel thus provides an anti-
triplet of diquarks which has (anti-)color charge. Theaattiveness of this channel
can be understood for instance from the existence of bary¢ersiely, in a simple
picture a baryon contains a diquark in f3& representation. If it is made of, say, a
red and a green quark it has color anti-blue. The baryon is¢bkr-neutralized by
combining this anti-blue diquark with a blue quark.

An obvious property of a quark Cooper pair is that it is catberged. Therefore,
it breaks the color symmeti§U (3). spontaneously. In analogy to electronic super-
conductors, which break the electromagnétid)em, quark Cooper pairing is thus
termedcolor superconductivity. For an extensive review of color superconductiv-
ity see Ref.[[6]. The order parameter of color superconditigtis the expectation
value of the quark-quark two-point functidgy). The color structure of this ob-
ject has to be antisymmetric because the antisymmetrieseptation3]4 is the
attractive channel. The flavor structure is governed by thieacsymmetry group
SU(3)g x SU(3)LH discussed in SeE._3.3.1. For now, we may consider these sym-
metries to be exact, since at the high densities we are wgpnkim may neglect
all three quark masses compared to the chemical potentiah Bf these global
SU(3)’s leads to the same representations as the color group,

SUR);: [Blre Bl =Bl o6, (4.24)

with f = L,R. Since the overall wave function of the Cooper pair has toriie a
symmetric and since pairing in the antisymmetric spin-ofiannel is preferred, we
need to pair in the fIavo[B]? channel. In other words, the color-flavor structure of
the Cooper pair is '

(py) € 312 @ [3)%. (4.25)

More specifically, withA, a, 83 < 3 being color indices and, i, j < 3 being flavor
indices,

(WECYsyP) 0 &P pf (4.26)

Here, we have added the Dirac structure with the chargedgatipn matrixC =
iy?y°, leading to even-parity, spin-singlet pairing. The<3 matrix ¢ now de-
termines the specific color-flavor structure within the giantisymmetric repre-
sentations. This shows that there are in principle manyeufit possible color-
superconducting phases. They are distinguished by diffeegring patterns, i.e., by
which quark pairs with which other quark. (At asymptotigddirge densities, where
the flavor symmetries are exact, many pairing patterns aragnt by symmetry
and only a few physically distinct phases exist.) In patéicuone may construct
phases in which some of the quarks are paired while somesadhemnot.

4 As already mentioned in the introduction, we neglect thepeaark flavors although in this sec-
tion we consider asymptotically large densities. Since rgeuttimately interested in extrapolating
our results down to compact star densities, we only iake ands quarks into account.
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At high densities, the favored phase is théor-flavor locked (CFL) phasel[7].
We can characterize it by the following properties,

(i) The CFL order parameter is given by
¢AB = 55 = <LIJlaCV5LIJ]B> 0 8aBA8,'jA. (427)

(ii) In the CFL phase, all quarks are paired with pairing @attd — gu, bu — rs,
bd — gs, ru — gd — bs (whererd is a red down quarkgu a green up quark etc.),
and there are 8 quasiparticles with ga@and 1 quasiparticle with gap2

(i) The CFL phase has the following symmetry breaking @att

SU(3)L X SU(3)R X SU(3)L X U(l)B — SU(3)C+L+R X Zz. (428)

These three properties are in fact equivalent. Before ding their physical
implications, many of which can be read off from propertigsand (iii), let us
show how the physical statement (ii) follows from the morstedct statement (i).
To get a clear picture of the matrix structure of the ordeapusater, let us denote
the bases of the color and flavor antitripléds' and [3]} by (J4)*F = —ig@P4,
(Ig)ij = —i&;jp. Then, we can write Eq[_(4.R7) as

0 000-1000-1

0 00100000
0 00000100
0 - I 01000000 O
(YCywW)cp, OJ-I=i| Iz O -1 |=|—-1000 0 000-1]. (4.29)
- L O 0 0000001 O
0 0100000 O
0 0000 1000

-1000-1000 O

This 9x 9 matrix is obviously symmetric, as required (the color-dlastructure is
symmetric, giving overall antisymmetry through the antisgetric Dirac structure).
Its rows and columns are labelled with the nine quarksid, rs, gu, gd, gs, bu, bd,

bs. A nonzero entry indicates that the corresponding quarks \Me see that the
matrix has a block structure with threex2 blocks and one 8 3 block. This leads
to the pairing pattern given in point (ii). Note that this isasis dependent statement.
In particular, since the color symmetry is a gauge symmethy;ys() is a gauge
variant object. The physically relevant statement, howegethe second part of
point (ii) about the quasiparticle excitations. This sta¢at is gauge invariant. The
gap structure is given by the eigenvalues of the square atibee 9x 9 matrix,

&=/ (k— )2+ 1,42, (4.30)

whereA, are the eigenvalues of
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L=(J-1)% (4.31)

We shall prove the form of the quasiparticle excitatidn8@#in Sec[4.3. Here we
simply compute the eigenvalugs They are given by the solutions of

detA —L) =0. (4.32)

This can be rewritten as

n
L nA

0=-exp[Trin(A —L)] =exp [Tr <In/\ - i oA )] . (4.33)

We now have to comput&’. First note that
I-DF =gy = -5780 + 5780 = LI =59F5;+5750. (4.34)
This result can be used to compute
L?>=5L—4. (4.35)

Consequently, all powers df only have the matrix structurdsand1. Thus we
make the ansatz
L"=a,L+b,. (4.36)

Multiplying both sides of this equation byand using Eql{4.35) yields
ap+1 = 5an+bn, bn+1 = —4Cln. (437)

These recursion relations can be solved with the ansatz p". This yields the
equationp? = 5p — 4 which is solved byp; = 4 andp, = 1. Consequently, the
general solution is the linear combination

ap,=api+Bpy=4"a+p. (4.38)

From above we know; = 1 andaz = 5 which yieldsa = —f3 = 1/3. Hence

. -1 44
L' = 3 L— 3 (4.39)
Inserting this into Eql{4.33) yields
0— exp{Tr [L%lm(/\ 4y L%“m(/\ - 1)} } . (4.40)

Now we use Tl = 9 and, from Eq.[(4.34), Tt = 12. Thus we have

0=exp[In(A —4) +8In(A —1)] = (A —4)(A — 1)8. (4.41)
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Consequently, the eigenvaluesloére 1 (8-fold) and 4 (1-fold). Physically speak-
ing, together with Eq[{4.30) this means that in the CFL pl@&gaasiparticle exci-
tations have a gafd and 1 quasiparticle excitation has a gap Zhis is the second
part of point (ii). Of course, this discussion says nothibgut the magnitude oA,
which has to be computed from the QCD gap equation, see sudsesection. We
leave it as an exercise to show that (iii) follows from (i)eggobleni4.P.

Points (ii) and (iii) reveal many important physical projes of the CFL state.
Since these points are solely based on symmetry considesathey are indepen-
dent of the details of the interaction. Therefore, they camtpected to hold also at
lower densities where perturbative QCD is not applicabiestfFone may ask why
CFL is the ground state and not any other order parametar giva different matrix
@?. The simple answer is that the CFL order parameter is the@mdyin which all
quarks participate in pairing, as we have seen. All othesiptss order parameters
leave several excitations ungapped. Therefore, the CFeepleads to the largest
condensation energy and thus is the ground state at higlitider{at lower densi-
ties the situation is much more complicated). A more formglenent is that the
CFL phase is the color superconductor with the largest uesslymmetry group. It
is thus a particularly symmetric state which also indicales it is preferred over
other color superconductors, although this is not a rigpaygument.

From (iii) we read off the following properties of CFL,

e CFL breaks chiral symmetry. We see that the CFL symmetrykimggpattern
@.239) is, regarding chiral symmetry, the same as in Eq.5j3.dowever, the
mechanisms are different. The latter is caused by a chiral@asate of the form
(YryL), while the CFL condensate has the fofgk Yz) (and the same witR —
L). At first sight, the CFL condensate thus preserves the hitbht symmetry,
i.e., apparently one can still do separatandR rotations without changing the
ground state. However, the symmetry breaking occurs thrthey“locking” with
color, i.e., in orderto leave the order parameter invay@oblor rotation has to be
undone by equal rotations in the left- and right-handedosscAlthough caused
by different mechanisms, the two scenarios lead to simitessizs. As for the
usual chiral symmetry breaking, the CFL phase also has at otGoldstone
modes. Since all fermions acquire an energy gap, these 6okisrodes become
very important for the phenomenology of the CFL phase. Megeaat lower
densities, where the strange quark mass cannot be neglkatedcondensation
is expected in the CFL phase, not unlike its nuclear mattative discussed in
Sec[3.B. The kaon-condensed CFL phase is usually calledk®Find will be
discussed in the next subsection, $ec. #.2.1.

e The color gauge group is completely broken. While spontasdweaking of a
global group leads to Goldstone bosons, spontaneous hgeaka gauge group
leads to masses for the gauge bosons. Here, all gluons agMeissner mass,
just as the photon acquires a Meissner mass in an electrop@cnductor. A
nonzero Meissner mass for a gauge boson is the field-thealratay of saying
that there is a Meissner effect, i.e., that the magnetic fiaidpenetrate the super-
conductor only up to a certain penetration depth. The imvefshis penetration
depth corresponds to the Meissner mass. In the CFL phasdineae combi-
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nation of a gluon and the photon remains massless. In othetswthere is an
unbrokenU(l)Q C SU(3)c+1+kr, generated byé which is a linear combination
of the original charge generat@rand the eighth gluon generatty (if you have
done probleni 412 you can easily show this and determine thet ésrm of the
linear combination). This phenomenon is also call@dred electromagnetism.
Since the admixture of the gluon to the new gauge boson id,som& may say
that the CFL phase is a color superconductor but no electyoaii supercon-
ductor. This is of relevance for compact stars since it iegpthat the CFL phase
does not expel magnetic fields.

e The CFL phase is a superfluid since it breaks the baryon nundreservation
groupU (1)p. This is important since this is an exact symmetry, even\aeio
densities where finite quark masses become important. fidneréhere is always
one exactly massless Goldstone mode in the CFL phase.

4.2.1 Kaon condensation in CFL quark matter

We have pointed out that chiral symmetry is not only brokethenhadronic phase,
but also in CFL. This is by itself an interesting fact sinceniéans that in QCD
chiral symmetry is spontaneously broken at very low and végi densities. How
about the region in between? This is unknown, but the pdigitémains that chiral
symmetry is, at small temperatures, broken for all derssit8nce the symmetry
breaking patterns of nuclear matter and CFL are identiaatle(that in a neutron
superfluid also thé&/ (1) is broken), this implies that possibly there is no real phase
transition at moderate densities and small densities i@ phase diagram. In
Fig.[1.3 this corresponds to the possibility that the “ndA-Cregion is absent, at
least atl’ = 0.

Now let us use the chiral symmetry breaking of CFL for a cotecoalculation.
Since in the CFL phase all (quasi)fermions acquire energs gd at leastd —
whose magnitude we compute from first principles in §ed. 4l8physics of the
CFL phase at temperatures smaller tiiais determined by the pseudo-Goldstone
modes associated to chiral symmetry breaking (and the &aldstone mode from
breaking ofU (1) which we do not discuss here). As we discuss belbwan be
expected to be of the order of 10 MeV at densities presentimpeat stars. This
is large enough to make fermionic excitations in a possild#& @hase in a star
essentially irrelevant. Therefore, for astrophysicall@agions, the discussion of
the physical properties of the Goldstone modes is crucial.

In the context of kaon condensation in nuclear matter,[S&: w8 have used an
effective theory for the chiral field and its interactions with nucleons. Also for
the mesons in CFL we can write down such a theory. In this ¢heehiral field is
given by

=9 w, (4.42)
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whereq, and¢y are the 3< 3 matrix order parameters in the left- and right-handed
sector. In our above discussion we have not distinguisheddsag and g since
in “pure” CFL we haveg = ¢ = 1. For unitary 3x 3 matricesg, and ¢, 2 is
unitary,> € U(3). It thus contains 9 degrees of freedom, one of which one lysual
ignores since it corresponds to thé which is heavy due to the explicitly broken
U(1)4. Eight degrees of freedom remain,c SU(3), and we can identify them as
pions, kaons etc. just like in hadronic matter, see [Eq. j3B&spite the similarities,
there is an important difference to hadronic matter: as @mesee from the defini-
tion of the chiral field[(4.42), a meson in CFL is composed af farmions and two
fermion holes (eaclp in Eq. (4.42) represents a diquark). For example, a neutral
kaon should be viewed as an excitati&h ~ usdu. Note that this “CFL kaon” has
the same quantum numbers as the “usual kaon”, composed ofielgpand an an-
tiparticle, K° ~ sd. Hence, if you want to construct a CFL kaon from a usual kaon
you need to replace— du andd — us. This identification reflects thenzi-triplet
representation in EqL(4.R24). As a consequence, the messsesin CFL are or-
dered inversely compared to the usual mesons. To see teitmdire that the quark
flavors(u,d,s), ordered with increasing mass,, < m, < my, have the anti-triplet
counterpartds, us,ud). Here the masses (squared) have become ordered in the op-
posite waymymg > m,mg > m,my. Therefore, in nuclear matter (and ignoring finite
density effects)y,0 < myo becausen, o O m, +mg andmyo O ms+my, whereas in
CFL mygo < myp becausenlz(o O myumy + mums andm?2, O mgmg + mums. We shall
verify the form of the kaon mass in CFL below within the effeettheory.

The effective Lagrangian for mesons in CFL is given by

2 2
&= %Tr[DOZDOZT —v20,59,5" + “—ch”demTr[Mfl(z +31],  (4.43)
with
M2
OoZ = doZ +i[A, 5], =50 (4.44)

whereM = diag(m,,mg4, ms) is the quark mass matrix. The matdxenters the the-
ory as the temporal component of a gauge field; it plays the oblan effective
chemical potential for the field. We shall see below how this translates into effec-
tive chemical potentials for the neutral and charged kaons.

The original works where this Lagrangian has been propoeedRafs. [[8] 9].
There you can find detailed explanations about the struafitbe effective La-
grangian and its differences to the effective meson Ladeaanfpr hadronic matter
(3:70). Comparing with Eq[(3.70) we see that in CFL we do raveha term linear
in the quark masses, rather only quadraitic,'detM 0 m? (and higher even powers
which we have neglected). We also have different coeffisianfront of the tem-
poral and spatial part of the kinetic term, originating frtme breaking of Lorentz
invariance in a medium;; = 1/\/§. As for the hadronic phase, there are two con-
stantsf;; anda. This reminds us of the nature of effective theories likedhes given
by Egs. [37D) and(4.43): they are expected to give at legsgéitatively correct
description even beyond the regime where the theory cansbedtexperimentally
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or from first-principle calculations. The reason is thaythee almost entirely deter-
mined by symmetries. Only the coefficients have to be takem the experiment or
an underlying microscopic theory. The former is done in tifiective theory of the
hadronic phase. The latter, namely fixing the constgpt@nda from perturbative
QCD, is done for the effective theory of CFL. In particulaneocan expect that, if
CFL is the ground state of dense quark matter at densitiegael for compact stars,
the effective theory is a powerful tool to compute the pheanatogy of a potential
quark core of the star.

Although terms of higher order in the fields and the mass maiive already
been neglected in Eq. (4]43), the Lagrangian still looksglarate. The meson fields
6, appear in the exponent &f,

5 = O/ I (4.45)

with the Gell-Mann matrices,, and thus they appear to all orders even in the given
truncated theory. Let us first rewrite the Lagrangian by abilatingQ = 6,A,/ fn
such that

S =¢'? = cosQ+isinQ. (4.46)
Then, the various terms of the Lagrangian become
Tr(do=d0= "] = Tr[(docosQ)? + (dosinQ)?],  (4.47a)
Tr9,28;5" = Tr [(DcosQ)2 (OsinQ)?, (4.47b)
Tr[[A4, 5[4, 5]"] = 2Tr[A% - (AcosQ)? - (AsinQ)?], (4.47c)
iTr[—00Z[A, )T +[A, £]002T] = 2i Tr[(ao cosQ)[A, cosQ]
+(dpsinQ)[A,sinQ]], (4.47d)

and thus
2
&= %Tr[A2 — (AcosQ)? — (AsinQ)? + 2a(detM)M * cosQ)]

+fZ%Tr[(do €0sQ)?+ (0sinQ)? — v[(0cosQ)? + (OsinQ)?]]

2
+1%Tr[(0ocosQ)[A cosQ] + (dosinQ)[A,sinQ]] . (4.48)
Let us first interpre® as a constant background, i.e., as the meson condensate, and
neglect the fluctuations. This will allow us to compute théuea of the various
condensates at zero temperature. In general, all mesonsandgnse and the pa-
rameters of the theory determine which of the condensatesnibes nonzero. We
recall from the above discussion that we expect the kaorighe@ions, to be the
lightest mesons in CFL. Therefore, let us simplifyby setting all fields except the
kaon fields to zero,
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7 0 0 @m-iw
0= z QA = 0 0 @—ip |, (4.49)
M+iQs G+iQr 0

with the dimensionless condensaigs= 0,/ fr. With this ansatz we shall be able to
construct a zero-temperature phase diagram that con&gjims of no condensates,
charged kaon condensates, neutral kaon condensates, ssillpcoexistence of
both. This is exactly the same ansatz as we have made il 38 f& kaon con-
densation in nuclear matter, see Hg. (8.80). We can thusxfdlie steps below Eq.

(3:80) to obtain

2

cosQ = 1—%(1—cos¢), (4.50)
and
sinQ = g sing, (4.51)
%
where
C=G+E+E+ ¢ (4.52)

Since we assume our condensates to be constant in time ace, spdy the first
line of the Lagrangiarl (4.48) survives. The tree-level zermperature free energy
is the negative of this Lagrangian and becomes

_fA 1—cosp
U= 2Tr2 2

(1 cosp)?
¢

where we have subtracted the “vacuum” contribution

(a(detM)M~10? — A%0?)

Sir? ¢

+ (AQ%)? + p (A0)%|, (4.53)

UcrL=U(Z=1) = —f2adetM Tr[M Y], (4.54)

such that the state without kaon condensates, i.e., theditlrestate has free energy
U = 0. With the definitions of the matricesandQ in Egs. [4.4%) and (4.249), the

notations
G =F+E, o=@+, (4.55)

and abbreviating = diag a1,a»,a3), the various traces are

Trla(det)M Q% — A?Q%) = (mig. — U )@f- + (mGo — HZo) B0
—2a3(a1@f+ +axlo), (4.564)
Tr((AQ%)? = (a1 + az@fo)® + 3¢, (4.56b)
Tr((AQ)?] = 2a3(a192+ + ax ). (4.56¢)
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where we have defined the kaon chemical potentials and masses

2 2 2 2
_ my—my _ my—my
= = 4.57
Mg+ 2“ ’ Hgo 2[.1 ; ( a)
mfﬁ = amy(ms+my), mio = amy(ms+my). (4.57b)

It will become clear below that these quantities really actraasses and chemical
potentials for the kaons. For simplicity we have omittedeteztric charge chemical
potential in the Lagrangian which would have appeareg;in as an additional
contribution. Inserting Eqd._(4.66) into Ef. (4.53), we wvaite the free energy as

VB _ 1 cosp [ -1 % + n3- D) E

2
+%(1—cos¢p)2 (ulg+ﬂzg) . (4.58)

Here and in the following we use, for notational convenietive subscript 1 fok ™"

and 2 fork®. To understand the expression for the free energy we cartbiddimit
case of small condensaté®,< fr, i.e.,@ = 6;/fr < 1 fori = K*,K°. Then we
can expand’/ (¢, @) up to fourth order in the condensates to obtain

22 2,2
U(or.65) = M Mz M2 togg
B1 B2 a
+Zef+79§+2912922’ (4.59)
with
_ Mmoo _ BB ()

We have thus reduced the effective theory to a two-compogeétieory, cf. Eq.
(A.18) in appendik AL, with effective coupling constaftgor the self-coupling of
the kaons and an effective coupling constarfor the interaction between charged
and neutral kaons.

We may come back to the full free ener§y (4.58) to find the gdostate of the
system for arbitrary chemical potentials, u,. To this end, one has to minimize the
free energy through the equations

U _ou _
op 0@
By construction, the free energy of the CFL state withoutrkeendensationp, =

@ =0, is given byU = 0. If one of the condensates vanishes, @ay- 0, one of the
equations[(4.81) is automatically fulfilled, and the othee becomes

(4.61)
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1 oU
0= — — singy (m? — u?co . 4.62
7 91|y o @1 (m{ — pi cosq) (4.62)

This has a nontrivial solution fon? < p?,

1 for m?> p?

cospL = ¢ .2 , (4.63)
— for m§<pu?
Hi
and the free energy density becomes
0 for m? > u?
U(gp=0)= 202 1 2\2 . (4.64)
_fn(ml 2111) for m% < I-112
205

By symmetry, we find the same solution fgr if we set¢g = 0. Equating the free
energies of the two phasegs =0, @ # 0 andg, #~ 0, ¢ = 0 one finds the condition
for coexistence of two condensates,

5 (E —m5)? = pf(ug —m3)>. (4.65)

This condition can also be obtained by assuming two nonkiargsondensates in
Egs. [4.61). As a result we obtain the phase diagram showigifdE2, where we
restrict ourselves tpi, o > 0 without loss of generality.

What are the values of the kaon chemical potentials in thiewedd? In other
words, where in the phase diagram of Eigl 4.2 does a compaictit? Let us first see
whether in a star we can expect the kaon chemical potentidle targer than their
mass, i.e., whether kaon condensation is possible. Asslisduabove, for quanti-
tative predictions of the effective theory we rely on theutesfor the constantg,;
anda at asymptotically large densities and their extrapolatiown to densities in
a compact star. This extrapolation yields

, 21-8In2 12
fn= 18 2m

342
- TPf?

where we used a quark chemical potentiat- 500 MeV and a fermionic energy
gapA ~ 30MeV. Then, from Eqs[{4.57) we conclude that both kaon smase of
the order ofimg+ ~ myo =~ (amigntms)*/? ~ 5MeV, where we used a quark mass
for u andd quarksmighy ~ 5MeV and a strange quark mass ~ 150MeV. The
kaon chemical potential then j&- =~ Hgo ~ m?/(2u) ~ 20MeV. This suggests
that the interior of the star sits outside the rectanglergivg the dashed lines in
Fig.[4.2, i.e., if there is a color-flavor locked core in a camipstar it is likely to be
kaon-condensed CFL matter rather than “pure” CFL matterdladl confirm this
conclusion below for nonzero temperatures). Does thisanatintain a charged or

~ (100MeV)?, a4 ~0.03, (4.66)
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Fig. 4.2 Zero-temperature phase diagram for kaon condensatioreipgth-po-plane. No con-
densation occurs if the chemical potential is smaller ti@meson mass. Coexistence of the two
condensates is only possible along the (solid) line thaarseées the CFLKC from the CFLK*
phase. This line is given by Eq.(4]65) and marks a first ortheise transition. For large chemi-
cal potentials, it approaches the lipg+ = pgo. The (dashed) lines separating either of the two
meson-condensed phases from the pure CFL phase are sedenghloase transition lines. In the
condensed phases, the condensate and free energy areyi&es. 64.68) and (4.64), respectively.

a neutral kaon condensate? Firstly, the slightly heaviguark compared to the
quark makes th& " slightly heavier than th&®. This asymmetry is taken into ac-
countin Fig[4.2. Moreover, the electric charge of a potdikii” condensate would
require the presence of electrons to neutralize the systéich further disfavors
the charged kaon condensate. We thus expect theilRihase to be the most likely
meson-condensed phase in CFL.

As a second application of the effective theory for mesorshh let us compute
an estimate of the critical temperature of (neutral) kaomdemsation. This is im-
portant to answer the question: if there is CFL matter in agachstar and if there
is kaon condensation at zero temperature, at which temper@te., at which point
in the life of the star) does condensation set in?

The full temperature-dependent theory defined by the éfedtagrangian is
very complicated. We therefore expand the Lagrandianj4ig&o fourth order in
the matrix-valued field to obtain

2 204 22 2\ )2
L = f—Z"Tr (A2 —a(det)M 1) (QZ_Alg )_(AQ)z_ (A% ) (AQ3)Q
2
+%Tf [(300)? = v4(00)? +2i(90Q) (4, 0] , (4.67)

where we have neglected terms of fourth orde@iwhich contain derivatives such
as Tf(QdoQ)?] etc, and where we have dropped the contribution constag, in
which serves to normalize the free energy of the pure CFle stezero, see remark
below Eq.[[45B). Next, one has to separate the condensatetffie fluctuations, as
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demonstrated in appendixA.1. The resulting Lagrangiartfrasame structure as
given in the appendix for th¢* model, see Eq[{A17): a tree-level potential; terms
of second order in the fluctuations which define the treellpuepagator; terms
cubic in the fluctuations which correspond to interactions tb the presence of
the condensate; and finally terms quartic in the fluctuatiblese we do not discuss
the explicit structure of these terms in general, for detgdu may consult Ref.
[10]. We rather restrict ourselves again to the kaon degrefgsedom. As a further
simplification, we set the charged kaon condensate to #gre, 65 = 0 (but keep
the charged kaon fluctuations). This is motivated by the aloliscussion about the
more favorable neutral kaon condensate. For the neutralé@udensate we choose,
without loss of generality, a direction in the degenera@cspof the condensate by
settingB; = 0, and we denot@ = 6o = 66. The tree-level potential from Eq.(4159)
then simply becomes

2_ 2
U(e):m?T“?eer%e“. (4.68)
The kaon sector of the inverse tree-level propagator iskafiiegonal,
Dy 0
D71— ( 01~ > , (4.69)
0 0 Dy}
where
-1 —K2+m%— [Jf-f— af? —2il1ko
Dyi = . P, 5 | (4.70a)
2irko —K“+mf{—ui+ab
1 [ KR mi— 5+ 33,67 —2ifizko
Doy = . 2, 2 .2 , |, (4.70Db)
2iliokg —K*+m5— 5+ (o0

with the abbreviatiork? = k3 — v2k2. The verification of this form of the kaon
tree-level propagator is left as an exercise, see probl@nAhalogously to the
calculation in the appendix, we obtain the kaon dispersitations. They are given
by the poles of the propagatdx,, which are the zeros of the determinant of the
inverse propagatdbal. The dispersion for the charged kaon is

& (k) = \/vak2 +m2 + a02F . (4.71)

We see that th&® condensate gives a contribution to the mass ofktte For the
neutral kaon we obtain

& (k) = \/ E2+ U3 \/AUZE? + SM?, (4.72)

E = \/v%kz—i—m%—i— 23,62,  SM? = B,62. 4.73)

where
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Since kaon condensation breaks a global symmetry of thersystamely thé/ (1)
associated to conservation of strangeness, we expect atGioddmode. (Notice the
two-fold condensation process: due to the condensationarkgCooper pairs, chi-
ral symmetry is broken and pseudo-Goldstone bosons app#ae system; on top
of that, these pseudo-Goldstone modes — here the neutna$ kacondense them-
selves, breaking the global symmetry further and giving tssanother Goldstone
mode.) This mode is expected to be gapﬁai‘s. check this expectation, we first
compute the condensate from the tree-level poteriial {4 B8 nontrivial mini-
mum of this potential is
2_ .2
2= o2 (4.74)
B

This implies 43E7_,+ dM* = (32 —m3)? andE?_,+ 3 = 3u3 — m3 which we
can insert into the kaon dispersién (4.72). The result is

& (k=0)=0, (4.75)

confirming the existence of a gapless mode.
Following the calculation in the appendix, we can immedyaterite down the
thermodynamic potential at finite temperature,

ovorr 3 [ fhniee )

In order to extract an estimate for the critical tempergtwe expand the potential
for largeT,

1

21 a+2B m3 4 m3 — 2(uZ + u3)
Q~U(9)— T4 g%+ 1 2 1 Z)TZ
0~ 257 +( 123 0 F 123 +
2 2
my—Hy  A+2B 5\ 2 Beoa
< > T3 3
21 Ly it my—2(pE+ 1)
45,3 1203

T2+ ... (4.77)

TheT* term is easy to obtain and has also been discussed in apjEdbi&or the
T2 term we have neglected in the neutral kaon dispersiors (4.72). Then they
assume the same form as the ones for the charged Kaonk (A& #eacan use
the expansion for the pressure of a noninteracting Bosesgasfor instance the
appendix of Ref[T11].

We have arrived at a potential with terms constant, quagratid quartic ir9.
Since we assume the existence of a condensdte-a0, we haveu, > my, which
we have argued to be realistic for densities in compact.stéerefore, the quartic
term is always positive, while the quadratic term startsnfr@ negative value at

5 Due to the weak interactions this mode acquires a small grgap in the keV range which we
neglect here.
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T = 0 and becomes positive for sufficiently large temperatu@esisequently, the
nontrivial solution for the condensate ceases to exist wthercoefficient in front
of the quadratic term vanishes. This yields the conditiaritie critical temperature
which we thus estimate to be

2. a3 Ilz2 — m%

T: ~ 6v"0{ 26 (4.78)
With the definitions[(4.60) we can expregsas a function of kaon chemical po-
tentials and massBsBefore we interpret the result we point out a problem of the
current approach. We have seen that at zero temperature@(iit= 0) given by
Eq. (4.7%), we have; (k = 0) = 0. At finite temperature we expect the condensate
to melt, i.e.,0(T) < 6(T = 0) for all T. In this case, however, the excitation of the
Goldstone mode (which should remain gapless fof'alt 7. due to the Goldstone
theorem) becomes imaginary if written in the fodm_(4.72)isTik clearly unphys-
ical and due to the approximation we have made. The solutighi$ problem is
to set up a more elaborate approximation scheme which aealtize thermal kaon
masses self-consistently. This is beyond the scope of feetgres, see Refl [10]
for such a treatment.

It turns out that our estimate of the critical temperaturecides with the self-
consistent calculation. We can therefore use Eqg. [4.78xfohysical conclusion.
With the definition of the effective coupling constamtsand 3, in Eq. (4.60) and
the approximate numbers for the kaon chemical potentiadsnaasses discussed
below Eq. [4.66) we obtaifi. ~ 60MeV. This is of the order of or even larger than
the critical temperatur&“™ for CFL itself. We do not aim to compute the critical
temperature of CFL in these lectures. We simply give the (wfedd) result,

TCF ~ 21/3.0.57A, (4.79)

whereA is the zero-temperature gap. This relation differs by agutef of order one
from the relation obtained from the usual Bardeen-Coopdrisffer (BCS) theory,
T, ~ 0.57A; see remark below Eq{4199) for the origin of this prefackar our
present purpose it is sufficient to notice that the critieahperature in a supercon-
ductor is typically of the same order as the zero-tempegaap. Since\ is also of
the order of tens of MeV, we may apparently conclude that #mmlcondensate does
not melt before the CFL phase itself melts. However, we needrhember that our
effective theory is only valid for temperatures smallerrthihe gapA. Therefore,
the estimated critical temperature for kaon condensatiahase to or beyond the
limit of validity of our effective description. Neverthedg, as a tentative conclusion
we can say that as soon as quark matter is cold enough to be ©FRh state, we
also expect it to be cold enough for kaon condensation, deavthat the parame-
ters are such that kaon condensation is present at zero itetuee In other words,

6 Notice that fora + 23, < 0 the critical temperature formally becomes imaginary, tke con-
densate apparently “refuses” to melt. This situation camaoour for realistic parameters in our
case but is an interesting theoretical possibility. Seeagix C in Ref.[[10] and references therein
for more information.
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upon decreasing the temperature, one encounters theiwarigdm unpaired quark
matter to CFLK?, not from unpaired quark matter to CFL and then to GEL-The
critical temperature we have found is larger than all terapees we are interested
in for compact star applications. Therefore, we have lghthat the temperature
inside a compact star is, for all times in the life of the ssaifficiently low for the
CFL-K? phase.

4.3 Color-superconducting gap from QCD

Let us now go through a true QCD calculation from first pritesp Our goal is to
compute the gag@ with perturbative methods. As explained above, this catoomh
can be expected to be strictly valid only at densities muafelathan present in
compact stars.

In the theoretical treatment of superconductivity oneddtrces charge-conjugate
fermions, which can be thought of as hole degrees of freedonule is left in the
Fermi sea if you remove a fermion. One might thus say thabéhicing fermion
holes leads to an overcounting of the degrees of freedonubedithe theory knows
about all fermions it also knows about where a fermion is mgssAnd indeed, we
have formally doubled the degrees of freedom. Howevergsima superconductor
quasiparticles are mixtures of fermions and fermion hdlas,is a necessary ex-
tension of the theory. The fermion spinors become spinotisdrso-calledVambu-
Gorkov space and the fermion propagator becomes:a2matrix in this space. The
Cooper pair condensate is taken into account in the offetiabelements of this
propagator, i.e., it couples fermions with holes. The isedree-level propagator in
Nambu-Gorkov space is

+1-1
Syt= <[GOO] [Goo]l) , (4.80)

with the inverse tree-level fermion and charge-conjugateion propagators

[Go] " = V'Kut o= [ko+ (H—ek)p/N, (4.81)
e=*+
where 1
A = 5 (1+eyoy-k) (4.82)

are projectors onto positive and negative energy stataseSiur QCD calculation
applies to asymptotically large densities, we can safeblewt all quark masses.
See appendix’Al2 for a derivation of the tree-level fermiompagator and its rep-
resentation in terms of energy projectors. From Eqg. (4.84jmmediately get the
tree-level propagators
Gt A (4.83)
0 e:zikoi(“_ek)' .
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The full inverse propagatdi— is obtained from a Dyson-Schwinger equation
St=St+2, (4.84)
with the self-energy
5~ (cli ‘%) . (4.85)

In principle,> also has nonvanishing diagonal elements which we negleet ke
off-diagonal elements contain the gap functidfk),

o (K)=AK).Ays, @ (K)=—-AK).4"ys, (4.86)

where.# specifies the color-flavor structure of the color-supercmtidg phase; in
the CFL phase# = J -1, see Eq[(4.29). From the Dyson-Schwinger equafion|4.84)
we obtain the inverse propagator, which we formally invebtain the propagator,

Gt F-
S <F+ G) , (4.87)
with
Gt = (G5 - oFGiot) T, (4.88a)
F* = —G{o*G™. (4.88b)

The off-diagonal element&8® are termedinomalous propagators. They are typi-
cal for all superconductors, see for example Refl [12]. Ftoeir structure[(4.88b)
we see that they describe the propagation of a charge-catejdgrmion that is
converted into a fermion through the condensate (or viceajeitOne can thus
think of the condensate as a reservoir of fermions and hated,the quasiparti-
cles are not just single fermions but superpositions oéstaith fermion number
...,—5,-3,-1,135,...

Inserting Eqs[{4.81)(4.83), arild (41.86) into Eq. (418&&)compute the diagonal
elements of the propagator (for simplicity we assumé = .# which is true in the
CFL phase, but may not be true in other phases),

N2
Gt — {; [koi (M —ek) WL—ekJ

with L = .#?, as defined for the CFL phase in EQ.(4.31). Now we wiiti& its
spectral representation,

-1
/\kTreyo} , (4.89)

L=S A2, (4.90)
r=12

with A, being the eigenvalues @& A1 = 1, A, = 4, and%?, the projectors onto the
corresponding eigenstates,
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L4 L-1
Pr=-"5=. P=

- (4.91)

Obviously, these projectors are completé, + &7, = 1, they are also orthogonal,
P19, =0, as one can see with the help of Eq. (#.35). We obtain

-1

2
G* = {Z {koi(;.l—ek) )"74} %/\,jeyo}

er - koF (IJ - ek)
PV .
PNTE
=[Gty -, (4.92)
PR
with
&, =1/ (ek—p)2+A,A2. (4.93)

The poles of the propagator akg= e, i.e., & . are the dispersion relations of
the quasiparticlese(= +) and quasiantiparticleg & —). We have thus confirmed
Eqg. (430), in particular we now understand why the eigameslof appear in
the excitation energies. Note that the structure of theedfpn relations is thus
determined entirely by the color-flavor (and Dirac) struetaf the order parameter,
and thus ultimately by the symmetry breaking pattern. Ohéy ¢alculation of the
magnitude ofA goes beyond simple symmetry considerations and depend®on t
form of the interaction between the fermions.

Using the resul{{4.92) fo* and Eq.[[4.88b), one easily obtains the anomalous
propagators,

PNTE
FE=+AAys > k (4.94)

) kg - (Slf,r)z .
The gap equation is a self-consistent equation for the iaffi@hal elements of the
self-energy>. We shall not discuss the detailed derivation of the gap ojuésee
Sec. IV.A in Ref. [6] for this derivation). The gap equati@ads

O (K) =5 S VT FH(QY D (K~ ©), (4.95)
[

whereg is the QCD coupling constant, which will be our expansionapagter,
whereDﬁ'{, is the gluon propagator, and whefg=A,/2 (a = 1,...,8) with the
Gell-Mann matrices\,. In Figs.[4.3 an@ 414 we show the self-energy and the gap
equation diagrammatically.

The first step is to transform the matrix equation (#.95) emcequation for the
scalar gap functiod (K). To this end, we multiply both sides of the gap equation
with ys.Z A" from the right and take the trace on both sides. Furthermeeee-
glect the antiparticle contributian= — (and denotey , = e,:f ,) and use the fact that
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£ do%
ek £

Fig. 4.3 Diagrammatic representation of the one-loop self-enaengyambu-Gorkov space. Curly
lines are gluon propagators, double lines correspondtqleft-pointing arrow) andz~ (right-
pointing arrow), single lines t&3 (left-pointing arrow) andGy (right-pointing arrow), and the
circles are the gap matriceB™ (cross-hatched) and~ (hatched). The vertices have the form
gy* T, with the QCD couplingg.

N o 1

Fig. 4.4 Diagrammatic representation of the gap equation whictesirés follows. On the one
hand, the one-loop self-energy is given by cutting a ferniioe in the corresponding two-loop
diagram of the effective action. In Nambu-Gorkov spaces ttields the matrix of four diagrams
shown in Fig[Z:B. On the other hand, the self-energy is gyeieq. [4.85). Equating these two
matrices leads to the gap equation in the off-diagonal esn&he algebraic form of the gap
equation is given in EqL{Z.95). It is a self-consistent ¢iguefor @ (equivalently, one may solve
the equation fo® ™), and thus for the gap functiofi(K).

the gluon propagator can be taken to be diagonal in coIores[ISﬁ,’é, = 6“"D,w.
This yields

g°T A(Q _
2K) = £ L5 5 Q) gy n -y AT 4 T 1Dy (P)
24V ok

2 4(0) |1 A@Q)

__§ Tz
— a2y 2.2 2 2.2 2
3V & |3q5—¢1 3a5—¢;,

XTryH A, Y A 1 Dpv (P), (4.96)

where we abbreviate®l= K — Q, and where we have used the results for the color-
flavor traces

TSt P Ty tl) = 2 THT] t PoT, M) = — 1—36 : (4.97)
It is left as an exercise to verify these traces. With the glpmpagator in Coulomb
gauge,
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Doo(P) =Dy(P),  Doi(P)=0,  Dij=(8;—pip;)D:(P), (4.98)
whereD, andD; are the longitudinal and transverse components, we have

£T |2 A(Q) 1 A(Q)

AK) = =—
() 3V 3q0 3q

ql 0

X [(1+Q-R)D6(P)—2(1—f)-flf)-f()Dz(P)] - (4.99)

Again, it is left as an exercise to verify this result by penfiing the trace in Dirac
space. The two terms on the right-hand side arising fegmande, > are due to
the two-gap structure of CFL. Let us for simplicity ignoréstktructure in the fol-
lowing, i.e., we replace, » by &, 1 (for more details about the QCD gap equation
for CFL, see Ref[[14]). This simplification does not chariye main result which
is the dependence of the gap on the QCD coupdinghe two-gap structure has
a nontrivial effect for instance on the relation betweendtigcal temperature and
the zero-temperature gap, see [EQ.(#.79). In fact thei@ that equation is actually

(/\12/ 3/\21/ %)1/2 where the exponents 2/3 and 1/3 are the prefactors in frahedivo
fractions in Eq.[(4.99).

For the sake of brevity, let us now skip a few steps in the datmn. One inserts
the specific form of the longitudinal and transverse gluomppgators (in the so-
called hard-dense loop approximation), performs the Metsusum and the angular
integral. Details of all these steps can be found for ingandRef. [13], and one
obtains

S 4 auz 1 M?
8 q H 2
b~ o d th—I— | +ZIn——— | . (4.100

¢ 24n2/u,5 1%, " (”3 2 TIN5z 3N gy ) (4100)

Here, the three terms in parentheses arise from staticielgkitons, non-static mag-
netic gluons, and (Landau-damped) soft magnetic gluospgeively. The last of
these terms is responsible for the leading behavior of thendach will turn out to
be different from the usual BCS behavior in electronic sapeductors. The reason
is the existence of a long-range interaction mediated bynhgnetic gluons in QCD
for which there is no analogue in the interaction of elecéroma metal. We have
definedn2 = Nyg?u?/(612) (N being the number of flavors), and? = (3r1/4)m2,
and we have restricted the momentum integral to a smallitycamound the Fermi
surfaceg € [u — o, 4+ 0] (& <« ), where we expect the gap functidy to be
peaked. The three logarithms can be combined to obtain

b2 2
M=3 /dq u—— |£2“ 1 (4.101)
with
3 2 2 \5/2
8= 375 b= 256n4(N > , (4.102)
m 182
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and where we have taken the zero-temperature Iimit%\nh 1. The logarithm can
be approximated by

1. bv2u? bu bu
= ~O(k—g)In—+06(g—k)In—. 4.103
2 |£(12 _ £k2| ( q) fk + (q ) gq ( )
Moreover, we define the new integration variable
2bu
y=gh——7—, (4.104)
g—Ht&
and abbreviate
_ 2by «_ o 2by _ . bu
x_glnk_u+£k, x*=gln A xg=gIn 5 (4.105)

whereA is the zero-temperature value of the gap at the Fermi syrfaceA,— ;.
We have

dy = —fd(q— H), g =buet
q

AZ
1+ 4

With the latter relation we approximate(lini/€,) ~ y/g, In(bp/ &) ~ x/g to obtain

Alx) :x/: dyA(y)+/x:dyyA(y). (4.107)

We can rewrite this integral equation as a second-ordegréifitial equation,

aa [~ d’A
- / A = S5 =-a0). (4.108)
This equation is solved by
A(x) = Acodx* —x), (4.109)

such that the value of the gap at the Fermi surface (whicltesponds ta = x*) is
A, and such that the first derivative of the gap at the Fermaserfanishes, since the
gap peaks at the Fermi surface. To compute the value of thatglae Fermi surface,
we insert the solutior (4.109) back into the gap equafioh0#). and consider the
pointx = x*,

x* *
A=A / dyy cogx" —y) = Afcogx” —y) — ysin(x" —y)[; 3
X0

= A[1—cogx" —xg) +xoSin(x" —xp)] . (4.110)
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Sincexp is of orderg, we approximate c@s* — xp) = COSx™ COSxg + Sinx* sinxg ~
cosx* 4 xpsinx*, sin(x* — xp) = sinx* cosxy — COSx™ sinxp ~ sinx* — xpcosx™, and
thus

A ~A(1-cosc"). (4.111)
Hence, cos* ~ 0 and thus
3
A=2bu exp(——) . (4.112)
V2g

This important result, first derived in Ref. [15], shows ttieet color-superconducting
gap is parametrically enhanced compared to the BCS gap irentional supercon-
ductors. In BCS theory there is a contact interaction imstéaluon exchange, and
the resulting gap equation has the form

2 [° A
Alg /O dlg—p)% (4.113)
q

Here the gap does not depend on momentum and one oltairexp —consy g2),
i.e., the coupling appears quadratic in the denominatoh@fexponential. This is
in contrast to the color-superconducting gap (41112) whieeecoupling appears
linear in the denominator of the exponential. As mentiortaala, this is due to the
long-range interaction from magnetic gluons. For moreitetand a more general
solution of the QCD gap equation see Sec. IV in Ref. [6] andrezfces therein.

The solution of the QCD gap equation is a weak-coupling temud thus only
valid at very large chemical potentials where the QCD cawp sufficiently small.
It is nevertheless interesting to extrapolate this resultger couplings. Of course
one should keep in mind that this extrapolation has no thieatgustification. We
show the gap as a function of the coupling in Figl4.5. We seeettponentially
small gap at small coupling and observe a maximum of the gapcatupling of
aboutg ~ 4.2. For compact stars we make the following rough estimateoft
ing to the two-loopB-function (which should not be taken too seriously at these
low densities), the coupling gt = 400MeV isg ~ 3.5. From Fig[4.b we then
read off A ~ 80MeV. However in our derivation of the result we have igmbae
subleading effect which yields an additional prefactod.2. Therefore, we can es-
timate the color-superconducting gap for compact starities$o be of the order of
A ~10MeV.

This result suggests that the critical temperature of calperconductivity is also
of the order off, ~ 10MeV, cf. Eq.[4.7B). Remember that compact stars have tem-
peratures well below that value (only in the very early stagithe life of the star,
temperatures around 10 MeV are reached). This suggestbasuperconductors
are viable candidates for the matter inside the star. Maeigely, if there is decon-
fined quark matter inside the star, itis very likely that s color-superconducting
state.

We conclude this chapter about color superconductivitydticing that, besides
the strong-coupling nature, other interesting questioise at lower densities. We
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Fig. 4.5 Color-superconducting gap over quark chemical potential as a function of the QCD

couplingg. The curve shows the result from El._(4.1112) with= 2, predicting a weak-coupling

behaviorA /u O exp(—consyg). The values ofA / i1 for large coupling is a simple (and in principle
unreliable) extrapolation of the weak-coupling result.

have seen in SeE. 2.2.2, that in unpaired quark matter theifFeomenta of up,
down, and strange quarks split apart, see[Eid. 2.1. Thisdgalthe nonzero strange
quark mass and the conditions of neutrality and weak equili. In our discussion
of superconductivity we have always assumed that the fersnioat form Cooper
pairs have identical Fermi momenta. This is true in the negibasymptotically
large densities where the strange quark mass can be nejjl#dtenot true, how-
ever, at lower densities. The different Fermi momenta rath@ose a “stress” on
the pairind] It is a quantitative question whether the pairing gap isdagough to
overcome this stress. Roughly speaking, if the gap is lattger the mismatch in
Fermi momenta, the usual pairing is still possible. It isréifiere conceivable that
the CFL phase persists down to densities where the tramdtidvadronic matter
takes place. If the gap is too small, however, or the mismatiharge, Cooper pair-
ing in the conventional way is not possible anymore. Theeesareral versions of
unconventional pairing which may take over and constitute or several phases
between the CFL phase at high densities and hadronic m&tsre of them break
rotational invariance and may lead to nodes of the gap iraitedirections in mo-
mentum space as discussed in the context of the specific ih&mtd[Z.11. Others
even break translational invariance and exhibit crystalitructures. All of the un-
conventional phases have in common that there is less, aggyenmetric, pairing
than in the CFL phase. There is less pairing because the Cédeph the only color
superconductor where all quarks are gapped in all direstiormomentum space.
There is less symmetric pairing because the CFL phase isthesuperconductor
with the largest residual symmetry group. In the phase diagsf Fig[ 1.1 all color

7 Cooper pairing with mismatched Fermi momenta is an intergsfeneral phenomenon and not
only relevant for quark matter, but also in condensed mattgsics and atomic physics. See for
instance Ref[[16] where mismatched pairing of fermionanag is investigated experimentally in
an optical trap.
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superconductors other than CFL are collectively denoteddsyCFL. From what
we just said it is clear that this region of the phase diagray either be completely
absent or, if present, may itself contain several phassitian lines separating dif-
ferent color superconductors. More details about strepa@thg in quark matter
and unconventional color superconductors can be foundfin&le

In summary, we emphasize that not only the strong-couplatgre but also the
less symmetric situation (due to the finite strange quarksina@mplicates our un-
derstanding of quark matter in compact stars. This supploettheme of these lec-
tures that we need to compute properties of candidate plamsesheck them for
their compatibility with astrophysical observations. e following section we shall
turn to one of these properties, namely the neutrino enitgsiv

Problems

4.1. Specific heat for anisotropic superfluid

Compute the low-temperature behavior of the specific head fpap function with
line nodes, i.e., instead of EQ.(4118), take— A|cosf| and apply analogous ap-
proximations as for the case of point nodes.

4.2. Symmetries of CFL

Show that from the structure of the CFL order parameter ginezty. (4.27) it fol-
lows that the CFL symmetry breaking pattern is given by E®@8% Hints: it is suf-
ficient to treat the chiral grougU (3),, x SU(3)r as one single flavor groufi/ (3) .

A color-flavor transformation(U,V) € SU(3). x SU(3)y with U = exp(igfT,),

V = exp(ig) T,) acts on the order parameter @s V)(J - 1) = (UJAUT) (VI VT).
One then has to show that orfi¥/ (3). ¢ transformations leave the order parameter
invariant.

4.3. Kaon propagator
Derive the inverse tree-level propagator for neutral aredt@ed kaons given in Egs.

(4:89) and[(4.70) from the Lagrangidn (4.67).
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Chapter 5
Neutrino emissivity and cooling of the star

We have seen in Sedl 2 that measuring mass and radius of a costpais not
sufficient to deduce the matter composition inside the gté;neither conclusive
for a distinction between nuclear matter and quark matterbetween unpaired
quark matter and color-superconducting quark matter. Wetnm to an observable
which is more sensitive to the microscopic properties ofsgematter, namely the
temperature of the star. More precisely, its cooling cuinee, the temperature as a
function of the age of the star. Approximately one minuterfite star is born, the
temperature has cooled below 1 MeV and the star becomeg&iamg for neutrinos.
Consequently, neutrinos (and antineutrinos) which ardyced in the star can leave
the system and carry away energy. Neutrino emission is tleid@minant cooling
mechanism of a compact star in about the first million yearissdffe. After that,
photon emission takes over. We shall not be concerned wihte regime here.

A very detailed review about neutrino emissivity in nucleaatter is Ref.[[IL].
If you are interested in a shorter review, also discussiraglgmatter, | recommend
Ref. [2]. Before turning to the microscopic calculationloé theutrino emissivitg,,,
let us discuss its importance for the cooling curves. Firstlpas already discussed
briefly in Sec[41L it is not only the emissivity which is impamt for the cooling.
Once you know how much energy per time and volume is carriesyayou need
to know how this affects the temperature of the star. Henceajso need to know
the specific heat. The specific hegtis a thermodynamic quantity and thus much
easier to compute than the neutrino emissivity. We have domeSed 411 and have
seen that superconductivity has a huge effeatygmamely, due to the energy gap,
cy is exponentially suppressed at sufficiently small tempeest We shall see that
superconductivity has a similar effect on the neutrino sivity. Besidess, andcy,
also the heat conductivity is important for the cooling betia Most forms of dense
matter are very good heat conductors, such that the stameecizothermal. As a
consequence, in a realistic star which may have layers f&rdiit phases of dense
matter, cooling tends to be dominated by the phase with thiegsi emissivity and
the phase with the highest specific heat.

89



90 5 Neutrino emissivity and cooling of the star

5.1 Urca processes in nuclear matter

In Fig.[5.1 we show some data and schematic comparison withlations for the
cooling curves. We see that there are different classesaafegses which lead to
significantly different cooling scenarios. The most efiitiprocess is the so-called
direct Urca process which leads to a very fast cooliﬂbn nuclear matter, the direct
Urca processes are

n—pt+e+v,, pte—n+v,. (5.2)

We have discussed these processes in the cont@xeqtiilibrium, where they serve

to establish the relation, + u. = H,, assuming that neutrinos and antineutrinos es-
cape from the stap, = 0. Here we are interested in the question how both processes
contribute to the neutrino emissivity. Since it does notterdor the energy balance
whether neutrinos or antineutrinos are emitted, both mse®contribute — in chem-
ical equilibrium — equally to the emissivity. For the neutr@roton, and electron,

the dominant contribution in momentum space to the prosassmes from the mo-
menta close to the Fermi momentum. The neutrino momentufitie@rder of the
temperaturd which can be neglected compared to the Fermi momenta. Tdreref
momentum conservation for both processes in [Eql (5.1) reads

kF,n :kF,p+kF,e- (52)

In other words, the Fermi momenka ,, kr,,, andkg, must form a triangle. For
this triangle to exist, the triangle inequality has to bédilfeld,

kF,n < kF,p+kF,e- (53)

We know that in a neutral system we hayg, = kr,., and thus the triangle inequality
becomes
kp,n < 2kp,p. (5.4)

Consequently, with; 0 k3 ; (i = n, p),

n, <8n, = Z—Z>%, (5.5)
i.e., the proton fraction has to be larger than 11%. We haea s Sec[ 2]1 that
this is not the case for noninteracting nuclear matterrautons can change this,
especially for very large densities. At lower densitiess theans that the direct Urca
process is strongly suppressed in nuclear matter.

This brings us to a second class of processes which are lgsgrdafthan the
direct Urca process, but may be the most efficient ones to eeuitrinos when
the direct Urca process is suppressed. Momentum consaman be fulfilled by

1 This process is as efficient in sucking energy out of the stahaCasino de Urca in Rio de
Janeiro is in sucking money out of the pockets of the gambitézace the name.
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Fig. 5.1 Effective surface temperatuf® and luminosityL, vs. age of compact stars, taken from
Ref. [3]. Observed values are compared with different capkcenarios, each represented by a
band that reflects the large uncertainties in the microsacgdculations.

adding a spectator neutron or proton. This is the so-calletified Urca process,
N+n—N+p+e+V,, N+p+e—>N+n+V,, N=n,p. (5.6)

As can be seen from Fig. 5.1, this process typically resnissmuch slower cooling.
The cooling is thus very sensitive to the proton fractionwdlear matter, especially
around the threshold of 11%. In other words, this sengjtprbvides a good check
on the equation of state. Phenomenological models withtemsof state which

predict the proton fraction to be above this threshold caexotuded since the star
would cool too fast. There are several other neutrino emifggrocesses in nuclear
matter which we shall not discuss here. Some of these presésppen only with

superconducting protons and superfluid neutrons, and @ &dionstant formation
of Cooper pairs.
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5.2 Direct Urca process in quark matter

The direct Urca processes in quark matter are

d— ut+e+v,, ute—d+v,, (5.7a)
s—=ute+tv,, u+e—s+Vv,. (5.7b)

These processes obviously require the availability oflsimgiarks. If quarks are
paired in Cooper pairs one first has to break a pair. This costsgy. Therefore,
in a phase where all quarks are paired (gapped), such as thel@ise, we can
expect the direct Urca process to be strongly suppressefbrAle specific heat,
we expect an exponential suppression at temperatures samflared to the gap
(at larger temperatures, but still below the color-supedemting phase transition,
thermal energy is available to break the pairs). Recalltth@gap is of the order of
10 MeV, and the temperature of the star is well below thatr&foee, the exponen-
tial suppression exXp-A/T) forbids any sizable effect of the Urca process. Other
processes coming from Goldstone modes dominate the newnnissivity in the
CFL phasel[4]. However, their contribution is much lowerrthhat of the unsup-
pressed direct Urca process. Therefore, if the core of aidhgbar is made of CFL
quark matter, with outer layers of nuclear matter where ang kf Urca process is
possible, the cooling properties are utterly dominatechlege outer layers.

We have briefly discussed that at lower densities the CFLeh&s/ not be the
ground state anymore. Any other color-superconducting@hall have ungapped
moded] The simplest example is the so-cal@&t” phase where all blue and strange
quarks are ungapped while the others are gapped. There aeecoraplicated can-
didate phases with ungapped modes only in certain directitomomentum space.
In any case, the neutrino emissivity of these phases willdmidated by these un-
gapped modes, and thus will be comparable to the emissifitynpaired quark
matter. We are thus interested in the neutrino emissivityngfaired quark matter.
To be a bit more ambitious, let us discuss the emissivity@?BC phase. From this
calculation we will obtain the result for the unpaired phdsefree” because of the
unpaired modes in the 2SC phase. Furthermore, we learn Bimgeibout comput-
ing reaction rates in a superconductor which show someestieg features. And
also we will see in an actual calculation why the emissivitthe gapped modes is
exponentially suppressed. In other words, the goal of #éxsien will be to under-
stand

e the role of the Cooper pair condensate and the energy gapeddrtta process
(we shall estimate this qualitatively)

e the result of the emissivity of unpaired (ultrarelatii3tquark matter (we shall
compute this quantitatively).

All we shall need from the 2SC phase is the propagator. FronfZ&82) we know
that the general form of the propagator can be written as

2 A possible exception is thevlor-spin locked phase which has Cooper pairs with total angular
momentum one and which we do not discuss here.
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;f’/ﬁzgf kﬂ H— k>, (5.8)

Skr

where we used E(q.({4.B3) and where we dropped the antigactcitribution. Note
that this form of the propagator assumes that all flavor cbahpiotentials are the
same. For the neutrino emissivity we need to drop this assam@ he order param-
eter in the 2SC phase is characterizeddy= 6,367 whereg is the color-flavor
matrix from Eq.[4.26). For simplicity, we drop the strangecks and consider only
a two-flavor system of up and down quaH<§hen the color-flavor structure of the
gap matrix is
M= ToJ3, (59)

with the second Pauli matrix, in flavor space ands in color space, as defined
above Eq.[{4.29). The color-flavor structure of the 2SC pimsrich easier to deal
with than the one of the CFL phase because color and flavoiicestfactorize.
Sincets = 1, we have#? = JZ, whose eigenvalues ale = 1 (4-fold) andA, = 0
(2-fold). This is the formal way of saying that in the 2SC phgsarks of one color,
say blue, remain ungapped. The projectors onto the comelipg eigenspaces in
color-flavor space are

Py =J2, Py=1-J3. (5.10)

They are trivial in flavor space and project onto red and giepearks (which are
gapped) and blue quarks (which are ungapped), respectively

In a neutral two-flavor system, up and down chemical potentiee different,
namelyu, + 4. = Hg, Wherep, turns out to be nonzero due to the neutrality con-
straint. The generalization of the propagafor](5.8) to¢hise can be written in terms
of the flavor components (see probleml5.1)

ko:F My — )
A W e 5.11a
M2 oo o2 (5-112)

ko (Ma — )
ATy 0T M=) g 5.11b
Zkiéu ek’,‘@ (5.110)

with

&, = /(- k)2 + 242, 5uz“";’“‘”, = ’“‘"JZF“”, (5.12)

andA,, &, as above £, now being only matrices in color space since the fla-
vor components are written separately). This structuréenefgropagator and the
resulting quasiparticle dispersion relations are intargson their own, since they
describe Cooper pairing with a mismatch in Fermi momentalissussed at the

3 The weak interaction betweerands quarks is suppressed compared to the one betweeadd
quarks due to the Cabibbo angle. However, the finite strangekgnass may partially compensate
this effect because it leads to a larger phase space for tepjocess. Here in these lectures we
do not want to deal with these complications and thus simphgitler a system of massless up and
down quarks, and thus only the proces§es5.7a).
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Mn=---- S

Fig. 5.2 Neutrino self-energy, andW-boson polarization tensét needed for the neutrino emis-
sivity from the quark Urca process.

end of Sed_413. However, in the present context of neutrinisgvity, we are only
interested in the qualitative features of the gapped mddess we shall ignore this
complicated structure of the propagator and temporartlyse- u;. Only when we

compute the emissivity from the unpaired modes we shalstaia the difference in
up and down chemical potentials.

Next we need to set up the equation that determines the ne@missivity. One
possible formalism is the finite temperature real-time falism. We shall not ex-
plain this formalism but refer the reader for more detailthmtextbookd 5] and[6].
For our purpose it is enough to know that the real-time forsnalcan be used for
nonequilibrium calculations. Therefore it is well suitexd fransport properties and
neutrino emissivity. Since these properties are alwaysecto-equilibrium proper-
ties, one often simply uses an equilibrium formalism, sughh& imaginary-time
formalism, and adds whatever is needed as a small out-dlitggqum feature by
hand. In the real-time formalism we can start from the kinetjuation

TG (P)] = TG ()55 ()~ 55 (G5 (B, (519)
whereG;, andGy are the so-called “greater” and “lesser” neutrino propagaand
Py is the neutrino four-momentum. The greater and lesser gaipes are obtained
from the retarded propagator in the same way as given in Edst)(for the case of
the W-boson polarization tensor. The trace in Hq. (5.13) is takesr Dirac space.
The two terms on the right-hand side correspond to the twections of both pro-
cessed(5.7a), i.e., there is a neutrino gain term #fomu +e+ V., u+e — d + V,,
and a neutrino loss term fronw-e + v, — d, d + V. — u + e. Since neutrinos, once
created, simply leave the system, only the gain terms, natheldirections given in
Eq. (5.74), contribute. The neutrino self-enerdigs” are given by the diagram in
Fig.[5.2. The present formalism amounts to cutting this diag The figure shows
that a cut through the internal d, ande lines produces two diagrams which rep-
resent the Urca process. One part of the neutrino self-erseege theW-boson
polarization tensorgl <>, as shown diagrammatically in Fl[g.5.2. They are defined
through the imaginary part of the retarded polarizatios¢enm/Tg,
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M-(Q) = —2i[1+ fz(qo)]ImMx(Q), (5.14a)
M=(Q) = —2ifz(qo)IMMr(Q), (5.14b)

with the Bose distribution functiogiz(x) = 1/(¢*/T — 1). We shall discuss the cal-
culation of ImfTy in detail below. The kinetic equatioh (5]13) becomes

9 G d>p.
EfV(%PV) = ?/WLM(P(“PV)
* fr(pe — o) f5(py + He — pe)IMI9(Q),  (5.15)

wherefr (x) = 1/(e*/T + 1) is the Fermi distribution function, where, due to four-
momentum conservation,

Q = (pe — pv — He;Pe —Pv) s (5.16)

and where
L)‘U(pe,pv) =Tr [(Vope —y-pe) Y’ (1— Vs)(VOPv —Y-pv) V\ (1- Vs)} . (5.17)

(In this section, Lorentz indices are denoted, ... in order to avoid confusion
with the subscript which indicates neutrino quantities.) If you are interdstethe
details of the derivation of Eq.{5.1L5) or more details atibatreal-time formalism,
see Ref.[[F] and references therein. In this reference th&ine emissivity is com-
puted in the same formalism; however, for anisotropic phastich leads to more
complicated calculations than we shall present here. Tilenfimg is equally under-
standable if you simply start with EQ.(5]15) whose feataresphysically plausible
as we explain now.

The left-hand side of Eq_(5.1L5) is the change of the neutstoupation number
in time. Itis related to the emissivity by

3
SVE_Z%/%prV(tapV% (5.18)
where the factor 2 accounts for the contribution from antiriros. The neutrino
emissivity is thus the change in energy per unit time and meluOur task is to
compute the right-hand side of Ef._(5.15) and integratethveneutrino momentum
according to Eq[{5.18) to obta&y . To understand the right-hand side of Eq. (5.15)
first note that the verte* for the processe$<+» u+ W~ ande <> v+ W is given

by

e
" 2/2sin6y

with the Weinberg angléy . (For the processl < u+ W~ there is an addi-
tional factorV,; from the Cabibbo-Kobayashi-Maskawa (CKM) matrix; however
Via =~ 1.) TheW-boson propagators can be approximated by the iny&&®son
mass squaretf?, since all momenta we are interested in are much smaller Hign t

rH=

V(- (5.19)
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massMy ~ 80GeV. Thus, pulling out the constant factors of the vestioetheW -
boson polarization tensor, we obtain the overall faci@rwith the Fermi coupling

constant
Ve
8M32, sir? Oy
The additional factors in the trace of EQ.(3.17) come froeatectron and neutrino
propagators. And finally, the distribution functions in §&.13) belong to the elec-
tron and thé¥-boson. Eventually, the Bose distribution of fiirewill drop out since
the W-boson polarization tensor will turn out to liefgl, see below. This makes

sense because thHédoes not appear in the initial or final state of the processreve a
interested in.

Gr —=1.16637-10 1*MeV 2. (5.20)

5.2.1 W-boson polarization tensor
Next we need to compute |m,§0 for which we first compute
T
nto(Q) = v Zmr,A S(K)F2s(p)], (5.21)

where the trace is taken over Dirac, color, flavor, and Na@bukov space. We
have define® = K + Q; K andP will play the role of thex andd quark momentum,
respectively. The weak vertices in Nambu-Gorkov space are

_(ra-pr 0
2" el ) 522

wheret. = (11 £i12)/2 are matrices in flavor space, constructed from the Pauli
matricesty, To. They take care of the fact thatuiaand ad quark interact at the
vertices. Recall that, for notational convenience, we hauéed out the constants
of the weak vertices already and absorbed them in the oviacitir G2. With the
quark propagatas from Eq. [4.87), the trace over Nambu-Gorkov space yields

() = 53 {1 [V - Y)r 6"y a-pPprar )
T (14 ) 0.6 (K)Y (1+V)T-G (P)]
~Tr P A= P K)o TFE(P)]
“Tr [ @+ e R A- )L F(P)] } (5.29)
We see that there is a contribution from the anomalous pratpegf~. The corre-

sponding diagram in Fi§. 3.3 is an instructive example facpsses in a supercon-
ductor which are only possible due to the Cooper pair coratensee explanation
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—_——— - -
anomalous W_

Fig. 5.3 Anomalous contribution to th&-boson polarization tensdv. The loop consists of two
anomalous fermion propagators, according to Eq. (4.889.I&wer propagator consists of a full
fermion propagator (double line), the condensate (hatcieie), and a charge-conjugate free
propagator (single line in opposite direction), and analsdy for the upper one. Electric charge
conservation at the weak vertices determines the flavoeobof each line. As a consequence, one
reads off that the condensate acts as a reservoir that caartan quark into ad quark hole and
vice versa.

in the caption of the figure. The anomalous contribution isstbnly present for the
gapped modes. We shall ignore it here for simplicity (it isafier than the contri-
bution from the normal propagators, but not negligibly drfg])). This leaves us
with the first two traces in Eq_(5.23) which are the contritbf the normal prop-
agators (they of course also contain the superconductio)y Baurns out that both
traces are identical which we use without explicit proof. iMas continue simply
with twice the first term,

Ao (Q) ~ 2; Z S {V\(l— V)T WA Y (1 y5)r+yo<@x/\;}

ko—(H—k) po—(H—p) (5.24)

2_ o2 2_ g2 !
kO gk,r Po gp,s

where we have inserted the propagditor](5.8). (Recall thdtave sef, = i, tem-
porarily to avoid complications; this is sufficient to dissithe effects of supercon-
ductivity qualitatively, but eventually we shall reingahe difference iy, anduy,
to compute the result for unpaired quark matter. In prirgifdr the 2SC phase we
would have to use the propagators given in Eq. (5.11)). Tha¢avor traces are

Tr[r,gzluf/_’l] =2, (5.253.)
Tr[t- 2114 P = 0, (5.25b)
Tr[t- P21 P1) = 0, (5.25¢)
Tr[t- Pt P = 1. (5.25d)

Recalling that#; projects onto the gapped red and green quarks@p@nto the
ungapped blue quarks, this is easy to interpret: the weakaation cannot change
colors. Therefore, the quark loop in the polarization terssee right diagram in
Fig.[5.2 — contains an up quark and a down quark of the same @dley are either
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both gapped (then they are red or green, hence the result & iE254)), or they
are both ungapped (then they are blue). There is no termviimgobne gapped and
one ungapped quark. We thus get two contributions,

Q) ~ 2 5 7k B)

2

« Zkoz(l-‘;k)PO;(H;P) kO;(l-‘;k) —(U—p) (5.26)
k§—€&1  PG—Epa k§— &, PG~ 5,7 2

where we abbreviated the Dirac trace
T (kD) =Tr [ (1= V) v (- y)wA, | (5.27)

We notice that the second contribution in Hgq. (5.26) is atedifrom the first upon
settingA = 0. Thus, for notational convenience, let us simply continii one
color degree of freedom, say the first term without the fa2f@nd denote;, = & 1.
In the end it is then straightforward to get the full result.

Next one has to perform the sum over the fermionic Matsubarpiencies. This
technique is discussed in detail for a simple example in appéA.2.1. Here we
need the more complicated result from problemlA.2,

ko— u k po—(u p)
TZ Po— P
1 [fk +e1(u —k)[g, +ea( — p)] fr(—e1&) fr(e2€p)

=- .(5.28)
48/(8]7 e1,62 qo— e1& +e2§) fB(—e‘]_Sk + 92‘9]))

(RememberP = Q + K.) We comment on the physical meaning of the sum over
the signse1,e2 = + below. To obtain the retarded polarization tensor, we need t
replacego — go —in. Then, the imaginary part is obtained by using the identity

lim -
n—0+ x=£in

= 9} Fimd(x), (5.29)
X
whereZ” denotes the principal value. This yields

Im e k,p)B{ B

e1ep
fF(—elfk)fF (ezfp)
fe(—e1& + e2€p)

O(qo—e1& +e28p), (5.30)

where we have defined tlBgoliubov coefficients

Bz:}<l+e“_k>. (5.31)
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These coefficients appear in the theory of any kind of supehector or superfluid,
see for instance Ref.][9]. Inserting the restlt (5.30) batk Eq. [5.1b) yields

d®p.d®k
z / (2m)3(2m)3 232y p. A0
~, )3pvpe

X fr (Pe — Ue) fr(—e1&) fr(e2€p)0(qo — e1&k +e26,).  (5.32)

nG2 F

17} C e
Efv(tapv = - (pg,pv)y)\o(k,p)Blepz

As expected, the Bose distribution from EG. (5.15) canceth the denominator

from Eq. [5.3D) since on the one hagpg= p. — py — U, according to Eq[{5.16) and
on the other hangy = e1&;, — e2¢, according to thé-function.

5.2.2 Effect of superconductivity on Urca process

Eq. (5.32) describes the change in the neutrino occupatiatber due to the pro-
cessu+e — d + V,. (The other relevant proceds— u + ¢ + v, yields the same
result and is taken into account by the factor 2 in Eq. (5)1)r this process one
expects Fermi distributions of the forfaf,(1— f,), the factorsf, andf, standing
for the incoming fermions, and the factor-1f; standing for the outgoing fermion
(for the neutrinof, ~ 0). So what is the meaning of the sum ovey e2? With
f(=x) =1— f(x) it seems that all combinationfsf, [, fefu(1— fa), fe(L— fu)fas
and f,(1— f,)(1— f,) appear. In other words, also processes where both the up
and down quark are created or annihilated apparently gieatibution. More pre-
cisely, the quasiparticles, which are mixtures of up andrdparticles and holes, are
allowed to appear on either side of the reaction. This is ter@sting property of a
superconductor or superfluid where particle number coasiervis spontaneously
broken and particles can be created from or deposited istodhdensate.

To see explicitly that in the unpaired phase only one of the $oibprocesses sur-
vives, let us define the new Bogoliubov coefficients and thvedispersion relations

- 1 k— -
Bl == 5 ( z “) , & =sgnk— )& . (5.33)
s

Then we use that for any functidghwe have
)3 /0 dkB{F(eg) = Y /0 Ak BF(—e8y). (5.34)
e e

This reformulation is useful to understand the mixing otijgtes and holes, which is
manifest in the Bogoliubov coefficients. Had we taken thétlifn— O with the orig-
inal formulation inBY, &, we would have obtained the excitation enesgy- [k — u|
which describes a hole fdr< p and a particle fok > p. The more conventional
excitationg, = k — i which describes a patrticle for dlis only obtained as a limit
usingB¢, & (both formulations are of course physically equivalendwiNsince in
the unpaired phasg” = 1,5, = 0, we see that only the subprocess with= e, = 1
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survives in the unpaired phase. The other three subpracassenly possible in the
superconducting phase.

The general result in the superconducting phase has to bgutechnumerically.
Here we proceed with a discussion of the behavior at temp@simuch smaller
than the gapT < A. The neutrino emissivity is obtained by integrating Eq32).
over the neutrino momentum according to Hq. (5.18). For tivpgse of a simple
estimate we may consider the expression

g ~ Z / (ev+e1\/y2+7762\/m+ 1)71
VX,

el,ezzi

X (e*fl\/m + 1)71 (efm/m +1) o (5.35)

where we have abbreviated

=2 / E/ dw3/ dx/ dy, (5.36)
T VXY 0 0 0

and introduced the new dimensionless variables

x:—p_“d, y:—k_u”, y=2v (5.37)
T T T
The integration over the electron momentum has been rewrés an integration
over thed-quark momentum. We shall discuss the calculation morei@ttplfor
the case of unpaired quark matter below. Especially the langntegral, i.e., the
phase space for the process, needs to be considered in Hetailow we are only
interested in the suppression due to the gap. In the intdgoértq. [5.35) one
recovers the distribution functions for the electron, theuark, and thef-quark.

We may now perform the sum over ande, and approximateV 2192 > 1 and

eV > 1, sincep — oo for small temperatures. Then the four terms, in the order
(elan) = (+a +)7 (_a _)7 (_a +)7 (+a _)a become

" 1 1
&y ~ +
Y /v,x,y (e\/x2+¢2 B A L Y A Y A

1 1
. 5.38
+ev + e\/x2+¢2+\/y2+¢2 + ev+ X2+¢2+\/y2+¢2> ( )

The terms wherey, e, assume different signs, i.e., the third and fourth termidyie
contributions of the order af 2%, They are thus even stronger suppressed than the
first two terms which are identical and yield contributiomsgortional toe ¢,
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1 o9
/v,x,y e\/m 4 ev+\/y2+7 - /v,x,y o2/(20) 1 o2/ (28)
' 1
fr— 7¢ - 7¢
2¢e Sy R 21.27¢e ¢ (5.39)

In the last step we have performed the remaining integralatioally which yields
a numerical factor, unimportant for our present purpose. fflin result is the ex-
pected exponential suppression of the neutrino emisdwitgase of gapped and

d quarks,s, 0 e 4/T for T < A. The full numerical solution, also taking into ac-
count the temperature dependence of the faphows that this approximation is
valid up to temperatures of abolit< 7. /3 whereT. is the critical temperature of
superconductivity.

5.2.3 Result for unpaired quark matter

With the help of the new Bogoliubov coefficienfs(3.33) we easily take the limit
of unpaired quarks. For an explicit calculation of the emigsfor this case we
need the following ingredients. First we need to performrmaining traces in
Dirac space and do the contraction over Lorentz indicess Ehdone in problem
with the result

Ly o(Pe,Pv) 7 (k,B) = 64(p. — pe - K)(pv — Py - D). (5.40)

Next we observe that the result for the right-hand side of(E&@2) would be zero
without further corrections: we have to take into accountalted Fermi liquid
corrections which are induced by the strong interaction.Hafe mentioned these
corrections briefly in Se€. 2.3, see Hq. (2.78). To lowestoimithe strong coupling
constantr, — which is related to the couplingfrom Sec[4.B by, = g2/ (41) —we

have
20

= 37_[ .
We illustrate in FigL 5.4 how these corrections open up thesplspace for the direct
Urca process. As a consequence, there is a fixed afglbetween the: andd
quarks, and thé-function in Eq. [[5.3P) can be approximated by

Pru/d = uu/d(l_ K) ) K (541)

He pZ
d(cosB,; — cosby) , cosbh=1—k—2. (5.42
apty 0 (€0 ) o 42

8(pe—pu-+k—p) =

(We have reinstated the different chemical potentiglsu,.) We denote the angle
between the neutrino and tdequark by6,,; and approximate the factor

(Pe —Pe-K)(pv —pv - D) =~ 2l pyK (1 —COSByy) - (5.43)
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Fig. 5.4 lllustration of how Fermi liquid effects from the strong @én&ction open up the phase
space for the direct Urca process in unpaired quark matigitfRand side (solid Fermi momenta):
without Fermi liquid corrections, the Fermi momenta of thiganelativistic quarks are given by
PFu = Hus PF.a = Mq- Start with the momentum of the up-quagk,. The circle with center at its
tip indicates possible endpoints of the electron momengun®incepr, = . and i, + te = Py
(B-equilibrium), one cannot form a triangle wigh, p, and the down-quark momentupp, unless
one chooses the three vectors to be collinear. In this caseriangle collapses to a line and the
phase space for the Urca process vanishes. Note that th@neabmentunp, ~ T is negligibly
small on the scale of the figure. Left-hand side (dashed Feramenta): the strong interaction
changes the quark Fermi momentegpig, ~ 1,(1—K), pra ~ Hs(1— k) with kK = 2a,/(3m). In
other words, both Fermi momenta are reduced, but the dowarkdtermi momentum is reduced
by a larger absolute amount. Since the electron Fermi mamerg not changed, a finite region
in phase space opens up. The resulting triangle has a fixdd batyveen up- and down-quark
momenta given by the values of the chemical potentialskand

This factor vanishes for the case of collinear scatterinte d@; effect renders it
nonzero, hence this factor and in consequence the totalime@missivity is pro-
portional toa;. Putting all this together and changing the integrationalde from

p. to thed quark momentunp yields

dpdQ, / dkdQ, (1 cost,)

4 _ 2
5 v(tpv) = —64Gpasueuduu/ o | e
X 5(COSGMd — COSGO)fF(pe - I-le)fF(k - I-lu)[l_ fF(p - IJd)] . (544)
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Since we have taken only one color degree of freedom from[&g8), we have
reinstated a factoN, = 3. Next we introduce the dimensionless variables, v
from Eq. [5.3¥), and with the definitiof (5]18) of the totalirino emissivity we
obtain

dQ dQ dQ
2 6 v k
& = 128Gt | (2753/ (2n§3/ 23

x (1— cosb,,)0(cosb,; — cosy)

<[ S [ ax [ av e x— ) r- @) (5.49)

Here we have approximated the lower boundaries-py,;/T ~ . With the inte-
gral

_ 457 6

[ avd [ ax [ avsetvr -0 felol = goe

(5.46)

and the (trivial) angular integral

dQ,, [ dQ, [ dQ 1
/ (2753/ (znfs/ 5 (L~ C0sBu)3(c0sB,q — cosbh) = 755 (5:47)

we obtain the final result

457
&~ @)as GA% He IJuIJdT6 . (5.48)

This result has first been computed by lwamoto in 1980 [10].

5.3 Cooling with quark direct Urca process

From the result for the neutrino emissivity we can now genap cooling curve
for unpaired quark matter. Of course we shall ignore a loetéils of realistic stars.
The result will simply show how a chunk of unpaired two-flagoiark matter cools
via the direct Urca process. Nevertheless, the result ig Mastrative and shows
that the direct Urca process is indeed an efficient coolinghaeism. We use Eq.
(@.22), which relates the temperature as a function of tirthé emissivity and the
specific heat. For the emissivity we use the reguli {5.48)thespecific heat, recall
the result[(4.113) which is valid for two fermionic degreesfrefedom, taking into
account spin; we thus have to multiply this result by the nendj colors and add
up the contributions of andd quarks,

v = (s +pi)T . (5.49)
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Fig. 5.5 Cooling curve from the direct Urca process in two-flavor, aingd, ultrarelativistic quark
matter, see Eq(5.50).

Then, performing the integration in E§. (4122) yields

B TorY/
T(t) = (7 (5.50)

where we have defined
315 pi+pi 1

== . 5.51
914a,G2 e Mg Ty (5.51)

To get an estimate for this characteristic time scale, werasg,; = 500 MeV,
U, = 400MeV, 1, = 100MeV,a, = 1, an initial temperature dfy = 100keV at an
initial time #o = 100yr, and use the value of the Fermi coupling (5.20) to obtai

T ~ 10 °yr ~ 5min. (5.52)

This is a very short time compared to the astrophysical ticaées we are interested
in. The functionT (¢) is plotted in Fig[5.b. We see the rapid drop in temperature on
a time scale of minutes down to a few keV. We thus recover thpeslof the direct
Urca cooling from Fig[511. For late timess 19, we haver (1) 0t 1/4,

Problems

5.1. 2SC propagator
Show that for the case of different flavor chemical potestilaé fermion propagator
of the 2SC phase is given by Eds.(3.11) dnd (5.12).

5.2. Trace over Dirac space
Show that



References 105

Lyg(pe,pv) 77 (k,B) = 64(p. — pe k) (pv — pv - D), (5.53)

with L, 5 (p., pv) and. 72 (k, p) defined in Eqs[{5.17) anB(5127), respectively.

References

1. D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin and P. Haenskdutrino emission from neu-
tron stars, Phys. Re@54, 1 (2001) [arXiv:astro-ph/0012122].

2. D. Page, U. Geppert and F. Weber, The Cooling of Compacs,Stucl. Phys. A777, 497
(2006) [arXiv:astro-ph/0508056].

3. F. Weber, Strange quark matter and compact stars, Prog.NRel. Phys.54, 193 (2005)
[arXiv:astro-ph/0407155].

4. P. Jaikumar, M. Prakash and T. Schafer, Neutrino enmidston Goldstone modes in dense
quark matter, Phys. Rev. @&, 063003 (2002) [arXiv:astro-ph/0203088].

5. J.l. Kapusta, C. Gale, Finite-temperature field theoryidiples and Applications, Cambridge
Univ. Press, New York (2006).

6. M. Le Bellac, Thermal Field Theory, Cambridge Univ. Pre&&ambridge (2000).

7. A. Schmitt, I. A. Shovkovy and Q. Wang, Neutrino emissiom @&ooling rates of spin-one
color superconductors, Phys. Rev7B 034012 (2006) [arXiv:hep-ph/0510347].

8. P. Jaikumar, C. D. Roberts and A. Sedrakian, Direct Uredrim® rate in colour supercon-
ducting quark matter, Phys. Rev.73, 042801 (2006) [arXiv:nucl-th/0509093].

9. A. Fetter, J.D. Walecka, Quantum Theory of Many-Part®ystems, McGraw Hill, New York
(1971).

10. N.lwamoto, Quark Beta Decay And The Cooling Of Neutraar§tPhys. Rev. Letdd, 1637

(1980).






Chapter 6
Discussion

Let us summarize what we have learned about compact staceaisé matter, hav-
ing in mind the two questions we have formulated in the prefataddition, let us
also list a few things which would in principle have fitteddrihese lectures topic-
wise. We haven't discussed them in the main part becauser@éifound them not
suitable for a concise, and yet pedagogical, introductidregause they are simply
beyond the scope of these lectures, such as some of the tihabapproaches to
dense matter listed at the end of Sec] 6.2. And, well, soneetseh has to be made,
so for some of the following points there is no good reason thiey appear here
and not in the main part. The volume of the main part is choseh that it should
conveniently fit into a one-semester course, maybe droppiegr two of the more
specialized subsections. In SEc]6.2 | will give some setetferences where inter-
ested readers can find more information about the questiertsawen’t addressed
in the main part.

6.1 What we have discussed

e Astrophysical observables and their relation to microscopic physics. The first
thing you should have learned in these lectures is in whiokeseompact stars
are laboratories for the understanding of dense mattereXperiments we can
do in this laboratory are less controlled as for examplectalpl experiments in
condensed matter physics. This means we cannot always reg¢hsujuantities
we would like to know, or at least not to an accuracy we woulddchéor our
purposes. And it means that it is often impossible to swittloiooff certain un-
wanted effects at will, which would be desirable to extrateaact value for a
given quantity. For instance we would ideally like to haveregise look into the
interior of a compact star, but these kind of observatiotisalviays be indirect at
best since the information we get from the interior is filtetlerough the surface
and the atmosphere of the star. However, in spite of thesgctems (which, to
some extent, have been and will be overcome through impremenin observa-
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tional technology), we have seen that our observationalafatompact stars can
be closely linked to the properties of dense matter. Exasnpkehave discussed
in detail are the mass-radius relation which is related écettuation of state and
the cooling curve which is related to the neutrino emisgiaitd the specific heat.
e Theoretical approaches to dense matter. We have emphasized at several points
in these lectures that the density regime which is of intefi@sthe physics of
compact stars is very difficult to tackle. After all, thisfiitilty led us to consider
compact stars not only as an application of QCD but also ampnritant means
to understand QCD. The main reason for the theoretical diffids the strong-
coupling nature of QCD. We have discussed attempts to appribe relevant
density regime from two sides, coming from lower and highangity.
First, we have discussed nuclear matter, for which we halie koowledge at
low densities. This knowledge is strongly built upon expemtal data. In princi-
ple, even a single nucleon is theoretically a very compdidatbject if considered
from first principles. First-principle calculations, atak for sufficiently simple
properties of nucleons, are possible in computer simulatibut effective theo-
ries remain an important tool to describe nuclear mattettaey work well (by
construction) at sufficiently low densities. One of the bastamples we have
discussed is the Walecka model. However, finding the codestription of nu-
clear matter at high density is a challenge, and astropalydata can be used to
rule out or confirm certain models.
Second, we have discussed QCD from first principles in théesoof decon-
fined quark matter. This approach is rigorous at asymptbtibaggh density and
therefore is interesting on its own right. We have discugkad it predicts the
CFL state. Whether CFL persists down to densities relexartdmpact stars is
unknown. We have discussed that, to get a rough idea aboldvwhéensity re-
gion, one may simply extrapolate the rigorous results. Bistdf course stretches
the results beyond their range of validity. We have alsmihticed a more pow-
erful approach to deduce intermediate-density propeiries the high-density
calculations. This approach relies on the symmetries oCRk state. Building
on these symmetries, one can construct an effective thelighvean give us at
least qualitative insight into the properties of CFL at lowlensities, although
this approach cannot tell us whether CFL is indeed the gretaté of matter at
densities present in the core of a compact star.

6.2 What we could have, but haven’t, discussed

e r-modes— bulk/shear viscosity. We have said little about the rotation of a compact
star except for stating that it can rotate very fast, up tooastna thousand times
per second. For the purpose of our lecture, however, théiantirequency is
a very interesting observable because it is sensitive tonilseoscopic physics.
One of the reasons is as follows.
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Certain non-radial oscillatory modes of a rotating stapanticular the so-called
r-moded] are generically unstable with respect to gravitationalatah. The
reason can be understood in a rather simple argument. @oriie situation
where the star rotatesunterclockwise, seen from the polar view, and where an
observer in the co-rotating frame sees non-radial osaiiatwhich propagate
clockwise. These modes lower the total angular momentum of the séay,ifi.
the star’'s angular momentum is positive, the oscillatioamgehnegative angular
momentum. Now assume that these propagating modes arerseea flistant
observer to move counterclockwise, i.e., they are “dragggdhe star’s rota-
tion or, in other words, their angular velocity in the coatiig frame is smaller
in magnitude than the angular velocity of the star, seen faafistant observer.
The pulsations now couple to gravitational radiation. Theted radiation has
positive angular momentum since a distant observer seegulsations move
counterclockwise. Consequently, the total angular moorarmf the star must be
lowered. This, however, means that the angular momenturheobscillations,
which is already negative, i&creased in magnitude (becomes more negative).
Therefore, the emission of gravitational radiation terdsitrease the amplitude
of the pulsation which in turn leads to a stronger gravitaioadiation etc. This
is ther-mode instability. Note that the rotation of the star is @alifor this argu-
ment. In a non-rotating star, the effect of gravitationdiasion is dissipative, i.e.,
the non-radial oscillations would be damped. For a nice gegdizal introduction
into this general relativistic effect see Réf. [1].

The energy loss from gravitational radiation due totftreode instability makes
the star spin down drastically and quickly. Consequertily,dbservation of suf-
ficiently high rotation frequencies implies that some medéra must be at work
to avoid the instability. The above argument for the indiigbis generic for all
rotating perfect fluid stars. If there is dissipation, iiethe matter inside the star
has a nonzero viscosity, the instability can be damped. Ffetehtly, in order
to rotate fast the star has to be viscous. This statementssearadoxical at first
sight but makes sense with the above explanation. In[Eigwé.show an ex-
ample for critical frequencies of hybrid and quark stargjvée from viscosity
calculations.

In hydrodynamics, there are two kinds of viscosity, sheat lamlk viscosit)E
Bulk viscosity describes dissipation for the case of vollerpansion or com-
pression while shear viscosity is relevant for shear farBegh kinds of viscosi-
ties are relevant for the damping of thenode instability, typically they act in
different temperature regimes, bulk viscosity at rathegdashear viscosity at
rather small temperatures. What is the microscopic physibind the viscosity?
Let us explain this for the case of the bulk viscosity.

Imagine a chunk of nuclear or quark matter in thermal and étenequilib-
rium in a volumeVy. Now we compress and expand this volume periodically,
V(t) = Vo + dVpcoswr. In the astrophysical setting, these will be local vol-

1 Oscillatory modes of compact stars are classified accotdittugir restoring force. In the case of
r-modes, this is the Coriolis force.

2 In the case of a superfluid, there are in fact several bullosises.
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Fig. 6.1 Critical rotation frequency (normalized to thipler frequency Qg, the upper limit for
the rotation frequency beyond which the star would startddimg mass from its equator) as a
function of temperature for hybrid and quark stars. If a &gt somewhere above the respective
curves, the--mode instability will set in and the star will spin down gkiiz “APR” stands for

a certain nuclear equation of state, “Bag” denotes unpajuedtk matter in the bag model and
the box labelled LMXB indicates the location of obsenied-mass X-ray binaries. Within the
given calculation they are located in a stable region fohbuotbrid and quark stars. For more
explanations and details see REf. [2] where this figure isrtdfom.

ume oscillations wherev is typically of the order of the rotation frequency of
the star. Through the volume change the matter gets out ohtieand, pos-
sibly, chemical equilibrium. The latter may happen if thett@ais composed
of different components whose chemical potentials redétréntly on a den-
sity change. An example is unpaired quark matter with masal® and down
quarks and massive strange quarks. The system now seeleqjdliterate. For
instance, if the compression has increased the down quamichl potential
compared to the strange quark chemical potential (in chareguilibrium they
are equal), the system reacts by producing strange quarkmstance via the
processt+d — u+s. If it does so on the same time scale as the external os-
cillation, there can be sizable dissipation (think of coegsing a spring which
changes its spring constant during the process; you wiligebtack the work
you have putin). Consequently, the calculation of the bigkasity requires the
calculation of the rate of processes suchuasd — u + s which indeed turns
out to be the dominant process for the bulk viscosity in urgghgquark matter.
Other processes which contribute are leptonic processels s the direct Urca
process we have discussed in the context of neutrino eritysgivSec[5.2. It is
important to note that again the weak processes are thearglenes. In princi-
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ple, also strong processes contribute to the bulk viscesite they reequilibrate
the system thermally. However, they do so on time scales rnsuddiler than
the external oscillation. Therefore, the system reequités basically instanta-
neously during the compression process and no energy ipalisd. These argu-
ments also show that the bulk viscosity is a function of thegmal) frequency.
Maximum bulk viscosity is obtained when the rate of the retipe microscopic
process (which is a function of temperature) is closesti®ftequency. Hence,
it may well be that for a certain temperature regime a supehecting state has
larger bulk viscosity than a non-superconducting state. This noayd coun-
terintuitive but note that the (partial) suppression of it of the microscopic
process by exp-A/T) may actually help the viscosity if it brings the rate closer
to the external frequency. See for instance Sec. VIl in F8fidr a brief review
about viscosity in quark matter phases, and Ref$.1[4, 5]xXamples of detailed
microscopic calculations of bulk viscosity in quark matter

e Magnetic fields. We have mentioned in the introduction that compact stars can
have huge magnetic fields, the highest magnetic fields med$ar the surface
of a star (then callechagnerar) are about 18 G. The first question one might
ask is what the origin of these magnetic fields is. The coneratexplanation is
that they are inherited from the star’s progenitor, a gitartthat has exploded in
a supernova. While the magnetic flux is conserved in thisgeecthe magnetic
field is greatly enhanced because the magnetic field linescafined in a much
smaller region after the explosion.
Other questions regarding the magnetic field concern th&rplay with dense
matter. We have learned that nuclear matter can contaimsupaucting protons.
Protons form a type-Il superconductor where the magnetit iSeconfined into
flux tubes. Since at the same time the rotating neutron sukffirms vortices,
a complicated picture emerges, where arrays of flux tubesantides intertwine
each other. Their dynamics is complicated and relevantfstance for the ob-
served precession times of the star, see for instance [HeflH& issue is also
related topulsar glitches, see below.
In the main part we have only touched the interplay of colgresaonductors
with magnetic fields. We have stated without calculatiort tha CFL phase is
not an electromagnetic superconductor, i.e., a magnelitdan penetrate CFL
matter. More precisely, Cooper pairs in CFL are neutral wetipect to a certain
mixture of the photon and one of the gluons. Because of thélrsasa of the
electromagnetic coupling compared to the strong couptimggluon admixture
is small and the new gauge boson is called “rotated photdm&rd are color su-
perconductors which do expel magnetic fields, for instaheeblor-spin-locked
(CSL) phase. Inthis case, Cooper pairs are formed of quatkslve same flavor,
and a Cooper pair carries total spin one (instead of zeroarCiiL phase). The
CSL phase is an electromagnetic superconductor. It is @ ltyige., expels mag-
netic fields completely. For a short review about spin-orfercsuperconductors
in compact stars and their effect on magnetic fields see [Ref. [
Magnetic fields also play a role in the cooling of the star sithey have an effect
on the heat transport, resulting in an anisotropic surfacgerature, see Refl[8]
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and references therein. An extensive review about magfielits in compact
stars is Ref.[[0].

e Crust of the star. The crust of the star is a very important ingredient for the un
derstanding of observations. In the conventional pictfieergeutron star there is
an outer crust with an ion lattice, and an inner crust with atma (super)fluid
immersed in this lattice. This crust typically has a thickmef about 1 km. A lot
about the crust can be found in Refs.][10, 11]. In our diseussf neutron stars
vs. hybrid stars vs. quark stars it is important that the topusvides a crucial
distinction between an ordinary neutron star (or a hybrd)sind a quark star.
How does the crust of a quark star look? Several scenariasiiean suggested.
First suppose that the surface of a quark star exhibits ampalmansition from
strange quark matter to the vacuum. This is possible unéaagbumption of the
strange quark matter hypothesis we discussed in[Sec] Bexause, if the hy-
pothesis is true, strange quark matter is stable at zersym@s’Abrupt” means
that the density drops to zero on a length scale of about 1ifrandy the typi-
cal length scale of the strong interaction. Now recall thafp@ired) three-flavor
guark matter contains electrons. They interact with quaatt@nthrough the elec-
tromagnetic interaction, therefore their surface will beegred (several hundred
fm) compared to the sharp surface of the quark matter. As aerprence, an
outward-pointing electric field develops (i.e., at the anef positively charged
test particles are accelerated away from the center of éng $tis electric field
can support a thin layer of positively charged ions, sepdriibm the quark mat-
ter by a layer of electrons. Hence a “normal” crust for a qustak is conceivable,
consisting of an ion lattice. In contrast to the crust of atr@ustar, such a crust
of a quark star would be very thin, at most of the order of 10@ee Ref.[[12]
for more details about this picture of the surface of a quéak @nd for other
properties of quark stars). This picture may be challengetthid possibility of a
mixed phase at the surface of the star. Here, mixed phass tefa crystalline
structure of strangelets immersed in a sea of electronkidrcase, there would
be no electric field and thus no possibility for a “normal” sturhe quark matter
would rather have its own crystalline crust. Estimates ih B8] show that it is
unlikely that such a mixed phase is formed once surfacedansitaken into ac-
count. In any case, a rigid crust, if at all present, will becimthinner in a quark
star than in a neutron star or a hybrid star.

This difference is relevant in the context of “magnetar m@ikogy”. Quasi-

periodic oscillations observed in the aftermath of X-raydtsi from magnetars
can be related to typical oscillation frequencies of thestrin other words,
“star quakes” have significantly different properties degieg on whether one
assumes the star to be a neutron star or a quark star. Infacdinary crust ex-
plains the data quite well while the crust of a quark star seterbe incompatible
with the observed phenomenology[14].

e Pulsar glitches. Pulsar glitches are an interesting phenomenon relatedtooth
tation frequency, the crust (more precisely the crystalitructure of the crust),
and superfluidity. For spinning-down pulsars one observddan spin-ups, i.e.,
in the overall trend of a decreasing rotation frequency,ftequency increases
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in irregular intervals significantly on a very short time lgca his is convention-
ally explained through superfluid vortices in the neutropestluid that pin at the
lattice sites of the inner crust [115].

To understand this statement and the consequences fduegljtove recall the
following property of superfluids. A superfluid, be it supeidl helium, super-
fluid neutron matter, or any other superfluid, is irrotatidnahe sense that the
superfluid velocity has vanishing curl. Therefore, if th@etdluid is rotated it
develops regions where the order parameter vanisheswherg it becomes a
normal fluidd The angular momentum is then “stored” in these regions which
are called vortices. An array of vortices, which are “stehm the direction of
the angular momentum, is formed with the total angular mdomarof the su-
perfluid being proportional to the density of vortices (hesmeach vortex carries
one quantum of circulation). Consequently, if the rotafi@guency decreases,
the array of vortices becomes sparser, i.e., the vortice®m@part.

The next ingredient in the glitch mechanism is the pinninthefvortices at the
lattice of nuclei in the inner crust. Generally speakin@réhis an effective in-
teraction between the vortices and the nuclei, resulting aertain path of the
vortex string through the lattice which minimizes the freergy of the system.
You may think of this preferred configuration as follows. 8tffuidity, i.e., neu-
tron Cooper pairing, lowers the free energy of the systerardfiore, the system
may want to put the vortices, where there is no Cooper paitimgugh the lattice
sites because they are not superfluid anyway. Otherwisgyy.putting them be-
tween the lattice sites, one loses pairing energy. The batails of the pinning
mechanism are complicated and, depending on the dengtpyéierred path of
the vortices may in fact be between the sites, in contragtg¢above intuitive
argument. However, this does not matter for our argumenh®mechanism of
glitches:

In a rotating neutron star, the neutron vortices pin at tite&aof the inner crust.
Now the star spins down. On the one hand, the vortices “wanthdove apart.
On the other hand, there is an effective pinning force whiebps them at there
sites. Hence, for a while they will not move which impliesttiiae superfluid
(the vortex array) is spinning faster than the rest of the stassome point, when
the tension is sufficiently large, the vortices will un-pmpve apart and thus
release their angular momentum which spins up in partidhkusurface of the
star whose rotation is observed. Then, they re-pin and theegs starts again.
An alternative scenario, where nuclear matter is replageduark matter has
been suggested[iL6]. In our discussion of the CFL phase wesean that quark
matter can be a superfluid. This means that one of the conditay the mecha-
nism of vortex pinning is fulfilled. The second condition, dfiiently rigid lat-
tice, may be provided by one of the unconventional colorescgnducting phases

3 It is instructive to view this phenomenon in analogy to a tyjpsuperconductor. There, a mag-
netic field (if sufficiently large but not too large) peneé&mthe superconductor through flux tubes.
It partially destroys superconductivity, i.e., in the @mof the flux tubes the order parameter is
zero. Hence the analogy is superfluid — superconductor;langmentum — magnetic field; vor-
tices — flux tubes.
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which are possible in the case of mismatched Fermi momesgadiscussion at
the end of in Se€.413. Some of these phases indeed exhipittaltine structure.
Such a quark crystal is of very different nature than the &tide because it is
the energy gap from superconductivity which varies peagaltly in space, giving
rise to crystals characterized by surfaces where the gaghem It remains to be
seen in the future which of these scenarios passes all @igrral constraints
and can explain the pulsar glitches or if there is a yet unknovechanism for
these curious spin-ups.

e Other theoretical approaches to dense matter. What are the alternatives to under-
stand QCD at large, but not asymptotically large, denéitiestice QCD, i.e.,
solving QCD by brute force on a computer, is by now a powedal for strong-
coupling phenomena at zero chemical potential. Howeverparero chemical
potential, one encounters the so-callégh problem which renders lattice calcu-
lations unfeasible. Progress has been made to extene laticulations to small
chemical potentials, more precisely to small valuest¢f'. But calculations at
largeu and smallT’, as needed for compact stars, are currently not within reach
See Ref.[[1l7] for a non-technical recent overview articlewabattice QCD, in
particular its contributions to the QCD phase diagram armliaithe sign prob-
lem; you may also try Refl [18].

Because of the problems of lattice calculations at finitentubal potential one
has to rely on model calculations or on extrapolations sintib the ones dis-
cussed in these lectures. One model for quark matter we revaistussed is
the Nambu-Jona-Lasinio (NJL) model. This model does notainmgluons and
describes the interaction between quarks by an effectivetlip@ interaction.
It has been used to compute the QCD phase diagram at intexteeftinsities.
Since the result depends strongly on the parameters of thielmbshould be
taken as an indicator for how the phase diagram might lookas@n accurate
prediction. Due to its simplicity it is widely used and cadé&gd give some inter-
esting results which serve as a guideline for the understgraf QCD. For an
extensive review about the NJL model in dense quark mateeRef. [19]; for
an application of the NJL model in the context of compactsstsee for instance
Ref. [20].

Finally, we point out that arguments for large numbers obraN, may be ap-
plied to gain some insight to QCD wheM = 3. In particular, it has been ar-
gued that aiV, = « an interesting novel phase, term@dirkyonic matter, pop-
ulates theT-u phase diagranif21]. The (yet unsolved) problem is to find out
whether this phase, or some modification of it, survives\Moe= 3. More gener-
ally speaking, the larg®, approach is another approach where calculations can
be performed in a regime where everything is under rigorongrol. From these
rigorous results one then tries to get closer to the regineei®imterested in. In
this sense, this approach is not unlike the perturbativecgmh. In view of the
possible, but not at all obvious, relevance of laiggphysics taV, = 3 physics,
one can also apply the duality of certain string theoriessd theories similar to
QCD, based on the so-callddS/CFT correspondence. For pedagogical reviews
see Refs[[22, 23]. This somewhat speculative but popularoaeh to QCD has
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recently been pursued especially for lafiesmallu physics, but is, in certain
variants, also suited for the physics at finite chemical ipiidé
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Appendix A

Basics of quantum field theory at finite
temperature and chemical potential

Many of the discussions in the main part of these lecturgsaelfield-theoretical
methods, in particular on quantum field theory at finite terapge and chemical
potential. One purpose of the following basic discussichésefore to explain how
a chemical potential is introduced in quantum field theory.dlall also discuss how
finite temperature enters the formalism, although for masingjties we discuss in
these lecture notes we consider the zero-temperaturelimith is a good approx-
imation for our purposes. For instance in the discussioh@f¥alecka model, Sec.
B, we give the finite-temperature expressions, based jpenad{A.2, before we
setT = 0 in the physical discussion. In other parts, we do KEepO0 in our results,
for instance when we are interested in the cooling behavialease matter, see
chapte[.

We shall start with the Lagrangian for a complex bosonic feahd derive the
partition function in the path integral formalism, takinga account Bose-Einstein
condensation. This partis particularly useful for our tneant of kaon condensation
in CFL quark matter, see Séc. 4]2.1. We shall in particulaihssv bosonic Matsub-
ara frequencies are introduced and how the summation oese ik performed with
the help of contour integration in the complex frequencypldn the second part
of this appendix we shall then discuss the analogous denivedr fermions.

A.1 Bosonic field

We start from the Lagrangian
Lo=0up* oM —m*| 9~ Alp|*, (A1)

with a complex scalar fielgp with massn and coupling constant. We shall first
show how a chemical potentiglis introduced. This will lead to a new Lagrangian
<, wherefore we have denoted the Lagrangian without chemim@ntial by %.

The chemical potential must be associated with a conserved charge. We thus need

117



118 A Basics of quantum field theory at finite temperature drehtcal potential

to identify the conserved current. From Noether’s theoreznkwow that the con-
served current is related to the symmetry of the Lagrangida.see that?p is
invariant undet/ (1) rotations of the field,

o —e 9. (A.2)
This yields the Noether current

Ly 0% 5 0% S¢° :
J“—W%—FWW—Z((P oo —9oHeT), (A3)

with g, j* = 0, and the conserved charge (density) is
P =i(¢70° —92°"). (A.4)

In the following we want to see how the chemical potentiabaigted toj° enters
the Lagrangian. The partition function for a scalar field is

7 = Trefﬁ(ﬁful’v)

- / @n./l;eriodic@d) &P [_ /X (A~ pA = inded)| - (A9)

This equation should remind you that the partition functiam be written in the
operator formalism in terms of the Hamiltoni@hand the charge operatd, or,
as we shall use here, in terms of a functional integral gvemd the conjugate
momentunvt, with the Hamiltonians# and the charge density” = j°. We have
abbreviated the space-time integration by

/XE/OBdT/d3x, (A.6)

where the integration over “imaginary time"= ir goes from 0 to the inverse tem-
peratureff = 1/T. In the following, the four-vector in position space is detb
by

X = (1,x) = (—iT,X). (A.7)

The term “periodic” for thep integral in Eq.[[A.b) means that all fielgsover which
we integrate have to be periodic in the imaginary time dioggtp (0,x) = ¢ (S, x).
This is essentially a consequence of the trace operatidwifirst line of Eq.[(Ab):
the partition function is formally reminiscent of a sum oweansition amplitudes
which have the same initial and final states at “times” 0 And

Let us, for convenience, introduce the two real fiepds¢,,

1

=7

(p1+id2). (A.8)

Then, the Lagrangian becomes
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1 A
go: E 0y¢10“¢1+0u¢20“¢2_m2(¢12+¢22)_§(¢12+ ¢22)2 ) (A9)

The conjugate momenta are

(Lgo 0 .
_ — %,  i-12. A.10
& 0(0o9i) ¢ l ( )

Consequently, withy® = ¢, — ¢175, which follows from Egs.[[A}K),[[AR), and
(A.10), we have

I — UN = Th0oP1+ TRdod2 — Lo — UN
= % [78 + 75+ (0¢2)* + (O¢2)* +m*($F + ¢3)]
—H(¢2m — P17B). (A.11)

The integration over the conjugate momeriare can be separated from the inte-
gration over the fieldg1, ¢, after introducing the shifted momenta

m=rm—dopr— U2, To=Tp—0op2+ U1 (A.12)
This yields
1. -
o1+ oo — H + UN = —é("f'f‘ B)+.2, (A.13)

where the new Lagrangia#’ now includes the chemical potential,

2 = %[‘9u¢13“¢1+5u¢23“¢2+2M(¢200¢1—¢100¢2)
(2 m?) (87 +93) — 3 (97 + 9377 (A1)

Thus we see that the chemical potential produces, besidesxrected termu ;°,
the additional ternu?(¢Z + ¢2) /2. This is due to the momentum-dependencgof
In terms of the complex fielgh, the Lagrangian reads

L =|(G—ip)p|*— 00> —m?| > — Al|*, (A.15)

which shows that the chemical potential looks like the terapoomponent of a
gauge field. We can now insert E@._(Al13) into the partitiondiion [A5). The
integration over conjugate momenta and over fields factpdand the momentum
integral yields an irrelevant constaxit such that we can write

z=n/ 9¢1.@¢zexp'/}; Z. (A.16)

J periodic
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In order to take into account Bose-Einstein condensatiendivide the field into
a constant background field and fluctuations around thisdracikd,$; — @ + ¢;.

A nonzero condensatg + i@ picks a direction in thé/(1) degeneracy space and
thus breaks the symmetry spontaneously. We can chpaes® and thus may denote
@ = @. Then, the Lagrangiah (A.l4) becomes

L =-U@)+ 2%+ 28 4 24 (A.17)

with the tree-level potential

m2 — u? A
R (A.18)
and terms of second, third, and fourth order in the fluctunstio

1

2 = 3 [—0u 910" b1 — 3 920" b2 — 2 (d200¢1 — $10092)

+(m? — 12) (97 + 3) + 3N P d7 + A 93], (A.192)
L) = X ppa(¢7+ ¢3), (A.19b)
ng_%@ﬁwé? (A.19c)

We have omitted the linear terms since they do not contritoutiee functional inte-
gral. Note that the cubic interactions are induced by theleosate.

In this appendix we are only interested in the tree-levetrdontionsU (¢?) and
2@ in order to explain the basic calculation of the partitiondtion for the sim-
plest case. We therefore shall ignore the cubic and quastitributions.#(® and
2™ We introduce the Fourier transforms of the fluctuation elh

6 (x) F; e KX (K F; (TN (), (A.20)

with the four-momentum
K = (ko.k) = (—iw,. k), (A.21)

and with the Minkowski scalar produg&t- X = kgxo —k-x = —(Tw, + k- x). (Al-
though for convenience we have defined the time componetitsvactor and thus
can use Minkowski notation, the scalar product is esséntalclidean.) The nor-
malization is chosen such that the Fourier-transformeddi¢(K) are dimension-
less. The 0-component of the four-momentum is given byhsubara frequency
w,. To fulfill the periodicity requiremeng (0,x) = ¢ (83,x) we need'>P =1, i.e.,
w,B has to be an integer multiple of2or

w, = 2mT, ne. (A.22)

With the Fourier transforni (A.20), and
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[ <% = Zoxo. (A23)
X T
we have
' 1 Dy*(K) ( $1(K)
P2 =2 —K), po(—K)) =2 ( ! ) A.24
/. 5 (62K, 02(~K) =2 B (A24)
with the free inverse propagator in momentum space
1 [ K2+ m?+ 32 % — 2 —2ipko
Do (K) = ( 2ipko —K?+m?+ A @? — ? (A-25)

With Egs. [A18),[(A.2%) and using that K) = ¢*(—K) (because (X) is real) we
can write the tree-level thermodynamic potential as

Q

T
- iz
\% \%

-1
~ V@)= in [ 707 "’Zexpl_ 3 300,42k 20 (B0

_ T e (K)
_U(¢2)+ﬁlndet ot

(A.26)

where the determinant is taken ovex2 space and momentum space. Here we
have used the general formula

/ dPxe A% — (2m)P/2(detd) V2, (A.27)

for a Hermitian, positive definite matrix, which is a generalization of the one-
dimensional Gaussian integral

/ dxe 29 — 27”. (A.28)

To further evaluate the thermodynamic potential, we firdingethe tree-level
masses

m? 4+ 3\ ¢?, (A.29a)
=m?+ A ¢?. (A.29b)

Then, we obtain
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DYk 1
In det% =[] ﬁ[(—Kz—f—mE— U?)(—K? +m3 — p?) — 4u2kd)
K
1 _
=InT] ﬁ[(fk*)z—ké][(ek )2 — kg
+\2 _ 1.2 —\2 _ 1,2
_ [In (& )TZ K 4 in & )TZ k"] , (A.30)

where we defined the quasiparticle energies

g = \/E,g+ U2 F \/AURE2 + SM*4, (A.31)

with

2. 2 2_ 2
Ey=Vk?+M?, MZE@:MZ—FZ/\(DZ, 5MZE¥:A¢2.
(A32)

Even at tree-level, the quasiparticle enerdies (A.31) loakplicated, but become
simple in the noninteracting limit,

A=0: e = Vk2+m2F, (A.33)

and for vanishing chemical potential,

u=0: eki:,/k2+m§/l. (A.34)

Further properties of these quasiparticle energies amiskgd in the context of
kaon condensationin CFL, see 9ec.4.2.1. Next, we perfagsitm over Matsubara
frequencies in EqL(A.30). We use the result

2 o2
w; + & & —gT
ZInT—?+2In(1—e )+consl; (A.35)
for a real numbeg,, and where “const” is a temperature-independent con®ant.
fore we prove this result via contour integration in the cterglane, we use it to
compute the final result for the tree-level thermodynamieptial. We insert Eq.

(A35) into Eq. [A3D), the result into E4._(AP6), and take thermodynamic limit
to obtain

v U@+ [

Vv

3 + e
i [ (1) e 1)

(A.36)
From this expression we can for instance compute the preBsur-Q /V. The first
term in the integrand yields an infinite contribution whiahwever is temperature-
independent. We may thus use a renormalization such theatheim pressure van-

3
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ishes. Then, for sufficiently large temperatures, whereaitigularg = 0, particles
and antiparticles yield the same contribution and we obtain

T
90

T4 ® 2 —x
PQ—Zﬁ/O dxx“In (1—e )=2 (A.37)

A.1.1 Summation over bosonic Matsubara frequencies

Here we prove Eq[{A.35) via contour integration in the coemdtequency plane.
Especially for more complicated Matsubara sums this is g useful technique as
can be seen by applying the following method to the Matsubanas in problems
AdandA2.

First, in order to get rid of the logarithm, we write

W@t e 1 ,
> _/1 APy e T YL @ (A3

We now perform the sum in the integrand which, denospg: Tx, we write as a
contour integral,

1 1 w
TY & =5 do———p>coth_. A.39
wa#-ekz 2m‘]£dww2_gk220° oT (A.39)
The second identity follows from the residue theorem,
1
o 7€ 42f(0) = 3 Resf (@), (A.40)

wheregz, are the poles of (z) in the area enclosed by the contaunf we can write
the functionf asf(z) = ¢ (z)/(z), with analytic function® (z), ¢(z), the residues
are

¢ (zn)
Res = . A.41
f(z)|zfzn (,U/(Zn) ( )
The contouC in Eq. (A:39) is chosen such that it encloses all poles of[catt2T )]
and none of 1(w? — €?). The poles of cotlw/(27)] are given by®/?" — =@/l =
0, i.e., they are on the imaginary axis,= iw, with the Matsubara frequencies.
In the above notation with the functiogsandy,

1 ®/(2T) 4 —w/(27)
b =3 w? — g2 ’
¢ (iwn) 1

= = T———, A.42
¥ (iw,) W2+ &7 (A42)

() = @/ 2T) _ g w/(2T),
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from which Eq. [[A-39) follows immediately. Next, we may defothe contouiC
(which consists of infinitely many circles surrounding tledgs) and obtain

coth

[ — - w—— — -
Z w? + €2 270 J—iern W2 — €22 2T

71'00,”
I

1 1 /'i°°+’7 1 1 W

210 Jio—n w?— €22 2T
1 piedn 1 w
= —— dw——— coth— A.43
27T ./—ioo+r] w? — €7 2T’ ( )

where we have changed the integration variable —win the second integral. We
now use the residue theorem a second time: we can close ttmicamthe positive
half-plane at infinity and pick up the pole at= &,
1 1 & 1
Ty —— = —coth— = —[1+2f3(¢ A.44
Za)nz_i_ekz 28[( 2T ng[ + fB( k)]? ( )

n
(note the minus sign from clockwise contour integratiorgréy

1
es/T -1

I8(€) =

(A.45)

is the Bose distribution function. We have thus found

1 1 1/1 1
= I (R — A.46
T;(Znﬂ)z—i—xz Tx <2+ex—1) ( )

Now we insert the result into the original expression (A.a88)l integrate over® to
obtain (with const denoting-independent constants)

w? + €2 (&/T)? 1 /1 1
In 2"k :/ A= = const
Z T2 1 * x\2 + e —1 +

_& _ o &/T
=7 +2In (1 e )+cons1; (A.47)

which is the result we wanted to prove.

A.2 Fermionic field

To describe a system of non-interacting fermions with masse start with the
Lagrangian

Lo=T(iyou—m)y, (A.48)
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where = ¢TyP. As for the bosons we are interested in adding a chemicahpote
tial to this Lagrangian. To this end, we determine the coreskcurrent as above,
i.e., we first identify the global symmetry of the Lagrangighich is given by the
transformationy — ¢~ (. The conserved current is

u_ 0% oy

which yields the conserved charge (density)
P=u'y. (A.50)
The conjugate momentum is
0% ot
oy ¥ (51

This means that in the case of fermions we need to tpeand ' as independent
variables. The partition function for fermions is

Z = Tre BH-HN)

- gyt oy exp[— / (A - —imdy)| . (A52)
antiperiodic JX
This has to be compared to the analogous expression for §oEgni(A%). Recall
that the periodicity of the bosonic fields is a consequendealong the trace in the
operator formalism. In other words, the partition functiothe path integral formal-
ism can be derived from a transition amplitude with iderficiial and final states.
In the case of fermions, the fields in the path integral ares§renn variables, as
a consequence of the anticommutation relations of creatnshannihilation oper-
ators. In this case, the trace involves a transition angitwhere initial and final
states differ by a sign. Therefore, in the fermionic partitfunction the integration
is over antiperiodic fieldg/(0,x) = —(B,x) andy'(0,x) = —w'(B,x).
With the Hamiltonian

=100 — Lo=(y-O+m)y, (A.53)

(here and in the following we mean by the scalar prodgudil the product where
the Dirac matrices appear with a lower indexwe thus obtain

7= @wT@wexp[/xw(—yodr—iy-D—i—yOu—m)L/J . (A54)

antiperiodic

In this case we cannot separate the: /T integration from thap integration. Re-
member that, in the bosonic case, this led to a new Lagrangfgch contained
the chemical potential not just in the terfu. Here, the Lagrangian with chemical
potential simply is
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L = Pl ou+yPu—m)y. (A.55)

Note that again the chemical potential enters just like &meporal component of
a gauge field that couples to the fermions. Analogously tobihsonic case, we
introduce the (dimensionless) Fourier-transformed fields

W) - — K, B — ST, (aso)

(note the different dimensionality of fields compared todyes here the fields(X)
in position space has mass dimension 3/2). Again we degote—iw, such that
K-X = —(w,T +k-x). Now antiperiodicity,y(0,x) = —(B,x), impliese'®P =
—1 and thus the fermionic Matsubara frequencies are

w, = (2n+1)nT, nez. (A.57)

With the Fourier decomposition we find

- , Gyl(K
W Po—iy- DV umyu =3 v Byr).  ase
where the free inverse fermion propagator in momentum sigace

GoL(K) = —yHKy — Y +m. (A.59)

Although not needed for the rest of the calculation in thipeaplix, let us intro-
duce a useful form of the inverse propagator in terms of gnprgjectors. This
form is convenient for more involved calculations such asedim chaptersl4 arid 5.
Equivalently to Eq.[(A.BR) we can write

GoM(K) ==Y (ko+H—eE)YAL, (A.60)

e=*+

whereE; = vVk?+ m?, and where the projectors onto positive and negative energy
states are given by

1 K
A= (1+ey°V E:m) . (A.61)

These (Hermitian) projectors are complete and orthogonal,
AFHAD =1, AAL =80/ (A.62)

The first property is trivial to see, the second follows wiffi, '} = 0 which follows
from the general anticommutation propefty",y”} = 2g*V, and with (y - k)?
—K2,

From the form of the inverse propagatior (A.60) we can imntetliaead off the
propagator itself,
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A.63
Z ko + IJ - eEk ( )

With the propertied (A.82) one easily checks tthlGo = 1. One can also rewrite
(A83) as
VMK, — _
Y Ry ZO“ - (A.64)
(kO"'”) — Ly

Let us now come back to the calculation of the partition fiorctFor the functional
integration we use

Go(K) =

- N N
/ |_| dn;dnk eXp(— Z anDijrlj> =detD. (A.65)
k i,]

Note the difference of this integration over Grassmanrei@eisn ™, n to the corre-
sponding formula for bosons (AR7). We obtain for the piantifunction

L GMK) 1 —(ke+p)+m -0k
Z_detT_detT oK (ko+p)+m ) (A.66)

where the determinant is taken over Dirac space and momespaoe, and where
01,02, 03 are the Pauli matrices. We can use the general formula

det(‘é g) — de{AD — BD1CD), (A.67)

for matricesA, B, C, D with D invertible, to get

nz= 3 ( ko“‘) )2, (A.68)

where we have use@ - k)? = k2. With ko = —iw, we can write this as

InZ = Zln (_(w,ﬂrzu) )

( E2+( wn+zu) n + (= wn+zu))
_Z +1In 72
_;< W+ Ek “)2+|nw3+(f§+“)2), (A.69)

where, in the second term of the second line, we have replagéy —w, which
does not change the result since we sum over allZ. The third line can be easily
checked by multiplying out all terms.

Next we need to perform the sum over fermionic Matsubaraseeagies. This is
similar to the bosonic case and yields
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w?+e2 g
Sn n; k :?k+2|n(1+e*£k/7)+const (A.70)
n

Using this result to evaluate E{. (Al69) and taking the thetymamic limit yields
the thermodynamic potenti& = —TInZ,

Q " &%k

2 el —(Ex—u)/T —(Ex+u)/T

- / e [Ec+7in (14 )+7In (14 )] @
The overall factor 2 accounts for the two spin states of thie-&f2 fermion. To-
gether with the particle/antiparticle degrees of freedoarecover all four degrees
of freedom of the Dirac spinor. Again we conclude this settly computing the
pressure for large temperatures,

T L 7 T2

(A.72)

Comparing with the bosonic pressuie (A.37) we see that figeld a single
fermionic degree of freedom contributes 7/8 times as mu¢hadhermal pressure
as a single bosonic degree of freedom.

A.2.1 Summation over fermionic Matsubara frequencies

It remains to prove EqL{A.T0) by summing over fermionic Mdisra frequencies.
As for the bosonic case, we write

w? + 8,3 (&/T)? 2 1 2
(A.73)
This time, we need to use the tanh instead of the coth when \te the sum in
terms of a contour integral,

1 1 1 1 W
Ty ——=—7— ¢ dw———-tanh_——. A.74
Zw,EJrekz 2m‘7€ wwz—e,fZ anor (A74)

(We have denoted, = xT.) The poles of tanfw/(2T)] are given by the zeros of
e®/(2T) 4 o=@/(2T) 'j e, they are located attimes the fermionic Matsubara fre-
guenciesw = iw,. The contourC encloses these poles and none of the poles of
1/(w? — €?). Then, with the residue theorem and with

(ew/(ZT) _ efw/(ZT)) ‘ = 2i(-1)", (A.753)
w=iw,
_ iy (A.75b)
T

diw(ew/<2r)+e7w/(2r))

w=iwy,
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one confirms Eq[{A.14). We can now close the contour in th@ipealf-plane to
obtain

1 1 iotn 1 w
T = dw———tanh—
; W2 + &2 27T /7ioo+r] w? — g7 2T

1 Ex 1
— —tanhX = —[1-2 A.76
o tanht = 5127 (s, (A.76)

where 1

is the Fermi distribution function. Inserting this resuita Eq. [A.73) yields

w2+£k &/ 171 1
ZI _/1 dx ;<§—ex+1)+const

= %+2In (1+e*5k/T) +const (A.78)

which proves Eq[(A.70).

Problems

A.1. Matsubara sum for boson loop
Show via contour integration that

1 erer 1+ fp(e1€1) + fp(ex€2)

T - _
% (k% — Ef) [(po — ko)2 — 822] e1,65=+ 4616 Po— e1&1 — ex82

(A.79)
with kg = —iw,, po = —iw, bosonic Matsubara frequencies, aads, > 0.

A.2. Matsubara sum for fermion loop
Prove via contour integration the following result for thersmation over fermionic
Matsubara frequencies,

k0+51 (ko+qo+ &2)

T
Z )[(ko+ q0)? — €3]
_ 1 (1 —e181) (82 — e282) fr(—e1&) fr(e2€2) (A.80)
de1& & qo—er&artedr  fr(—er€1+ex8r)
whereky = —iw, with fermionic Matsubara frequencies,, andgg = —iw,, with

bosonic Matsubara frequencies,, and wherefy, &2, €1,& > 0 are real numbers.
The result of this problem is used in the calculation of thatriero emissivity in
chaptef.
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2SC phase Color superconductor in which strange quarks and quarks@ftolor
remain unpaired. Because of the asymmetry induced by thagdrquark mass,
viable candidate for the ground state of quark matter at mdelehemical potential.
In these lectures we discuss the 2SC phase in the contextibfm@eemissivity, to
illustrate the effect of both paired and unpaired quarks.

AdS/CFT correspondence Theoretical tool not discussed in these lectures, but an
interesting approach to tackle QCD at strong coupling. Teea iis that — relatively
simple — calculations in the gravity approximation of a agristring theory provide
results for the — otherwise hard to access — strong coupiinigdf a corresponding
(“dual”) field theory. The problem is that currently no grigumual of QCD is known.

anomalous propagator Technically speaking, off-diagonal components of the
propagator in Nambu-Gorkov space; nonzero in the case opersonductor or

a superfluid. More physically speaking, anomalous promagatescribe a fermion
which is, via the Cooper pair condensate, converted intoraife hole.

asymptotic freedom Important property of QCD which says that the running cou-
pling constant of QCD becomes small for large exchanged mtan&or our con-
text this means that quarks at large densities, where thendis between them is
small and hence the exchanged momentum large, are weakhadting; quarks at
infinite density are free. In compact stars, however, thesithers large, but by no
means asymptotically large.

axial anomaly Non-conservation of the axial current in QCD. In our contekt
(moderately) dense matter originating mainly from instast which are certain
semi-classical gauge field configurations. Leads to an @kplieaking of the ax-
ial U(1)4, which is a subgroup of the chiral group, and thus gives elangss to
then’.

bag model (MIT bag model) Simple model to take into account confinement. Via
the bag constant, an energy penalty is introduced by harttiéateconfined phase.
The model amounts to the picture of a hadron as a bag whichneatiie quarks;
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the bag exerts an external pressure on the quarks, givereliyathconstant. In our
astrophysical context, the bag model is a simple way to coenfraee energies of
dense quark matter and dense nuclear matter.

BCS theory Original theory for electronic superconductors, devetbipel 957 by
Bardeen, Cooper, and Schrieffer. Many concepts and appatikins can be adopted
for nuclear and quark matter. In color-superconductingkjuaatter, an important
difference to BCS theory is the parametric dependence opd#ireng gap on the
coupling constant due to long-range interactions via magg&ions.

B-decay Process due to the weak interaction of the forms p + ¢+ v, in nu-
clear matter and — u + e + v, in quark matter. Relevant in these lectures for two
reasons: firstly, equilibrium with respect to this procggsequilibrium) yields im-
portant constraints for the chemical potentials and sdgptinds process contributes
to the neutrino emissivity which in turn is responsible foe tooling of a compact
star.

Bogoliubov coefficients Momentum-dependent coefficients in the theory of su-
perconductivity and superfluidity which characterize thizing of fermions and
fermion holes due to Cooper pair condensation. In thesarestthe Bogoliubov
coefficients arise naturally in the calculation of the natremissivity in color-
superconducting quark matter.

Cabibbo-Kobayashi-Maskawa (CKM) matrix Matrix that characterizes the rel-
ative strength of the weak interaction for different quagvdirs. In these lectures
relevant for the calculation of the neutrino emissivity uragk matter.

chiral symmetry For massless quarks, QCD possesses a global symmetry for
right- and left-handed quarks separately, called chinalrsgtry. This symmetry can

be spontaneously broken, giving rise to Goldstone modessd Boldstone modes

(or pseudo-Goldstone modes in the case of nonzero quarles)aa® for instance
pions and kaons. In these lectures we discuss kaon conaemgatinuclear and
quark matter (in quark matter, chiral symmetry is spontasobroken in the CFL
phase).

color superconductivity Cooper pair formation and condensation in cold and
dense quark matter, analogous to electronic supercordudti metals. If quark
matter is present in compact stars, it can be expected to berstiperconductor.

color-flavor locking (CFL) Ground state of three-flavor quark matter at asympto-
tically large densities. Particularly symmetric color sugpnductor where the order
parameter is invariant only under simultaneous color angifl&ransformations.
May persist down to densities where the hadronic phase @kasor may be re-
placed before this transition by a different color supedarior because of the ef-
fects of the strange quark mass.

compact star Very dense astrophysical object with a mass close to thes snass
and a radius of about ten kilometers. The term shows our &va of the exact
composition of these objects. They may be neutron starsichgtars, or quark stars.
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In a more general terminology, compact star also is usectode white dwarfs and
black holes, neither of which are the subject of these lestur

constituent quark mass Quark mass including the quark’s interaction energy in
a baryon, such that the sum of the three constituent quarkesasdds up to the
baryon mass. More generally, in dense matter the denspgsient “constituent”
quark mass includes any finite-density effects. Can be lagsdsf MeV larger than
the current quark mass.

Cooper pairs Microscopic explanation for superfluidity and supercortiity
within BCS theory. Arise from an instability of the Fermi fage in the presence
of an arbitrarily small interaction. In compact stars, thare possibly Cooper pairs
of neutrons, protons, hyperons and/or quarks.

crust Outer, km thick, layer of a neutron star or hybrid star. Cosgzbof ordinary
nuclei which form a crystalline structure and which, upacr@asing the density and
thus going further inside the star, become more and morearerith. In the inner
crust a neutron superfluid is immersed in the lattice of iuleark stars have, if at
all, much thinner crusts.

current quark mass Quark mass without effects from the interactions with other
quarks and gluons, see alsmsrituent quark mass. Since interactions become weak
at asymptotically large densities (much larger than dessibh compact stars), cur-
rent and constituent quark masses become identical initthiis |

dense matter In these lectures, dense matter means matter at densitee$cof
times nuclear ground state density, as expected in theantdrcompact stars. Gov-
erned by the strong interaction, and thus very difficult tealibe theoretically. We
discuss several theoretical concepts and sometimes hagedpe to lower or even
higher densities, just to make life simpler.

equation of state Relation between the pressure and the energy density foea gi
form of dense matter. In our context, the equation of staterdenes, together with
the TOV equation, the mass-radius relation of a compact Istgnarticular, a stiff
(soft) equation of state allows for a large (small) maximuass

Goldstone boson Massless boson arising from spontaneous symmetry breaking
a global symmetry. The only exact (i.e., truly massless)d&oine boson in dense
matter is the one associated to superfluidity, i.e., to tleaking of baryon number
conservation. Such a mode exists in a nuclear superfluidihasia the color-flavor
locked phase.

hybrid star Compact star with a quark matter core and a nuclear mantlst Mo
likely scenario to find quark matter in a compact star.

hyperon Baryon with nonzero strangeness. Hyperons may occur irohazimat-
ter at sufficiently large densities. In these lectures orggubsed briefly, in the con-
text of Walecka-like models.
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incompressibility Thermodynamic property of nuclear matter at the saturation
density, sometimes also called compression modulus. Cglatdeast indirectly
and approximately) determined in the experiment and thelslyia value that can,
among other quantities, be used to fit the parameters ofdatiearmodels, in these
lectures the coupling constants of the Walecka model witfasénteractions.

kaon condensation Possible example of Bose-Einstein condensation in a coimpac
star. May appear at sufficiently large densities. Is possibt only in nuclear matter,
but also in quark matter, where kaons exist in the CFL phdsesd kaons carry the
same quantum numbers as the usual kaons, however are masde gfiarks and
two quark holes.

Kepler frequency Absolute upper limit for the rotation frequency of compédets
beyond which mass shedding at the equator sets in. Givenebgdhality of the
centrifugal and gravitational forces (more precisely, gle@eral relativistic version
thereof). For typical compact stars in the thsegime, i.e., for some pulsars actually
observed rotation frequencies are not too far from thatliBe&low that limit stars
can suffer from other rotational instabilities, for instarther-mode instability.

Landau mass Effective mass of (nonrelativistic) fermions at the Fermniface, in
the framework of Landau’s Fermi liquid theory. In these lges, the Landau mass
for nucleons is mentioned in the context of the Walecka madielre its experimen-
tal value serves to fit the parameters of the model.

lattice QCD QCD on the computer. Powerful method to perform calculatioom
first principles. Not discussed in these lectures, mostbabse lattice QCD is cur-
rently unable to provide results at large chemical potéatia small temperature
because of the so-called sign problem.

Low-mass X-ray binary (LMXB) System of two stars, where a pulsar is accreting
matter from its companion which has a mass typically smétlan one solar mass
(as opposed to high-mass X-ray binaries where the compdrgisra mass larger
than about ten solar masses). Measured rotation frequeotmlsars in LMXBs
are mentioned in our brief discussion of thenode instability of rotating compact
stars.

magnetar Compact star with unusually large magnetic field, up t6°@®at the
surface and possibly larger in the interior.

Matsubara frequency In thermal field theory, the time direction in Minkowski
space becomes imaginary and compact, giving rise to Ewalidpace with discrete
energies, given by the Matsubara frequencies. In thesaréesctve mostly consider
the zero-temperature limit, but in some instances we hayetiorm a sum over
Matsubara frequencies.

mixed phase Coexistence of two (or more) phases which occupy certaiarmel

fractions — for instance bubbles of one phase immersed imtther phase — in a
given total volume. In our context, global charge neutyalis opposed to local
charge neutrality, allows for mixed phases for instanceuaiei and nuclear matter
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or quark and hadronic matter. These phases may be disfabyréatge surface
energy costs.

Nambu-Gorkov space Contains Nambu-Gorkov spinors which arise from a dou-
bling of the fermionic degrees of freedom in the theoretaedcription of super-
conductors and superfluids. Allows to introduce Cooperipgiin the off-diagonal
elements of the Nambu-Gorkov propagators. See@lsmalous propagators.

Nambu-Jona-Lasinio (NJL) model Phenomenological model, not discussed in
these lectures, where the QCD interaction between quanieplaced by a point-
like four-quark interaction. Since it has attraction in fane channels as QCD, this
model is frequently used to describe color-supercondgcfirark matter at moder-
ate densities.

neutron star Compact star made of neutron-rich nuclear matter. In somture
the term neutron star is also used to include the possiluifity quark matter core.
Mostly, also in these lectures, these stars are called thghars.

nuclear pasta Mixed phase of ordinary nuclei (ions) and nuclear mattericglly
found in the inner cores of neutron stars. Because diffeyeaietries can be real-
ized — spheres, rods, slabs, the latter two reminiscentagftsgtti or lasagna — these
phases have been termed nuclear pasta. In these lecturesowsstthe possibility
of mixed phases of quark and hadronic matter.

pion condensation Bose-Einstein condensation of pions in nuclear matter. Al-
though pions are lighter than kaons in the vacuum, kaon ewad®n seems to be
more likely in dense nuclear matter. Therefore, in thesites, kaon condensation,
not pion condensation, is discussed.

pseudo-Goldstone boson Less impressive brother of the Goldstone boson, arising
from spontaneous breaking of a global symmetry which is énoéxplicitly by a
small amount (small compared to the scale of the spontar@eaking). Light, but
not exactly massless. Dense matter is full of pseudo-Gagstnodes, for instance
mesons in nuclear matter or color-flavor-locked quark matésing from the spon-
taneous breaking of chiral symmetry which is explicitly kea by quark masses.

pulsar Star whose radiation is observed in periodic pulses. Palaer rotating
compact stars with large magnetic fields; their apparesigtion is due to the align-
ment of the radiation in a beam along the magnetic axis. Whemtagnetic axis is
different from the rotation axis, the beam may point towah#searth periodically,
just as the light of a lighthouse flashes periodically when gbserve it from the
beach.

pulsar glitch Sudden spin-up of a rotating compact star. Not discussedtaildn
these lectures but very interesting phenomenon sincelgloslated to the micro-
scopic physics, presumably to crystalline structures amtices in the star.

QCD phase diagram Collection of equilibrium states of QCD, typically depidte
in the plane of quark (or baryon) chemical potential and terafure. We roughly
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know where compact stars sit in this diagram, but we do notkihe phase(s) that
occupy this region of the diagram. These lectures are ab@liéng this unknown
territory.

quantum chromodynamics (QCD) Theory of the strong interaction. Governs the
physics that determines the ground state of dense matteemiran a compact star.
In these lectures we perform one explicit calculation in Q&21d discuss several ef-
fective approaches to this very elegant, but for most prapiurposes very difficult,
theory.

quarkyonic matter Form of dense matter covering a large portion of the QCD
phase diagram for the case of asymptotically large numbeolofs. Not discussed

in these lectures because there are only three colors ie#hevorld. However, it is

a viable option that a small region of quarkyonic matter asi@vand thus becomes
also important for compact stars.

quasiparticle Term originally used in condensed matter physics and chover
to dense QCD matter. Absorbs interactions of the originaligias into effective
new particles. For instance, quasiparticles in a superottodare gapped due to the
attractive interaction between the original particles.

r-modes Non-radial oscillations of a star with the Coriolis forceths restoring
force. Interesting for dense matter physics because thmy gnstable in a pulsar
unless the matter inside the star is sufficiently viscous.

rotated electromagnetism Effect in some color superconductors which is respon-
sible for them being no electromagnetic superconductdrerdfore important for
the physics of compact stars since magnetic fields pendlrase color supercon-
ductors. Technically speaking, rotated electromagnetisiers to a gauge boson
which is a mixture of a gluon and the photon.

saturation density Density at which the binding energy is minimized, here alsvay
used in the context of nuclear matter for which the satunadiensity is approxi-
mately 0.15 baryons per firand the corresponding binding energy per nucleon is
about 16 MeV.

sign problem Problem of QCD lattice calculations at finite values of theyba
chemical potential. For finite chemical potential, the @ttimore precisely the
quark determinant in the functional integral of the pastitfunction, loses its pos-
itivity and even becomes complex. This makes the probabiksmpling method
(“Monte Carlo method”), on which lattice QCD is based, uisibe. In our context
this means that currently there is no input from lattice gkltions to the properties
of dense matter.

strange quark matter hypothesis Hypothesis that strange quark matter, not nu-
clear matter, is the ground state at zero pressure. Thelggistdoes not contradict
our existence since, even if the hypothesis is true, thaitian from nuclear matter,
made ofu andd quarks, to strange quark matter is essentially forbiddendidtuss
that, within the bag model, the strange quark matter hymidhe true if the bag
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constant is between a lower bound (since we know that orglimaclear matter is
stable with respect to two-flavor quark matter) and an uppdt (beyond which
nuclear matter is absolutely stable).

strange star (quark star) Compact star made entirely out of quark matter, thus the
most radical scenario for quark matter in compact stars.

strangelet Small nugget of strange quark matter. Stretching the aaigireaning a
bit — well, from femtometers to kilometers — a strange starlsige strangelet. Rel-
evant for us in the context of the strange quark matter hygsighsince strangelets
would convert neutron stars into strange stars, the unarobgobservation of a
single neutron star would invalidate the strange quarkenatgpothesis, provided
that there are enough strangelets in the cosmos to hit mesiiznos.

supernova Compact stars are expected to be born in (type 1) superncpi-e

sions, where a giant star, after burning its nuclear fuetlengoes a gravitational
collapse. The energy of the explosion is mostly releasetierfarm of neutrinos.

The theoretical description of supernovae requires venypticated hydrodynami-
cal simulations.

Tolman-Oppenheimer-Volkov (TOV) equation Differential equation from gen-
eral relativity for the mass, pressure, and energy densifyractions of the distance
from the center of the star. In connection with the equatibstate, which relates
energy density and pressure, used to compute the mass-rafiition for a compact
star.

unpaired quark matter Term used for (dense) quark matter which does not form
Cooper pairs and thus is no color superconductor. Sinceedgunesrk matter is ex-
pected to be some kind of color superconductor, completahained dense quark
matter is unlikely to exist. Therefore mostly used for refere calculations or when,
for the computed quantity, it is a good approximation to @éiquark matter.

Urca process Most efficient process for neutrino emission, and thus ferctholing
of the star. In quark matter the direct Urca process is given$ e — d + v, and
variants thereof. We compute the emission rate of this moae detail in these
lectures. In the modified Urca process, a spectator paisieldded which increases
the available phase space.

viscosity (bulk/shear) Transport coefficients of nuclear or quark matter relevant i
particular in the context of rotation and oscillation of gtar. Requires microscopic

calculation of processes typically governed by the weadrattion. Not discussed

in detail in these lectures. See alsmodes.

Walecka model Phenomenological model for interacting nuclear mattesedaon
Yukawa couplings of the nucleons with tleandw meson. Used for extrapolation
to large densities after fitting the parameters of the motdsdtration density. Dis-
cussed in these lectures as a basic example for numerousoropicated nuclear
models of similar kind.
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white dwarf Dense star with a mass of about the sun’s mass and radius of a fe
thousand kilometers, which makes it less dense than a mestao Composed of
nuclei immersed in a degenerate electron gas.
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